
)

A MESSAGE-PASSING SYSTEM
FOR THE LARGE-GRAIN DAT A-FLOW

MACHINE

JEFFREY THIERET
DR. T. G. LEWIS

DEPARTMENT OF COMPUTER SCIENCE
OREGON STATE UNIVERSITY

APRIL 28, 1986

ABSTRACT

The Large-Grain D13ta-Flow (LGDF), Ma::hine is a tightly-coupled
multi-processor consisting of several independent n~, upon each of
which may run one or mcire tasks. These tasks must be ab le to
communicate and synchronize with each other. This ax:ument ooscribes a
message-passing system developed to meet these requirements.

The message-passing system allows any task on an arbitrary noce to
send information to any other task on an arbitrary, possibly the same,
noce. The 5y1stem is based on the use of shared memory. Messages may be
of any length, subject only to the constraints of memory size. Except for
a he6:i!r of control information, the 5y1stem places no interpretation upon
the contents of the messa;ie. Using performance data automatically
provided, the user can easily tune the 5y1stem to enhance performance.

The first section of this paper presents a brief introduction to the
concept of large-grain data-now. This is followed by a ooscription of the
message-passing system. All components of the system from the
hardware to the high level 5y1stem calls are discussed. The third section is
a user's manual. This is a guioo to the low level 5y1stem calls, to 5y1stem
tunable parameters, and to deadlock conditions. The paper is concluded
with a discussion of possible problems with and extensions to the 5y1stem.

TABLE OF CONTENTS

I. Introduction ... 2
2. The Message-Passing System .. 2

2.1 Design Criteria ... 3
2.2 The Hardware ... 5
2.3 Shared Memory ,... 8
2. 4 PI O_MP _POSTMAN .. I 3
2.5 The VRTX Kernel ... 14
2.6 Low Level System Calls .. 15

2.6.1 PLSM-ALLOCATE/P(_SM._DEALLOCATE 15
2.6.2 PLMP_POST ... 15
2.6.3 PC_MP_PEND ... 16

2.7 High Level System Calls ... 17
2.7.1 PLMP_SEND .. : 17
2.7.2 PLMP-RECEIVE : : 18

2.8 An Examp_le ... : 18
3. User's Manual ... 23

)
'3.1 Low Level System Calls : .. 23
3.2 System Tunable Parameters .. : 28 ·
3.3 Deadlock ... 29

4. Conclusions .. 30
5. References ... 32
6. Appendices : .. : 34

1. I NTROOUCT I ON

In the traditional control-flow model of computation, a grain, which is
a unit of work to be performed, is processed only when the control is
present at that grain. In other words, a grain is "fired" when the program
counter points to it. In the data-flow model, however, a grain may fire as
soon as it has all its inputs. There is no notion of centralized . control, as
ln a control-flow machine. The order in which the grains are fired is
determined solely by the availability of inputs.

Data-flow machines typically have several units for processing grains
in parallel. The architectural structure of these processing units is a
function of grain size. In a small - grain data- flow machine, a grain may
consist of a single machine instruction such as an add or a multiply. The
processing units are designed accordingly, perhaps being simple alu's. In
contrast, large-grain data-flow machines have typical grain sizes of at
least 50 machine instructions . These grains may correspond to program
modules or procedures in a high-level language. In this paper, these grains
are called tasks. The processing units in these machines are traditional
control-flow processors, each of which executes each "firing" task in a
sequential manner. However, just as in small-grain computation, the
"firing" of the tasks is a function of data availability and not of control
"availability ". Readers are referred to [2] [3] [9] [12] for a more detailed
discussion of both large and small-grain data flow computation.

The processing unit of the LGDF Machine is a node consisting of two
central processors. The machine will eventually have 5 nodes. Each node
may have up to 64 tasks resident on it at any point in time. As soon as a
task has all its inputs, it executes. If it produces any outputs, these may
be used as the inputs for some other task. This "other " task may or may
not reside on the same node as the outputting task. The message- passing
system discussed in this paper is a means of transferring the outputs of
one task (the source) to the inputs of another (the destination) as well as
a means of controlling the firing of the tasks; i.e'., no task should execute
before it has all of its inputs.

2. THE MESSAGE- PASSING SYSTEM

In the following discussion, the : reader is guided through the

2

message-passing system from the hardware level to the level of the
highest system calls.

Briefly, the message-passing system works as follows : when a task
wants to send a message to another task, it places a system call to copy
the message from its local memory to the shared memory on its node.
Periodically, each node i checks shared memory on each of nodes j (j != i)
for messages to tasks residing on node i. These messages are then copied
from shared memory on node j to shared memory on node i. A task may
receive a message by placing a system call that will copy the message
from shared memory on its node to its local memory.

The above discussion illustrates the fact that the message-passing
system makes the LGDF Machine something of a hybrid between traditional
shared memory multi-processors and distributed multi-processors. In
traditional shared-memory machines, such as those discussed in [1] [1 O]
[12] [16] [19] [20], a message is placed in shared. memory where the
destination task can access it immediately . In a distributed system, the
message must be transported from the sender to the receiver by kerne 1
routines accessing a network. Only after the message has traversed the
network can the destination task access it. References relating to
distributed computing abound, including [4] [5] [6] [7] [8] [15] [17] [I 8].

The message-passing system utilized in the LGDF Machine more
closely resembles a distributed communication system than a traditional
shared memory communication system. In particular, the Accent kernel
described in [_18] has many interesting similarities with the LGOF
message-passing system, although it is an order of magnitude more
complex.

Section 2.6 gives an example of the behavior of the message-passing
system: the reader may wish to read that section first before proceeding
with the more detailed discussion below.

2.1 DESIGN CRITERIA

_ The message-passing system has been designed to meet the fallowing
criteria :

I) The application task should not have to know the details of
the system. It should only know what the message is and

3

I)

.)

the identification number (id) of the destination task.
2) The message-passing system should only minimally impact

the task processing, either in terms of cpu time or in
terms of memory space.

3) A task should be able to send/receive messages to/from
any other task in the system regardless of the node on
which the destination/source task resides.

4) The user's interface to the message-passing system should
be consistent regardless of the location of or type of task
sending/receiving.

5) A task should be able to receive messages both in FIFO
order based on arrival time over all messages and in FIFO
order based on arrival time for only those messages from a
desired source task.

Criteria 1, 3, and 4 above serve to hide detai Is of t~e system from the
user. To borrow a term from the field of distributed processing, the

. message-passing system is "network transparentM. The benefits of such

. transparency include ease of programming, ease of software modification,
and facilitated process (task) migration [51 [17]. Although the LGDF
Machine can not be classified as a distributed system, it can benefit from
such transparency.

Criterium 2 serves to speed the processing of tasks. Communication
overhead can have a significant effect on task processing speed.
Multi-processing systems strive to minimize this overhead because, as the
communication overhead increases, the benefits, in terms of execution
speed, of parallelism decrease [12]. The LGDF Machine attempts to resolve
this conflict by having two processors on each node, one for task
computation and one for task communication.

Criterium 5 gives the user greater flexibility as to which messages he
may receive. He is no longer restricted to receiving only the message at

· the head of the queue; he may also receive the first message sent from a
particular task, whether or not it is at the head.

There are certain criteria that the system was not designed to meet:

1) The system will not be fault tolerant: the failure of a node

4

or a task after system boot may cause a system deadlock.
2) The system will have no facility for automatic message

re-transmission: messages are assumed to arrive intact.
3) The system will not automatically send a message receipt

acknowledgment to the source task.
4) The system will not provide broadcasting, multicasting, or

global streaming services: these can, however, be built up
from the basic service provided.

2.2 THE HARDWARE

Figure 1 illustrates the overall structure of the LGDF system. There
w i 11 be 6 nodes, numbered 0-5. These nodes are connected by a VME bus.
Each node may serve as bus master. Nodes 1-5 run identical kernels and
are processing units for application tasks.

Node O is the SCB (System Control Board). This node acts as a conduit
for data flowing to and from the front-end processor, which will
eventually be an Apple Macintosh micro-computer. It does not act as a
processing unit for application tasks. It coordinates the activities of the

) other nodes during system boot and acts as multiple servers, providingfile
access, clock support, and error handling services to application tasks on
the other nodes. The message-passing_ system does not distinguish
between the SCB and the other 5 nodes. Server tasks are activated by
messages in the same manner as application tasks. This is, again, the
paradigm of network transparency at work. More information on the
concept of servers may be found in [4] [7] [8]. In the discussion to follow,
only nodes 1-5 will be called "nodes\ the SCB node will simply be called
the SCB.

Figure 2 illustrates the structure of each node. On each node reside
two Motorola 680 Io processors. One of these, the Pc, performs the
computations of the tasks themselves. The other, the Pio, performs all the
work involved in the inter-node message-passing between tasks executing
on the Pc's. Note, however, that intra-node message passing does not
involve the Pio. It is hoped that by having a separate processor for
inter-node message-passing, the Pc will be able to process tasks at a rate
only minimally affected by the inter-task communication overhead.

The LGDF Machine employs a hierarchical memory scheme. The Pc has

5

its own local memory (512K bytes RAt1). It is inaccessible to tJ,e Pio and
is where the task code and data segments wil 1 reside. The Pio ei 1 so hes it~:
own locel memory (16K bytes RAM). This is wr,ere the data segment for
the PI O_MP _POSTMAN process, discussed in Sec ti on 2.4, wil 1 reside.

A 1 so on each node is 1 28K of shared RAM. Tt1i s RAt1 may t,e accesse,j
from the local Pc, the local Pio, and any remote Pio through the VME t,us.
Arbi trnt ion 1 ogi c handles simultaneous requests for access. That portion
of the total shared memory address space that is physically loceited on
node i is said to be node i ·s 1 oca 1 shared memory (LSM). Tt1at portion of tr,e
totol shared memory address spoce that is physicolly locoted on node j
(j!=i) is seid to be node i's remote shered memory (RSi1).

The bus interrupt structure allows 7 priority levels of bus interrupts .
Any node may interrupt any other node or the SCB. Each node (end the :;CB)
mey be programmed to respond to interrupts of only certain priority
levels . Each node (and the SCB) is currently progreirnmed to respond to
interrupt levels i+ 1, where i is the node id, and 7. For exeimple .. node 3
will respond to interrupts of priorities 4 and 7.

VME BUS

~

□ LINK

MACINTOSH

FIGURE 1. THE LGDF SVSTEt1

6

)

)

ROM LOCAL LOCAL LOCAL ROM
64K MH10RY SHt\RED MH10RY 64K

MEMORY

RAM RAM RAM
512K 128K 16K

FIGURE 2. LGDF NODE STRUCTURE

7

)

2. 3 SHARED MEMORY

Shared memory structure is illustrated in figure 3. Shared memory on
each of nodes 1-5 has an identical structure. It is partitioned into 5 areas:
a configuration table, a task table, an area for system variables, a queue
area, and a message area.

CONFIGURATION TABLE

TASK TABLE

SYSTEM VAR I ABLES

QUEUES

MESSAGE AREA

FIGURE 3. SHARED MEMORY STRUCTURE

The Pc multi-tasker and the message-passing system are dynamically
reconfigurable at system boot. At system boot, the SCB will copy values

8

for the current configuration into the configuration table. The
message-passing system and the multi-tasker are then configured
accordingly by the boot routine on the Pc. Each node is identically
configured. Those configuration parameters relevant to the
message-passing system are discussed further in Section 3.2, System
Tunable Parameters.

Each task in the system is assigned a unique task id. Id O is reserved
for system use. The maximum number of user tasks that may be resident
in the system is currently restricted to 255. The maximum number of
tasks resident on any single node is currently restricted to 64. The task
table has an entry, indexed by task id, for each task in the system.
Included in this entry are the id of the node on which the task resides and
the id of its corresponding task queue. All tasks must be created and
bound to processors and task queues before any task is allowed to execute.
Because of this static binding, it is most convenient to place identical
copies of the task table in sha'red memory of each node, thus reducing bus
traffic. Task table structure is illustrated in figure _ 4. Task queue
numbers are distinct on each node, but not between nodes. For example,
every node has a task queue with id 17, but there is at most one task queue

. with that id on any one node.
System variables consist of "tickets" to be used for mutual exclusion,

heads and tails of queues, pointers to the various areas of shared memory, ·
such as a pointer to the first free block in the message area, and
compaction flags (discussed below) for each task queue. Also included are
various counters used to provide feedback to the user, enabling him to tune
the system configuration to enhance performance. These counters keep
track of the number of times the various queues are found to be full or to
be empty and the number of times LSM is found to be full.

There are three classes of queues in the queue area of shared memory:
send queues, acknowledge queues, and task queues. These queues closely
resemble the ·kernel portsu and udata portsN of the Accent kernel [18].
Each queue has a head and a tail pointer and is filled/emptied in a cyclic
manner. All queues within a given class have the same length but queue
lengths between classes may vary. These lengths are system tunable
parameters. All queue elements are pointers to messages.

9

)

ENTRY 0

ENTRY 1

ENTRY 254

ENTRY 255

31

UNUSED

UNUSED

UNUSED

23 15 7

RESERVED FOR SYSTEM

UNUSED

UNUSED

UNUSED

0
0
0

TASK
QUEUE

TASK
QUEUE
TASK
QUEUE

FIGURE 4. THE TASK TABLE

0

NODE

NODE

NODE

There are 6 send queues; 1 for each node and one for the SCB. These
hold pointers to outgoing messages in LSM that are yet to be copied to RSM
on the destination node. Mutual exclusion must be maintained on the tail
pointer of each send queue because several Pc tasks may be attempting to
append to the queue simultaneously. This is accomplished by disabling the
VRTX (see Section 2.5) task scheduler.

As 1n the case of send queues, there are 6 acknowledge queues, one for
each node and one for the SCB. These hold pointers to the original
messages in shared memory of the source node that have been copied into
LSM of the destination node. Mutual exclusion mechanisms are not
required for this class of queue.

Task queues hold pointers to 1ncom1ng messages in LSM of the
destination node that are yet to be received by the destination task. There
is one task queue for each task on the Pc. Task queues are not strict FIFO
queues. Pointers are appended to a task queue only at Its tail, but they
may be removed from any location in the queue, not just the head. Items

10

removed from any queue location other than the head are-zeroed out. These
zeroed items are removed by compacting the queue. Associated with each
queue is a compaction flag, indicating whether or not the queue needs to be
compacted. When a system task attempts to append to a task queue and
finds it full, this flag is checked. If the flag indicates that compaction is
necessary, the queue is compacted and the attempt to append is repeated.
The "random" access of task queues is similar in concept, if not in
implementation, with the prioritized port access of Accent [18].

Mutual exclusion must be maintained on the entirety of each task
queue. At any instant, several Pc tasks and PI0J1P_P0STMAN (see Section
2.4) on the Pio may be simultaneously attempting to access the same task
queue. To insure Pc-Pc mutual exclusion, the VRTX task scheduler is
disabled. A version of Lamport's bakery algorithm [13] [14] is then used to
insure Pc-Pio mutual exclusion . Each task queue has two corresponding
tickets; i.e., locks are on individual queues, not the group of task queues
as a whole.

The message area is divided into fixed-length blocks and structured as
a linked-list. . The block size is a system tunable parameter. The last 32
bits of each block is a pointer to the start of the next block. When a
message is allocated, the required number of blocks are removed from the
free list. When it is deallocated, the blocks are returned to the free list.
The pointer to the head of the free list, the first free block, is kept in the
system variables area of shared memory. At any point in time, several
tasks on the Pc and PI0J1P_P0STMAN on the Pio may be simultaneously
attempting to allocate/deallocate message space. Safety is maintained by
controlling access to the first free block pointer . This is accomplished by
disabling the VRTX task scheduler to resolve Pc-Pc competition and using
Lamport's Bakery Algorithm to resolve competition between the active Pc
task and PI0J1P_POSTMAN.

Messages may be of any length and may occupy several, possibly
non-contiguous, blocks in the message area. The link field in the last
block of a message will be NULL. Every message has a header. :lncl~ded in
this header are the source task id, the source node id, the destination task
id, the destination node id, and the message length. Message structure is
illustrated in figure 5, This example illustrates a message whose length
requires three message blocks.

11

)

,----------, _,,.,,,. . ./

MESSAGE HEi·.DER

MESSi,.GE BODY'

LINK

MESSAGE

CONTINUATION

MESS.\GE

COt-ITINUATION

NULL

31 15
s:nrn SEl-ID DEST
TASK MODE TASK

MESSAGE LE lJGTH

HEADER F'ORM.4, T

Fl GURE: 5. ME'.SSAG[STRUCTURE:

7 0

DEST
HOD£

12

)

)

2.4 PIOJ1P_POSTMAN

Each Pio runs a single process continuously. This process is called
PIO.J1P_POSTMAN. Each PIO.J1P_POSTMAN executes in parallel with every
other PIO.J1P_POSTMAN in the system; however, to reduce traffic on the
VME bus, it is allowed access to the bus only when it is its turn. Turns are
decided in round-robin fashion. As soon as one PIO.J1P_POSTMAN is done,
it interrupts the next PIO.J1P_POSTMAN in the cycle, telling it to proceed,
and then performs a busy-wait until it is again its turn. During its turn,
each PIO.J1P_POSTMAN performs the following in the order given:

1) Looks on each node, except its own, at its corresponding
acknowledge queues. For example, the PIO.J1P_POSTMAN
running on the Pio of node 3 will examine acknowledge
queue 3 on each of nodes 0, 1, 2, 4, and 5. Each of these
queues contain pointers to messages in LSM of node 3 that
have already been copied to LSM of the destination node.
PIO.J1P_POSTMAN deallocates the LSM space used by these
messages, returning the message blocks to the linked-list
of free blocks.

2) Looks on each node, except its own, at its corresponding
send queues in a manner analogous to that used for
acknowledge queues. Each of these queues contain pointers
to _ messages in LSM of the source node that
PIO.J1P_POSTMAN must copy into its LSM. For each pointer
found in these send queues, PIO.J1P_POSTMAN performs the
following in the order given:

a) Determines, by examining the message header, the
length of the corresponding message.

b) Attempts to allocate space in its LSM for the message.
If the attempt fails (due to lack of space), it
increments the LSM full counter and relinquishes its
turn. When it is again its turn, it performs step 1
above in hopes of freeing up LSM space and then tries to
allocate the space again. It repeats this process until
the allocation is successful.

13

)

)

c) Copies the message from RSM to LSM. There are now
two copies of the message, a remote copy on the
source node and a local copy on the destination node.

d) Determines, by examining the message header, the
destination task id and examines the task table to find
its corresponding task queue.

e) Attempts to append a pointer to the local message to
the appropriate task queue. If the attempt fails
(because the queue is full), it checks the compaction
flag associated with the queue. If the flag indicates
that compaction is necessary, it compacts the queue
and repeats the attempt to append. If the flag indicates
that compaction is not necessary, it increments the
full counter for that task queue and relinquishes its
turn. Whe~ it is again its turn, it tries again. This
process is repeated until the attempt succeeds.

f) Attempts to append a pointer to the re_mote message· to
the appropriate acknowledge queue . . If .the attempt
fails (because the queue is full), it relinquishes its
turn. When it is again its turn, it tries again. :This
process is repeated until the attempt succeeds.

3) Interrupts the next PI0J1P_P0STMAN and then performs a
busy-wait until it is interrupted.

2.5 THE VRTX KERNEL

VRTX (Virtual Real-Time Executive) is a set of prepackaged kernel
routines. These routines provide many different services, such as
multi-tasking, semaphore operations, and memory management [I I]. The
operating system running on the Pc incorporates these VRTX routines. All
routines are available, but the message-passing system uses only those
routines related to multi-tasking.

Tasks running on the Pc will be scheduled on a priority basis and by
round-robin within a priority class. As the system is currently
configured, all tasks have the same priority, thus the scheduling is
strictly time-sliced. VRTX calls used by the message-passing system _

14

)

)

serve to enable/disable the scheduler, thus enforcing mutual exclusion for
certain critical operations, and to suspend execution of a task for a given
time interval.

2.6 LOW LEVEL SYSTEM CALLS

The low level -system calls are: PCJ1P_POST, PCYJP_PEND,
. pc_sM_ALLOCATE, and pc_sM_J)EALLOCATE. These calls allocate
/deallocate space for a message in LSM (PC_SM-ALLOCATE
/PC_SM_J)EALLOCATE), append a message pointer to the appropriate queue
(PCYIP_POST), and remove a message pointer from the appropriate queue
(PCJ1P_PEND). Readers are ref erred to Appendix A for a brief discussion
of the naming convention used for operating system programs.

2.6. 1 PC....SM._ALLOCATE/PC_SM_DEALLOCATE

PC_SM_ALLOCATE is a function that attempts to allocate the
appropriate number of message blocks for the message size specified. It
is passed the message size and'a reference parameter into which will be
copied (if the allocation was successful) a pointer to the start of the
allocated message list. If sufficient free blocks are available,
PC_SM_ALLOCATE removes them from the free 11st of blocks, places NULL
in the link of the last block in the allocated list, and copies a pointer to
the first block of the allocated list into the specified reference
parameter. If sufficient space is not available, it increments the LSM full
counter. The return value of this function indicates whether or not the
allocation was successful.

PC_SM_J)EALLOCATE returns a list of message blocks, whose starting
address is passed by the caller as a parameter, to the free list. It has no
return value.

Both of these calls go through the mutual exclusion mechanisms
described in Section 2.3 for access to the first free block pointer of the
message area.

2.6.2 PCJ1P_POST

PCYJP_POST appends a message pointer to either the destination node

15

send queue, if the destination task is remote, or the destination task
queue, if the destination task is local. It is passed two parameters: the id
of the node on which the destination task resides and a pointer to the
message (in LSM) to be sent. It performs as follows:

1) Compare the source and destination node id's.
2) If they are equal, determine, by examining the message

header, the destination task id. Look up the corresponding
entry in the task table to get the task queue id for that
task. Attempt to append the pointer to the task queue. If
the attempt fails (due to a queue full condition), check the
compaction flag associated with the queue. If it indicates
that compaction is necessary, compact it and then repeat
the attempt to append. If the flag indicates that no
compaction is necessary, increment the full counter for
that task queue, suspend for NAPTIME clock · ticks (see
Section 3.2), and then try again. When the attempt
succeeds, return to the caller.

3) If they are not equal, attempt to append the message
pointer to the appropriate send queue. For example, if the
message is going to node 4, the pointer gets appended to
send queue 4. If the attempt fails (due to a queue full
condition), increment the full counter for that send queue,
suspend for NAPTIME clock ticks, and then try again. When
the attempt succeeds, return to the caller.

Note that in neither case 2 nor 3 above will PCJ1P_POST return to the
caller until it is successful.

2.6.3 PCJ1P_PEND

PCJ1P_PEND removes a message pointer from the calling task's. task
queue and returns it to the calling task. It is passed two parameters: the
destination task id and the desired source task id. It performs as follows:

I) Examine the source task id.
2) If the source task id is zero, retrieve the pointer at the

16

J

head of the destination task queue and return it to the
caller. If the queue is empty, increment the empty counter
for that task queue, suspend for NAPTIME clock ticks, and
then try again.

3) If the source task id is non-zero, retrieve the first (in
FIFO order) pointer to a message from the specified source
task that is encountered in the destination task queue,
whether or not that pointer is at the head of the queue.
Return this pointer to the caller. If the queue contains no
pointer to a message from the desired task, increment the
·empty counter for that task queue, suspend for NAPTIME
clock ticks, and then try again.

Note that in neither case 2 nor 3 above will PCJ1P_PEND return to the
caller until it has found the pointer for which it is seeking.

2. 7 HIGH LEVEL SYSTEM CALLS

These calls, PCJ1P_SEND and Pc...MP__RECEIVE, are the application
interface to the communication system. . These calls have not been
implemented by the author. The following two sub-sections discuss these
calls in a general sense, omitting application-specific details.

2. 7. I PCJ1P _SEND

PCJ1P_SEND initiates the message-passing process by formatting a
message in LSM and calling PCJ1P_POST. When an application task calls
PCJ1P_SEND, it passes the destination task id and a pointer to the
information (in Pc local RAM) to be sent. PCJ1P_SEND performs as
follows:

I) Examine the task table entry for the destination task. If
either the node id or the task id are invalid, return an error
code.

2) Attempt to allocate space in the message area of LSM for
the message by calling PC_SM_ALLOCATE. If the attempt
fails, PCJ1P_5END will suspend for NAPTIME clock ticks

17

and then try again. The attempt is repeated until it is
successful.

3) Format the message header.
4) · Copy the information to be sent into the message blocks.
5) Call PCJ1P_POST, passing it the destination node id and a

pointer to the message in LSM.
6) Return a successful code as soon as PCJ1P_POST returns.

2.7.2 PCJ1P_RECEIVE

PCJ1P.-RECEI VE calls PCJ1P_PEND to get a pointer to an incoming
message and then dis-assembles the message, copying the message body
into the desired location of Pc local memory. It is passed the task id of
the desired source task (as a reference parameter) and a pointer to where
the message is to be copied. It performs as follows:

I) Determine the calling task's task id.
2) Call PCJ1P_PEND, passing it the source and destination

·task id's.
3) When PCJ1P_PEND returns a pointer to the message, copy

the message contents, without the header, into the area of
Pc local memory specified. Place the source task id in the
task id reference parameter.

4) Deallocate (by a call to pc_SM_OEALLOCATE) the LSM space
used by the message.

5) Return to the caller.

2.8 AN EXAMPLE

Figures 6 and 7 illustrate the message-passing system. Message
acknowledgements are illustrated separately because of lack of space on
the first figure. : These figures, along with the following example, should
help to clarify the message-passing process. Suppose that task 27 wants
to send a message to task 52. It has no idea on which node task 52
resides; it knows only what the message is and that it is to be sent to task
52. Further suppose that the task table entries for these tasks are as
i 1 lustrated in figure 8.

18

_)

TASK QUEUES

USER TASK SEND USER TASK

0

COPY
COPY COPY ·

LM LSM LSM LM

NODE I NODEJ

FIGURH 6. THH MESSAGE-PASSING SYSTEM (PART 1)

N
C)

DEALLOCATE

LSM

NODE I

ACKNOWLEDGE QUEUES

NODE J

111111111

111111111

. FIGURE 7. THE MESSAGE-PASSING SYSTEM (PART 2)

Task 27 calls PCJ1P_SEND, passing it a pointer to the information to be
sent and the task id 52. PCJ1P_SEND checks to task table entry for task
52 to insure that its sub-entries are valid. PCJ1P_SEND looks in the task
table for the calling task's node id, 2. It also retrieves the destination
task's node id, 3. An appropriate size list of message blocks is

31 23 15 7 0

ENTRY 0
I

RESERVED FOR SYSTEM
I

0
0
0

ENTRY 27 10 2

0
0

0

ENTRY 52 16 3

0

0
0

ENTRY 255 UNUSED U''U'"".-"' N ~C.U
TASK

NODE
QUEUE

Fl GURE 8. THE TASK TABLE FOR THE EXAMPLE

21

allocated by a call to pc_stLALLOCATE and the message and header
information is copied into this list. PCJ1P_SEND will then call
PCJ1P_POST, passing a pointer to the start of the message list and the
destination task's node id.

PCJ1P_POST compares the destination task's node id, which is 3, with
its own node id, 2. Because they are different, the pointer is placed in
send queue 3. (Had they been the same, the pointer would have been placed
in task queue 16). PCJ1P_POST then returns to PCJ1P_SEND, which then
returns to task 27. Task 27 proceeds without waiting for the message to
be received.

When PIOJ1P_POSTMAN on node 3 gets its turn to use the VME bus, it
will, among other things, examine send queue 3 on node 2. It will find the
pointer to the message and will copy the message into its own LSM. When
the copy is . complete, it will place a pointer to the local copy of the
message into task queue 16, the task queue corresponding to task 52. It
also places the remote message pointer in acknowledge queue 2.

When PIOJ1P_POSTMAN on node 2 gets its turn, it will, among other
) things, examine acknowledge queue 2 on node 3 and find the message

pointer . It will then deallocate the LSM space used by the message.
In the meantime, task 52 has executed a call to PCJ1P_RECEIVE,

specifying that it wants to receive a message from task number 27 and
that the message is to be copied into address A of Pc local memory.
PCJ1P-RECEIVE calls PCJ1P_PEND, passing it the source and destination
task id's.

PCJ1P_PEND examines the task table and finds that the corresponding
task queue for task 52 is task queue 16. It then examines this queue for a
pointer to a message from task 27. In this example, it is lucky; it finds
such a pointer on its first scan through the queue. (Had it not found it on
the first scan, it would have continued scanning until it had done so). This
pointer is returned to PCJ1P_RECEIVE.

PCJ1P-RECEIVE copies the message, without the header, from LSM to
address A in Pc local memory. It then deallocates the LSM space used by
the message by placing a call to PC..SMJ)EALLOCATE. Following the
deallocation, it returns to task 52. Task 52 now continues processing.

22

)

)

3. USER·s MANUAL

The following three sub-sections discuss the details needed to utilize
the low level system calls, to tune the system parameters to enhance
performance, and to recognize and avert deadlock.

3. 1 LOW LEVEL SYSTEM CALLS

23

)

PC_StLALLOCATE()

~include SYS_DEFINES:LGDF

int pc_sm_allocate(ms9-length,ms9-ptr)
long msg_length;
long ~msg_ptr;

msg.Jength - the message length expressed as long words (4 bytes).
This length includes the message body and message
header but excludes the link field (I long word) in the
message b I ocks.

m~g ptr - on return, if the allocation was successful, . this
reference parameter will contain a pointer to the start
of the first block of the allocated message list. If the
alloca~ion was unsuccessful, · the value is
indeterminate and should not be used.

PC_SM_ALLOCATE will attempt to allocate the required number of
blocks from the message area of local shared memory. Upon successful
allocation, the address of the start of the first allocated block will be
placed in the reference parameter msg_ptr and a value CAN_ALLOCATE
will be returned. CAN_ALLOCATE is defined in the file SYS_DEFINE5:LGDF,
a copy of which is included in the program listings folder.

If the allocation failed (due to lack of space), msg_ptr will be
indeterminate and a value CANT-ALLOCATE (also defined in
SYS_DEFINES:LGDF) will be returned.

Programs copying to/from a list of message blocks must be aware that
the list may occupy non-contiguous blocks. The program must know the

· blocksize (BLKSIZE) in order to know when to examine the link. The link
. field is the last long word in each block. Because BLKSIZE is expressed in

long words, the link field is at offset BLKSIZE - I in each block.

24

)

PC_SrLDEALLOCATE()

void pc_sm_dea11ocate(firsLmsµ1ock_ptr)
long *f irsLmsµ 1ock_ptr;

firsLmsg blocLotr - a pointer to the first message block in the
message list in LSM to be deallocated.

P[_SM_OEALLOCATE will return the list of message blocks to the list
of free blocks in the message area of LSM. It has no return value.

25

PCJ1P _POSTO

void pc_mp_post(msg_ptr,desLnode)
long *msg_ptr;
char desLnode;

msytr
desLnode -

a pointer to the first block of a message list in LSM.
the destination task node id.

PCJ1P_POST will initiate the message-passing process by placing the
message pointer in either:

a) the send queue appropriate for the destination node if
desLnode is not equal this node or

b) the task queue appropriate for the destination task if
desLnode is equal this node.

In neither case a nor b above will Pc...MP_POST return to the caller
until the pointer has been successfully appended to the appropriate queue.
PCJ1P_posr has no return value.

26

)

)

PC_MP _PEND()

1 ong *pc_mp_pend(desLtasLi d,src_tasLi d)
char desLtasLid;
char src_tasLid;

desLtasLid - the task id of the destination task.
src task id - the task id of the requested source task, or zero if

the destination task merely wants the first message
in the queue, regardless of who sent it.

PCJ1P_PEND will return a pointer to a message in LSM to the calling
task. There are two options available to the caller:

a) PCJ1P_PEND may return the first message pointer found in
the caller's task queue, regardless of. the sender, or

b) PCJ1P_PEND may return the first message pointer found in
the caller's task queue to a message from a specific task.

In neither case a nor b above will PC_MP_PEND return until the
requested pointer has been found. ·

3.2 SYSTEM TUNABLE PARAMETERS

This section discusses the various parameters that may be tuned to
enhance the performance of the message-passing system. There are other
system tunable parameters relating to the multi-tasker; those parameters
are not discussed here.

A performance analysis has not been run on the system, thus; the
current values for each of these parameters are nothing but "first guess"
values. BLKSIZE has been picked to be 32 bytes because it is believed that
most messages will have lengths below this value.

Queue lengths are critical parameters for system performance.
Whenever a system routine attempts to append a pointer to a full queue,
either the queue is compacted or the routine blocks. If queues are too
small, this situation will occur frequently, thus degrading system
performance. It is recommended that SENO_Q_SIZE a~d ACK_Q_SIZE be set
to identical values because of the similar natures of these queues.
T ASK_Q_SIZE, however, should be calculated independently.

NAPTIME should be chosen to be significantly fewer clock ticks than
the quantum size. To understand why this is recommended, consider the
following scenario: a system routine suspends for NAPTIME clock ticks
but there is no other task ready to execute. In this case, the routine
should be unblocked as soon as possible.

BLKSIZE

SENO_CLS I ZE

definition: size of message blocks (in long words) in
LSM. Specified as an integer.

min. value: 4.
max. value: limited only by LSM space.
curr. va 1 ue: 8.

definition: length (max~ of entries) of send queues.
Specified as an integer .

min. value: 2.
max. value: 255.
curr. value: 32.

28

)

ACl<-CLSIZE

T ASIL<LS I ZE

NAPTIME

3.3 DEADLOCK

definition: length (max# of entries) of acknowledge
queues. Specified as an integer .

min. value: 2.
max. value: 255.
curr. value: 32.

definition: length (max • of entries) of task queues.
Specified as an integer ..

min. value: 2.
max. va 1 ue: 255.
curr. value: 32.

definitfon: the number of clock ticks for which a
process will suspend.

min. value: 2.
max. value: 2~32 - 1.
curr. va Jue: ??

There are several scenarios in which deadlock can occur in the
message-passing system. It has already been mentioned that failure of
any node or task may cause a system deadlock. If, for instance, task X on
node i fails but other tasks continue sending messages to task X, the task
queue for X will become fu11 and node i's PIQJ1p_posTMAN will be unable
to proceed. This deadlock may then . propagate throughout the entire
system as the send queues for node i become fil1ed. Failure of . any
PIOJ1P_POSTMAN or hardware failure of any node may result in a similar
deadlock. In these scenarios, neither deadlock prevention nor deadlock
detection is used: the system must be re-booted.

Another scenario is as fol1ows: task Y asks to receive a message from

29

')

task Z but the task queue for task Y is filled with pointers to messages
from task X. Task Y will be blocked forever, waiting for a message from Z,
but, because its task queue is filled, a message from Z can never arrive.
It is not known how often such a scenario will occur, but, when it does,
deadlock will result. In this case, deadlock detection is used in preference
to deadlock prevention. PCJ1P_PEND will be able to detect the deadlock.
It will send an error message to the SCB. It will not return to
PCJ1P-RECEIVE. This will "freeze" the state of the system, thus allowing
for further diagnostics to be run, if desired. Eventually, the error message
will make its way to the console. At this point, the programmer has two
avenues to take to solve the problem. First, he could re-configure the
message-passing system to increase the task queue length. Second, he
could restructure his program to change the pattern of message transfers .

5. CONCLUSIONS

A message-passing system for the LGDF Machine has been presented.
The system provides a basic mechanism for the transfer of data from one
task to another and for the synchronization of tasks. Because the system
places no interpretation on message contents, it can be used both for
inter-(application)task communication and for (appl ication)task-server
communication. This provides a consistent . interface for all system
communication.

The author has attempted to keep the system simple, to facilitate
future enhancements and modifications. At this stage in the development
of the LGDF machine, the message-passing requirements are st i 11
somewhat undefined, thus, the message-passing system has been designed
to provide a basic service which can be used to build up more complex
services, such as multicasting and global streaming, should they be
needed.

Perhaps the most serious problem with the message-passing system,
aside from the possibility of deadlock, is the bandwidth. For each message
sent, there are three copies that must be perf.ormed: from local memory to
local shared memory, from local shared memory to remote shared memory,
and from remote shared memory to remote local memory . . Clearly, this is a
time-consuming process, but it is mandated more by the hardware than the

· message-passing system itself. It should be pointed out, however, that

30

)

distibuted communication systems often require three copies for each
message as well; from task memory to a kernel buffer, from kernel buffer
to kernel buffer accross the network, and from the destination kernel
buff er to the destination task memory [18].

Another possible problem relates to bottlenecks. Two bottlenecks
exist in the system; the bus and the shared memory arbiter. Bus
bottlenecks can be minimized by incorporating multiple busses in the
design [12], by reducing bus traffic, or by reducing bus contention. The
LGDF Project budget is such that the use of multiple busses was
considered impractical. The message-passing system restricts all bus
traffic to messages; therefore, all traffic is considered essential.
However, where possible, the task loader should strive to place the
heaviest communicators on the same node, thus eliminating some bus
traffic. Bus contention has been minimized by giving access to the bus in
round-robin fashion.

Solutions to the shared memory bottleneck also take several forms:
hardware caches and software techniques to reduce the number of shared
memory accesses. The Balance System [19] [20] minimizes the shared
memory bottleneck by having local caches for shared variables. Cache
hardware maintains consistency between caches. Due to . budgetary
constraints, such techniques could not be employed in the LGDF Machine:
we have opted, instead, for the software solution. An attempt has been
made to keep the number of accesses to variables in shared memory to a
minimum, but whether the shared memory bottleneck will degrade system
performance is not yet known.

A performance analysis of the system cannot be undertaken until the
hardware is completed and more data is available on such factors as
average message length and frequency. Until this analysis is performed,
the author wi 11 venture no guesses as to system throughput.

31

REFERENCES

[1] AT&T 382 Computer UNIX System V Release 2 O Inter-Process
Communication Utilities Software Information Bulletin, AT&T
Technologies, Inc., Issue 1, Oct. 1984.

[2] Babb 11, R.G., "Data-Driven Implementation of Data Flow Diagrams,"
Proc. Sixt/J lnl'I Cont Software Engineering, Sept. 1982, pp. 309-318 .

[3] Babb II, R.G., "Parallel Processing with Large-Grain Data Flow
Techniques," Computer; Vol. 17, No. 7, July 1984, pp. 55-61.

[4] Birrell, Andrew D., et al., ·Grapevine: An Exercise in Distributed
Computing," Comm. AO'f Vol.25, No. 4, April 1972, pp. 260-274.

[5] Birrell, Andrew 0., · implementing Remote Procedure Calls, " ACM Trans.
Computer Systems, Vol. 2, No. 1, Feb. 1984, pp. 39-59.

,) [6] Cheriton, David R., et al., ·Thoth, a Portable Real-Time Operating
System," Comm. AO'! Vol. 22, No. 2, Feb. 1979, pp. 105-114.

[7] Cheriton, David R., ·The V Kernal : A Software Base for Distributed
Systems," IEEE Software, Vol. 1, No. 2, April 1984, pp. 19-42 .

[8] Cheriton, David R. and Zwaenepoel, Willy, "Distributed Process Groups
in the V Kernal," ACM Trans. Computer Systems, Vol. 3., No. 2, May 1985,
pp. 77-107.

[9] Computer "Special Issue on Data Flow Systems," Vol. 15, No. 2, Feb
1982.

[10] Gottlieb, A, et al., ·rhe NYU Ultracom 'puter-Designing an MIMD Shared
Memory Parallel Computer," IEEE Trans. on Comp, Vol. C-32, No. 2, Feb.
1983, pp.175-189.

32

\)

[11] VRTX/68000 User's Guide, Hunter & Ready, Inc., Software Release 3,
Document Number 59131001, April 1985.

[12] Hwang, Kai and Briggs, Faye A, Computer Arc/Jitecture and Parallel
Processing, McGraw-Hill Book Company, 1984.

[13] Lamport, Leslie," A New Solution of Dijkstra's Concurrent
Programming Problem,· Comm. AO'[Vol. 17, No. 8, Aug. 1974, pp. 453-455.

[14] Lamport, Leslie, "A New Approach to Proving the Correctness of
Multiprocess Programs," ACM Trans. Prog. Lang. and Systems, Vol. 1, No. 1,
July 1979, pp. 84-97 .

[15] Olson, Robert, "Parallel Processing in a Message-Based Operating
System," IEEE Software, Vol. 2, No. 4., July 1985, pp. 39-49.

[16] Ousterhout, John K., et al., "Medusa: An Experiment In Distributed
Operating System Structure,· Comm. ACtt Vol. 23, No. 2, Feb. 1980, pp.
92-105.

[17] Popek, G., et al., "LOCUS: A Network Transparent, High-Reliability
Distributed System," Proc. Eig/Jt Symp. Operating Systems Principles, ACM,
Dec. 198 I , pp. 169- I 77.

[18] Rashid, R. and Robertson, G., "Accent: A Communication-Oriented
Network Operating System Kernel," Proc. Eig/Jt Symp. Operating Systems
Principles, ACM, Dec. 1981, pp. 64-75.

[19] Balance 8000 Guide to Parallel Programming, Sequent Computer
Systems, Inc., 1003-41030, Rev. A, Nov. 26, 1985.

[20] Balanc~ 8000 System. Tec/Jnical Summary, Sequent Computer
Systems, Inc.:, 1003-41040, Rev. A, Dec. 12, 1985.

33

APPENDIX A
NAMING CONVENT I ON

All operating system programs and procedures for the LGDF Machine
will obey the following naming convention. All names consist of three
parts separated by "_":

(processor)_(genera 1 function)_(specific function)

(processor) is the processor or combination of processors upon which
the program/procedure is to be run. Values are:

pc - the computation processor
pio - the communication processor
scb - the system control board
sio - the scb and the pio

(general function) has the following valid values:

Im - local memory management
sm - shared memory management
mp - the message passing system
1 d the task 1 oader
bt - hardware and VRTX configuration routines run at

system boot.

(specific function) is at the programmer's discretion ·but should be a
meaningful name, such as initialize or allocate.

34

