
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

WEIGHTED PARTIAL PATTERN MATCHING

Dr. W. G. Rudd

Rukmani Tekchandani

Oregon State University
Corvallis OR 97331

1. INTRODUCTION:

Pattern matching is the process of comparing two objects to see if they are similar
to each other. Objects can be physical objects, situations, facts or events. The criteria
of matching can be exact or partial. Traditional pattern matching systems rely on ex­
act matches, in which a small set of predefined pattern matching rules are applied in
all-or-none fashion. Partial matching is superior to exact matching because it can be
used to identify the best from a set of options without insisting on a perfect match
with what is required.

Partial matching is important in retrieval from database and knowledge base sys­
tems. We need to retrieve data from databases that are "like" data we are looking for.
For example, a particular book can be selected from a collection of books in a library
by partial matching a description of the subject we are interested in against a set of
descriptions from a database that describes the library holdings.

Calculating how similar objects are to each other is the fundamental problem of par­
tial matching. There have been two basic approaches to similarity:

1. Geometric Approach:

Each object is represented by a point in some coordinate space so that the distance
between points in that space . is a measure . of similarities between the objects. The
space is assumed to be Euclidian and the purpose of the similarity relations is to
embed the objects in a space of minimum dimensionality on the basis of the observed
similarities.

2.Feature-theoretical approach:

Each object a is characterized by a set of features, denoted A, and the observed
similarity of a to b denoted s(a, b) , is expressed as a function of their common and dis­
tinctive features[E. Rosch]. This view is shared in other literature as partial match of
a and b.

PM(a,b) = (a*b, a - a*b, b - a*b) [F. Hayes-Roth]

where, a*b denotes the common properties of a and b and a - a*b and b - a*b denote
the properties of a and b not included in a *b. Similarity in this approach is a feature

I

I
I
I

- 2 -

matching function that measures the degree to which two sets of features match each
other.

Our approach to similarity resembles feature-theoretical approach in that we com­
pute the similarity between objects depending on similarity of their individual features.
Some of the important points of our partial pattern matching technique are:

1. Similarity functions for features can be tailored to the particular application in hand.

2. Features can be assigned weight by the user , thus relative importance of feature can
be changed according to need .

3. Values of all attributes may not be known :

In section 2 we briefly describe few of the many applications of partial matching.
Section 3 contains the theory behind the technique and in section 4 we describe its im­
plementation with database management facilities. In the last section we describe two
of the experiments carried out and analyse the technique in the light of results.

2. APPLICATIONS:

1. Information Retrieval:

The traditional way of retrieving a piece of information from some collection, for
example, a word from a database , is to search the collection for the information we are
looking for. If the information we seek is not present exactly as specified we look for
the most similar or best-matching information. This can be achieved by a partial
match technique. For example, in agricultural studies , experiments are done and the
results are stored in the database. Given a description of experiment , we would like to
find the experiment that resembles it most closely .

2. Template-Matching :

Templates also known as frames are usually hierarchically organized descriptions of
observable phenomena . Once the best-matching templates are found , data can be in­
terpreted by imposing the frame structure upon them. For example , in a speech under­
standing system, templates are phrases of language and data to be matched are arrays
of words.

Our Weighted partial pattern matching algorithm has been used for template
matching in Investment Portfolio Expert Systems[M. Fry]. The investor and economic
conditions are matched with previously used portfolio templates.

3. Classification :

Classifying an object is relating a description of an object to a pre-enumerated set of

- 3 -

classes. Thus if set A contains all the different kinds of computers like mm1, micro,
mainframes, workstations etc., partial match allows to classify a given computer into
one of the classes.

3. THEORY:

We use feature-vectors that consist of list of attribute-value pairs to describe objects.
In comparing a pair of objects, we compute a similarity index for each of the attribute.
We compute V, a weighted sum of the similarity indices, where the weights are as­
signed by the user . To account for the fact that attribute-values may not be known for
some attributes , we compute two other measures of similarity. V . is the value of V mm
we could get, if all the missing values would have ended in contributing zero as simi-
larity index, and V , which is the value of V we would have obtained, had all the

max
missing values had the similarity index of 1.

Given two descriptions, let
N be the set of indices of all the attributes,

M be the set of all indices of attributes for which values are known in both the
descriptions ,

w i be the weight for attribute i,

a i be the similarity index of attributte i

Then ,

we can formally define SM(A ,B) to be similarity measure of two objects A and B as
follows:

where

V=
E Wis, ·
i eM

Ewj
ieM

SM(A ,B) = (V, V min, V max) (1)

. (2)

V is a . weighted , normalized sum of similiarity indices for attributes with
corresponding values in both objects .

Ewiai+ E wi. o
V . -min

ieM ieN-M

Ew .. (3)
ieN

V min is a weighted , normalized sum of similiarity indices for ma t(1., " _ attributes

I
I
I
I
I
I
I
I
I
I

- 4 -

and attributes whose values are missing in either one or both of objects. In calculating
Vmin we assume that similarity index for attribute whose value is missing is zero.

I; W; 8; I; W; .1

V max
icM icN-M

I;w; (4)

icN

Vmax is a weighted, normalized sum of similiarity measures for matching attri­
butes and attributes whose values are missing in either one or both of objects. In cal­
culating Vmax we assume that similarity index for attribute whose value is missing is
1.

4. IMPLEMENTATION:

This algorithm has been implemented in a pattern matching system which helps in
maintaining database of alternative descriptions of object and given any current
description finds the best-matches from the database. We have written this system in
Franz lisp running on 4404 AI workstations. Unifi.ex operating system was used.

Following information is needed by the system:

1. · Descriptions of objects: The objects which are used to match against the given
descriptions are referred subsequently as stored descriptions and their collection is
referred to as the database.

2. Weight of the attribute: Each attribute has a weight assigned by the user and is a
property of the attribute.

3. Similarity index: Similarity indices · are calculated by invoking similarity functions.
The functions are either built-in for some general types of attributes or are supplied by
the user .

Database:
The database is a collection of object descriptions. Database management facilities

are available in the system. Thus object descriptions can be entered, edited and any
description can be viewed directly if its number is known. Descriptions are represented
as lists of attribute-value pairs. This representation is transparent to user. The
attribute-names are displayed on screen for which user puts in the values. As these
values are used by similarity-functions to calculate similarity -indeces, any values
entered which are not known to these functions will cause an error. For the same rea­
sons , the system can 't handle any spelling mistakes. When a user enters the value of
attribute, valid values for that attribute are displayed. The user is asked to select the

r

I
I
I
I
I
I
I
I
I
r

- 5 -

corresponding number . of the value. That number is translated into the value and
entered in the representation.

Create-Database

kind cube

color red

size

Figl : Screen-view of entering

object description

Directory

!.small

2.medium

3.large

-> ((kind cube) (color red) .. .)

Internal representation

of description

The directory contains one entry for each attribute. The directory is created by the
expert who is setting up the system for a particular application. Similarity functions
are not written in directory but are loaded from an external file. Each entry contains
an attribute-name, its weight, its possible values and name of the function used to
compute its its similarity index.

Suppose , that we have the following information for an object

Attribute Valid
name values

al vl,cl
a2 v2 ,c2
a3 nil
a4 v4

Then directory contents look like this:

(al 1.0 al-distance (vl cl))
(a2 0.4 a2-distance (v2 c2))
(a3 0.6 a3-distance (nil))
(a4 0.9 a4-distance (v4))

Similarity Definitions

Weight

1.0
0.4
0.6
0.9

Function
name

al-distance
a2-distance
a3-distance
a4-distance

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

'

- 6 -

Following similarity-functions have been implemented.

•Number-distance:

This function calculates similiarity index for number. The valid numbers are integers
between 0 and 5. This function can be modified to change upperlimit of 5 to some
other integer.

Let T be the total numbers possible, and let 'a' and 'b' be the values of attributes.
Then,

Number-distance(a,b) = 1 - (abs(a - b) / T)

Example
T=5
a=l
b . 4

Number-distance(a,b) = 0.6

•Shade-distance:

This function calculates similiarity index for shades of gray. The valid values are
verylightgray, lightgray, gray, darkgray and black. These values can be arranged on a
distance scale as follows:

1. Verylightgray
2. Lightgray
3. Gray
4. Darkgray
5. Black

Let vall and val2 be the two shades to be compared. And let get-number be the
function which returns the number associated with the shades. Then

Shade-distance(vall, val2) = 1 - (abs(get-number(vall) - get-number(val2)) / 5

Example
vall = gray
val2 = darkgray

Shade-distance(vall, val2) = 0.8

• Color-distance:

This function calculates similiarity index for colors found in spectrum. The valid
values are violet, indigo, blue, green, yellow, orange and red. These values can be
arranged on a distance scale as follows:

1. Violet
2. Indigo
3. Blue

l

I
r

I

I
I
I

- 7 -

4. Green
5. Yellow
6. Orange
7. Red

Let vall and val2 be the two colors to be compared. And let get-number be the
function which returns the number associated with the colors. Then

Color-distance(vall, val2) = 1 - (abs(get-number(vall) - get-number(val2)) / 7

Example
vall = Red
val2 = Green

Shade-distance(vall, val2) = 0.57 (Rounded)

•Shape-distance :

This function calculates similiarity index for block shapes. The valid values are
sphere, cone, pyramid, cube and cylinder. These values can be arranged on a distance
scale as follows:

1. sphere
2. Cone
3. Cylinder
4. Pyramid
5. Cube

Let vall and val2 be the two shapes to be compared. And let get-number be the
function which returns the number associated with the shapes. Then

Shape-distance(vall, val2) = 1 - (abs(get-number(vall) - get-number(val2)) / 5

Example
vall = sphere
val2 = Cube

Shade-distance(vall, val2) = 0.2

•String-distance:
[K.Abe]
This function calculates similiarity index for given strings of symbols. For given two

strings A = al, a2, ... am and B = bl, b2 ... bn calculate the following values of d(i,j)
iteratively:

d(l,l) = h(l,l)
d(i,j) = min { d(i-1, j-1), d(i, j-1), d(i-1 , j)} + h(i,j)

String-distance(A,B) = 1 - (d(m,n) / m+n)

l
t

I
I

I

I

I

r

I

- 8 -

5. EXPERTh1ENTS AND RESULTS:

For the purpose of verifying the algorithm and analysing the similarity measures two
simple experiments have been carried out.

Experiment#1:

Objects are square regions with geometrical patterns. The only patterns possible are
vertical bars in a square region, with their number varying from 1 to 5 and the color
varying in shades of gray. The objects chosen are very simple, so that they can be
displayed on the screen. For the internal representation, these regions can be described
by two attributes:

a) shade (of bars).
b) number (of bars).

As 5 different shades of gray are possible(again so chosen because Franz lisp Graph­
ics package supports only these 5 shades) we have 25 different regions possible to be
compared. More combinations possible if we take into account the regions with missing
information.

In one of the experiment similarity measure of a region having 5, lightgray bars with
other 5 regions in datahase was computed. The database contained the following
descriptions:

Desc# shade number

1. lightgray 5
2. gray 5
3. black 1
4. missing 4
5. darkgray missing

Note: Please refer to Fig 1 for the pictorial representation of these objects.

Following results were obtained when both attributes weighed same i.e. weight for
shade and number is 1:

Descl Desc2 Desc3 Desc4 Desc5

Vf 1.0 0.9 0.3 0.8 0.6
V min 1.0 0.9 0.3 0.4 0.3
V 1.0 0.9 0.3 0.9 0.8 max

Note: Please refer to Fig 2 for the bar graph of similarity measures.

Following results were obtained when shade was weighed less than number i.e. weight

~

• •
at

• • p

• •
IT

• •
II

• •
I)

• •
[I

of shade is .5 and weight of number is 1.

V
v.

mm
V max

Reel

1.0
1.0
1.0

Rec2

0.93
0.93
0.93

- 9 -

Rec3

0.26
0.26
0.26

Rec4

0.8
0.53
0.86

Rec5

0.6
0.19
0.86

Remarks: 1. There is no difference in similarity components in Desc #1, #2 and #3 as
there is no information missing.

2. Similarity measure (V) is 1.0 with Desc#l showing that it exactly matches the
current description and decreases from desc#l to desc#2 to #3 as black is more
different from lightgray than gray.

3. Vmin and Vmax for Desc#4 and Desc#5 show the minimum and maximum similar­
ity possible when there is missing information .

4.The difference between Vmin and Vmax increases if the missing information weighs
more than the other information and decreases if missing attribute weighs less. Ex. 4
and 5

Experiment#2

Objects are situations from block-world. The block-world has 3 blocks which can be
stacked one on top of another. The possible attributes are color, on and top.

attribute values

color red, blue or green
on block or table
top clear or nonclear

The database for this experiment contained the following object descriptions:

Desc# colorl color2 color3 onl on2 on3 topl top2

1. red blue green table block block notclear notclear
2. red green blue table block block notclear notclear

3. red blue green table block table notclear clear

4. red green blue table table table clear clear

5. red blue green table block m1ssmg notclear missing

i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- 10 -

This description was matched to each of the descriptions in database.

colorl color2 color3 onl on2 on3 topl top2

red blue green table block block notclear notclear

Following similarity measures were obtained when all of the atributes weighed equal.

Reel

1.0
1.0
1.0

Rec2

0.92
0.92
0.92

Rec3

0.77
0.77
0.77

Rec4

0.48
0.48
0.48

Rec5

1.0
0.77
1.0

Remarks: 1. This experiment supports the results got from experiment#l.

2. Vmin of Desc#5 is equal to similarity measures of Desc#3 as known features of
Desc#5 match that of Desc#3

Conclusion:

We have proposed in this paper a method of computing similarity measures and
using it to retrieve best matching data from collections of records. The results from
experiment look convincing. This technique has been successfully implemented in a
portfolio system. At present we are implementing system in managing a real database
of agricultural crops. The objective is to retrieve best-matching records which resemble
to given data.

Further work is needed in this system. Similarity definitions are the backbone of
whole procedure. One of the drawback is that these functions can be written only in
Lisp. We would like to implement automatic programming techniques so that function
definitions in mathematical form could be translated into Lisp code.

)

- 11 -

Bibliography

[1] Frederick Hayes-Roth: The Role of Partial and Best Matches in knowledge-based
systems.

[2] W.G. Rudd and George R.Cross: Design of an expert system for Insect Pest
Management.

[3] Barry Shane, Mitchel fry and Wilbur Widiucus: Consultation among multiple
knowledge bases in an investment portfolio expert system.

[4] E.Rosch: Cognition and Categorization

[5] Bruce W. Porter, E.Ray Baress: Protas

[6] Keiichi ABE & Noborn Sugita: Distances between strings of symbols in Proc. of 6th
Int. Conf. on Pattern Recognition.

i
I
I
I
I
I
I

I

I
I

I

I"

I

· Current Description

Record #2

Record #4

Record # 1

Record #3

··········· ······ ·· ··· ·· ····· · ··-····-····· · ·.·.· .. -.· -·-· .. -.· -............ -.-.-....... -. --
······································-·-··-...................... -.......... -. --. -. -.. .
:-· · · · · · · · · · · · -.................................... .
. · .. ·-·-·-·-·-·---·.·-·-·---·-·-·-·-·.·-·----.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.•-·-·---·-·-·
:: .. .
····--·········-····--·-·-·-·· ········-····· ..
. -. --. -.....
································---········· .·.·········-·.·-·-·.·.·-·-·-·.·.·.·.·-·-·-·-·-·.· .. ·-·.·.· .. ·.·-·-·-·-·.·.·-·.·.·-·-·-·-· ·.·-• · .. ·-·---·-·.·-·-... ·.--· -.-.-.-.... · .. ·-·-· .. ·-· -.-.... -.. ---.·-·---·.-
...
..... ·.·.·-·-·-·-·-·.·-·.·.•-·-·--.·.·-· -....... -.-.. · ·.·-·-·-... · .. ·-·.·-·-·-·.·-· .. · .. ·
...

Record #5

Fig. 1. Pictorial Representation of Objects in Experiment 1

I
I -.

I
I
I
I
I
I
I
I
I
I
I
I
I
I

WEIGHTED PARTIAL PATTERN MATCHING
USER'S GUIDE

RUKMANI TEKCHANDANI
MARCH 201987

CONTENTS

1. Purpose

2. What is "Weighted Partial Pattern Matching?"

3. Terminology & Theory

4. Defining the input and output

5. How to use the system?

6. Getting started

7. Setting up the system

7 .1. Defining Similiarity Functions.

7.2. Setting up directory

7 .3. Setting up database

8 . Using system for matching descriptions

9 . Demonstration

I
I - 2 -

1.TASK:

To provide facilities for managing database of object descriptions and to compute their
similarity with the given object descriptions.

2.WHAT IS "WEIGHTED PARTIAL PATTERN MATCHING"?

Pattern matching is the process of comparing two patterns to see if one is similar to
another. Objects can be physical objects, situations, facts or events. This method uses
partial matching in the sense that objects do not have to be exactly similar to each
other to match one another.

Objects are represented as a collection of features. Features may be assigned weights
depending on their importance in the entire description. Similarity between objects is a
linear combination of the similarity of features and their weights.

3. Terminology:

Object:
Object is an item which is to be compared. For example, chair, experiment, field

) description are some of the objects.

Attribute :
Each object can be described as a set of features. Features are also called attributes.

Thus, leg is attribute of chair.

Value:
Value is value of attribute. Thus leg is an attribute which may have value 4.

Description: Description of an object is set of attribute-value pairs for each feature.

Example:

Database :

If a chair has 4 legs and is made of wood then in can be
described in feature-vector representation as

((legs 4) (made-of wood))

It is a collection of object descriptions.

Similiarity-Func tions:
These functions compare given values and return a similiarity index (0 - 1) depend­

ing on how close the values of attributes are to each other.

J

- 3 -

Example:
(shade-distance gray darkgray)

.8

Weight:
Weight is a number between O to 1. It is assigned to attribute by user. Weight

defines the importance of attribute in respect to remaining attributes of description.

Directory:
Directory is a list of attributes with their weights and function-names.

THEORY:
We use feature-vectors that consist of list of attribute-value pairs to describe objects.
In comparing a pair of objects, we compute a similarity index for each of the attribute.
We compute V, a weighted sum of the similarity indices, where the weights are
assigned by the user. To account for the fact that attribute-values may not be known
for some attributes, we compute two other measures of similarity. V min is the value of
V we could get, if all the missing values would have ended in contributing zero as
similarity index, and V max, which is the value of V we would have obtained, had all
the missing values had the similarity index of 1.

Given two descriptions, let
N be the set of indices of all the attributes,

M be the set of all indices of attributes for which values are known m both the
descriptions,

w . be the weight for attribute i,
I

a . be the similarity index of attributte i
i

Then,

we can formally define SM(A ,B) to be similarity measure of two objects A and B as
follows:

SM (A ,B) = (V, V min, V max)

where

(2)

I
I
I
I
I
I
I

I
I
I
I

)

- 4 -

V is a weighted, normalized sum of similiarity indices for attributes with
corresponding values in both objects.

I; Wj Sj + I; Wj .0

V . min
i(M i(N-M

:Ew; (3)
i (N

Vmin is a weighted, normalized sum of similiarity indices for matching attributes
and attributes whose values are missing in either one or both of objects. In calculating
Vmin we assume that similarity index for attribute whose value is missing is zero.

I; Wj S; I; Wj .1

V max
ifM ieN-M

:Ew; (4)
i (N

Vmax is a weighted, normalized sum of similiarity measures for matching attri­
butes and attributes whose values are missing in either one or both of objects. In cal­
culating Vmax we assume that similarity index for attribute whose value is missing is
1.

4.DEFINING THE INPUT AND OUTPUT:

Input: Database of descriptions and a current description which has to be matched
with each description in the database.

Output:
For each description in database similarity measures are displayed m ascending

order.

For example if Desc-X is matched with Descl, Desc2, Desc3 in the database then out­
put is:

Descl
Desc2
Desc3

V V . V mm max

I
I
I
I
I
I

I
I

I
I
I
I
I
I
I
I
I

)

)

- 5 -

5.HOW TO USE THE SYSTEM

This system is a tool to match descriptions. Before the system could be used for this
purpose, it needs to know about:

1. Attributes which will be used to describe objects.
2. Weights of the attributes
3. Similiarity-functions.

Thus, system has to be initialized for a particular task by an expert. By expert, we
mean a person who decides the attributes to be used to describe objects, give them
weights and writes similiarity functions~ This is called setting up the system. Once sys­
tem is set up, it can be used by any user to match descriptions. Novice user can match
observed event with stored events and find the best match, create new database and
change weights of attributes if his goal is different from the expert.

6.GETTING STARTED

To avoid explaining everything about using 4404 Al machines, it is assumed you have
some familiarity with these machines and how to use them. If not, you should ask a
local expert for help. Assuming that you are logged in, you can restore the program
from floppy disk.

$ restore +dl
$ lisp
-> (load 'match.I)

t

-> (start)

create-directory

view-directory

edit-directory I
create-database I
view-database

edit-database

match

exit

I

I

I
I
I
I

I
I

I

I

I

J

- 6 -

7.SETTING UP THE SYSTEM:

1. Defining Similiarity-functions.

Similiarity-functions can be selected from the functions available in
Functions-file or new functions can be written and appended to Funtions­
file. Similiarity-functions accept two arguments which are to be compared
and return a value in the range of O and 1 depending on the closeness of
arguments. Following built-in functions are available::

1.1 Shade-distance:
This function compares different shades of gray. The shades known to
to this function are verylightgray, lightgray, gray, darkgray and
black.

1.2 Number -distance :
This function compares numbers between 0-5 .

1. 3 Color-distance:
This function compares different colors found in the spectrum. The
colors in the spectrum are violet, indigo, blue, green, yellow, orange
and red.

1.4 Shape-distance:
This function compares geometrical shapes. The shapes known to this
function are sphere, cube, cone, . pyramid.

1.5 Pos -distance:
This function calculates the how near two objects are placed in a room.
The object can be in upper left corner, upper right corner, lower left
corner, lower right corner and center.

1. 6 User-de.fined functions:
1. Append functions in Function-file.
2. Set *function-list* to include the new functions.

I
I
I
I
I
I
I
I
I

I

I

I

J

- 7 -

2. Setting Directory.

2.1 To enter attribute in directory:

If menu is being displayed then follow following steps else precede these
steps by

-> (start)

1.Select "Create-directory" .

Create Directory:

Attribute-name ...

2. Type attribute-name.

Create Directory:

Attribute-name ... shade

Note::

Da.t& type: Alpha.numeric

Max-length: 18

Note::

Da.ta. type: Alpha.numeric

Max-length: 18

I
I
I
I
I
I
I

I
I
I
I

I
I
I

I

I

I

- 8 -

3. If the attribute is already in the directory then it is not entered again the message
"duplicate attribute " is displayed. Now you can enter the attribute again .

Create Directory:

Attribute-name .. . _

4. Type weight of attribute

Create Directory:

Attribute-name ... shade

Weight _

Warning::

Duplicate Attribute!

Note::

Data. type: Alpha.numeric

Max - length: 18

Note::

Weight ca.a be '* 'or

number in the range 0 .. 1

I)

I
I
I
I
I
I
I
i)

I
I
I

I

I
I

I

I

- 9 -

5.If the weight is not between O and 1 or not '*' then invalid weight is displayed . Now
enter weight again.

Create Directory:

Attribute-name ... shade

weight 3

Warning::

Invalid Weight!

Note::

Weight can be'*' or

number in the range 0 .. 1

Please type again

6. After you have entered correct weight then select function-number from the list of
functions .

Create Directory:

Attribute-name ... shade

Weight 1

Enter Selection ..

Note::

Built-in (unctions:

I.shape-distance

2.colour-distance

3.pos-distance

4.shade-dista.nce

5.n umber-distance

7. If you sele-cted a wrong number it won't be accepted and you wi"ll be asked to select
again .

I
I

I
I

I

I

I

I

I

I)

I

8. Select 'y' if you want to create more attributes, 'n' will take you
back to menu.

Create Directory:

Add more attributes (y/n) ... _

8. This .finishes the routine of creating a directory entry.

2.2 To see contents of directory

If menu is being displayed then follow these steps else precede by

-> (start)

1. Select" View-directory".
You will get a display of directory-contents in tabular form.

View-directory:

attribute-name weight

!.shade 1

2.number 1

2. Press "return" to get ba_ck to menu .

(unction-name

shade-distance

number-distance

)

- 11 -

2.3 To change contents of directory
If menu is being displayed then follow these steps else precede by

-> (start)

1.Select "Edit -directory".

Edit Directory:

Attribute name ...

2. Type in the name of the attribute you want to edit. Then select '1' if you want to
delete the attribute from directory or '2' if you want to change its weight or function ­
name .

Edit Directory:

Attribute name ... shade

Note::

I.Delete 'shade'

2.Modify 'shade'

I - 12 -

I 3.lf you selected '1 ', then attribute will be deleted and you get this view of screen .

I Edit Directory:

I Attribute name ••• shade

Note::

I
'shade' deleted

Continue edit mode? (y/n) ••

I

I

4. 'y' will get screen 1 'n' will get main menu.

5.lf you selected '2' then weight and function-name is displayed , which can be modified.

Edit Directory:

Attribute name ... shade

Weight 1

Enter Selection .. 4

I
I
I
I
a
I
II

I
I
I
I
I
I
I
I
I
I
II

I

- 13 -

3.Setting Database:

3.1 To enter records in the database

If menu is being displayed, then proceed else precede by

-> (start)

1.Select "Create Database". If directory has two attributes namely , shade and number
then fallowing screen will be displayed.

Create Data.base:

shade ...

number ..

2. Type in the values of attributes. Type 'y' if you want to add more records
'n' will get you menu.

Create data.base:

shade gray

number 2

Note::

Add more records? (y/n) ..

3. This finishes the routine of entering records in database.

I
I
I
I
I
I
a
I
I
IJ
I
I
I
I
I
I
I
I
I

)

- 14 -

3. 2 To see records in database:

If menu is being displayed then do following, else precede by

-> (start)

1. Select" View Database"

View Database:

Record number: 1

shade: gray

number: 2

Note::

View more records?(y/n) ..

2. Type 'y' if you want to see more records, 'n' will display menu.

3.3 To edit records in database .

If menu is being displayed , then follow these steps else precede by

-> (start}

1. Select "Edit database"

Edit data.base:

Record number? ..

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

•
- 15 -

3. Type the record number to be edited . The record will be displayed with the message
asking to delete or modify record .

Edit da.ta.ba.ae:

Record number? 1

aha.de gra.y

number 2

Note::

I.Delete Record

2.Modify Record

Enter Selection ..

4.If 1 is selected , then record is deleted from database .

Edit da.ta.ba.se:

Record number? 1

aha.de gra.y

number 2

Note::

Record#! deleted

Continue edit mode? (y/n) ..

5. Type 'y' to get more records for editing, 'n' will display menu.

6.lf 2 is selected then record is displayed , and the values of attributes can be changed .
After record is modified, type 'y ' or 'n' as for delete.

-

I
I
I
I
I
I
I
I
I
I
I

- 16 -

Using System for pattern matching:

Once description-records are stored in database, these can be compared to observed
description.

1. If menu is not being displayed, then

-> (start)
else go to step 2.

2. Select" match"

3. Enter the description to be matched.

Match Description:

shade darkgray

number 2

3. The above description is compared to each stored description in database, and for
each record you will get a similiarity-index which is a triple of V, Vmin and Vmax. The
values can be sorted in ascending order on V value.

Similiarity-V alues:

V min V V max

Desc#l 1.0 1.0 1.0

Desc#2 0.7 0.8 0.9

i
I

I
1-i

I
I

•
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-

- 17 -

0. Demonstration

1. Use demo function instead of start 2. Create two entries in the directory:
a) attribute-name: shade

weight: anything between 0 .. 1
function-name: shade-distance

b) attribute-name: number
weight: anything between 0 .. 1
function-name: number-distance

3. Create 1-5 records in database.
valid values for shade are: verylightgray, lightgray, gray, darkgray, black

valid values for number is 1,2,3,4,5

4. Enter present description.

5. The pictures of descriptions are displayed alongwith the similarity measures and a
bar graph is created to help comparing the .similarity values .

, , ,
, , ,

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

START

(start)
This is
graphic
graphic

the main routine. It turns on the Lisp Graphics Mode and sets the
cursor. The text scrolling region is set to 5 lines and visible
cursor at center of screen. Menu is displayed to select options.

(defun start()

, , ,

, , ,
, , ,

, , ,

(init-graphics-mode :lines 5 :cursor-loc (make-Point x 300 y 200))
(terpri) ·
(message "Use any mouse button to select from menu")
(menu-selection (menu-choose *menu*)))

menu

menu is set to have the value returned by make-menu.
make-menu creates a menu from the item-list which contains the
following items each of which is associated with one slot of the menu.

create-directory, edit-directory, view-directory, create-database,
view-database, edit-database, match, exit.

(setq *menu*

, ' ,
, , ,

, , ,

, , ,

(make-menu' (create-directory view-directory edit-directory
create-database view-database edit-database match exit)))

MENU-SELECTION

(menu-selection <item>)
item: list of menu items

Depending on the value returned from selecting a menu item,
control is passed by menu-selection to different routines.
If the selector is pressed and released outside of the menu,
menu is popped up again and waits for the selection.

(defun menu-selection (item)

, , ,

(cond
((eq item 'create-directory) (create-directory))
((eq item 'create-database) (create-database))
((eq item 'view-database) (view-database))
((eq item 'view-directory) (view-directory))
((eq item 'edit-directory) (edit-directory))
((eq item 'edit-database) (edit-database))
((eq item 'match) (match))
((eq item 'exit) (exit-graphics-mode))
(t (menu-selection (menu-choose *menu*)))))

CALL-MENU

... , . ,

, , ,

(call-menu) -
Call-menu prints a message to press "return" . If return key is pressed
it displays menu else it waits for key to be pressed .

(de fun cal 1-menu ()

, , ,

(message "Press RETURN to get menu ")
(cond

((eq (tyipeek) 13) (tyi) (start))
(t (call-menu))))

CREATE-DIRECTORY

(create-directory)
This function opens directory in append mode and sets up the screen.
It calls enter-directory to enter information in directory. When there
are no more attributes to be entered, it gets the menu to user.

(defun create-directory ()
(heading "Create Directory: ")
(append-file 'directory)
(enter-directory 'y)

, , ,

, , ,
, , ,
, , ,

, , ,

(close my-outport) ,
(start))

ENTER-DIRECTORY

(enter-directory <ans>)
ans: 'y' or 'n'

This function creates an directory entry if answer is 'y' else returns
to main menu

(defun enter-directory (ans)
(clear-text-region)

, , ,
, , ,

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

(cond
((eq ans 'n))
(t (write-in-dir)

(enter-directory (get-answer)))))

WRITE-IN-DIR

(wri te-in-dir)
This function gets attribute-name from the user. If it is not nil (nil
is returned if the attribute is duplicate) then it gets weight
and name of the similarity . function from the user and append this entry
in directory.

r~~fun write-in-dir ()
(let ((a (get-attribute)))

(cond
((eq a nil))

, , ,
, , ,
, , ,

, , ,

(t (print (list a (get-weight) (get-function-name 0)) my-outport)))))

GET-ANSWER

(get-answer)

This function asks user if more attributes are to be added to directory.
If answer is 'y' or 'n' then it returns the answer, else it prompts user
to type in answer again.

(de fun get- answer ()
(CUP 20)

, , ,
, , ,

, , ,
, , ,

, , ,
, , ,
, , ,

(CUF 4) (format t "Add more attributes? (y /n) .. ")
(let ((reply (my-ratom)))

(cond
((or (eq reply 'y) (eq reply 'n)) (clear-text-region) reply)
(t (CUF 45) (format t "Warning-%")

(CUF 45) (format t "Wrong selection!")
(CUP 2 32) (format t " ")
(get-answer)))))

GET-ATTRIBUTE

(get-attribute)

This function gets attribute-name from the user. It displays a note to the
user that attribute name can be any alphanumeric characters and the max.
length is 18 characters. If it is valid name and if it is already not in
directory then it is accepted.

(defun get-attribute ()

, , ,
, , ,

, , ,
, , ,
, , ,
, , ,

(CUP 4)
(CUF 45)
(CUF 45)
(CUF 45)
(CUP 2)
(cond

(format
(format
(format
(format

t "Note: : -%")
t "Data type: Alphanumeric-%")
t "Max-length: 18-%")
t " Attribute-name... ")

((read-file 'directory) (if-in-file
(t(check-length (my-ratom)))))

(check-length (my-ratom))))

IF-IN-FILE

(if-in-file <attribute>)
attribute: name of the attribute

This function calls duplicate-attribute if attribute is found in directory
else returns attribute .

(defun if-in-file (attribute)
(cond

((eq (tyipeek my-inport) -1) (close my-inport) attribute)
((eq attribute (car (read my-inport))) (duplicate-attribute))
(t (if-in-file attribute))))

!
I
I
I
I
I
I
I

I
I
I
I

r ,

, ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

DUPLICATE-ATI'RIBUTE

(duplicate-attribute)

This function displays warning about the attribute name found in the
directory and if user wants to add more attribute, calls get-attribute
else displays menu for next selection .

(defun duplicate-attribute ()
(close my-inport)

, , ,
, , ,

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

(CUP 2)
(CUF 45)
(CUF 45)
(CUF 45)
(CUF 45)
(CUF 45)
(CUF 45)

(format
(format
(format
(format
(format
(format

CHECK-LENGTH

t "Warning: : -%")
t "Duplicate Attribute!-%")
t II -%")
t II -%")
t II -%")
t II -%"))

(check-length <attribute>)
attribute: name of the attribute

If length of attribute-name is greater than 18 characters, this function
gives warning and asks user to type in the name again.

(defun check-length (attribute)
(cond

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

((greaterp (length (explode attribute)) 18) (display-length-warning))
(t attribute)))

DISPLAY-LENGTH-WARNING

(display-length-warning)

This function displays warning that the name is more than 18 characters.

(defun display-length-warning ()
(CUP 2)

, , ,

(CUF 45) (format t "Warning::-%")
(CUF 45) (format t "Invalid length!")
(CUP 8)
(CUF 45) (format t "Please type again")
(CUP 2)
(CUF 20) (format t " ")
(CUP 2)
(CUF 20) (check-length (my-ratom)))

GET-WEIGHT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

, , ,
, , ,
. . , . ,, . . . , , ,
, , ,
, , ,
, , ,

(get-weight)

This function prompts user to assign weight to attribute-name. It displays
a note to the user that weight can be either '*' or a number in range of

0 .. 1. It calls validate-weight to check if weight is valid.

(defun get-weight ()

, , ,

, , ,

, , ,

, , ,

(CUP 2 45) (format t " -%")
(CUP 3 45)
(format t " ")
(CUP 4)
(CUF 45) (format t "Note: : -%")
(CUF 45) (format t "Weight can be '*' -%")
(CUF 45) (format t "or number in range of 0 •. 1 -%")
(CUP 4) (format t " Weight ")
(validate-weight (my-ratom)))

VALIDATE-WEIGHT

(validate-weight <weight>)
weight: weight of the attribute

This function checks if it is valid weight, it returns weight itself
else prompts user to try again

(defun validate-weight (weight)
(cond

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

((eq weight '*) weight)
((and (numberp weight) (not (or (greaterp weight 1. 0) (minusp weight))))

weight)
(t (CUP 2)

(CUF 45) (format t "Warning-%")
(CUF 45) (format t "Invalid weight!")
(CUP 7)
(CUF 45) (format t "Please type again")
(CUP 4)
(CUF 20) (format t " ")
(CUP 4 21)
(validate-weight (my-ratom)))))

GET-FUNCTION-NAME

(get-function-name <num>)
num: index of function name, initial value is O (dummy) if it is called
while entering entry in directory. It is the number of previous value
while in editing mode.

This function displays the function-names with their numbers . User
selects a number which is returned in num.

tdefun get - function-name (num)
--(CUP 2)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

)

f I I

f I I

, , ,
I I I

, , ,

f I I

f I I

(CUF 45) (format t "
(CUF 45) (format t 11

(terpri)
(CUF 45) (format t "Built-in functions:-%")
(CUF 45) (format t "
(display-function-list *function-list* 7)
(CUP 6)
(format t II Enter selection .. ")
(cond

((eq (tyipeek) 13) (tyi) num)
(t (check-selection (my-ratom)))))

DISPLAY-FUNCTION-LIST

(display-function-list <f-list> <cursor>)
f-list: global function list
cursor: row number where starting to display functions

This function displays names of the built-in functions on the screen.

(defun display-function-list (f-list cursor)
(cond

((null f-list) t)
(t (CUP cursor 45)

(format t 11 -a. -a -%" (caar f-list) (cadar f-list))
(display-function-list (cdr f-list) (addl cursor)))))

, CHECK-SELECTION

I f I

f f I

f I f

f f I

f I I

(check-selection <num>)
num: function number

The function-number selected is validated. If it is not, then user is
asked to type it again.

(defun check-selection (num)

f I I

, , ,
I I I

, , ,
f I I

f I I

I f I

(cond
((not (numberp num)) (select-function-again))
((or (greaterp num 15) (lessp num 1)) (select-function-again))
(t (return-name num *function-list*))))

SELECT-FUNCTION-AGAIN

(select-function-again)

This function gives a warning that function number selected i~ · 1ot valid
and prompts to type again.

(defun select-function-again ()
(CUP 2)
(CUF 45) (format t "Warning::-%")
(CUF 45) (format t "Wrong selection!")
(CUP 6)
(CUF 20) (format t 11 ")

I
I
I

I I I

I I I

I I I

I I I

I I I

(CUP 6 21)
(check-selection (my-ratom)))

RETURN-NAME

(return-name <num> <1st>)
num: function-number
1st: global function list

This function returns name of function for the number choosen by user.

I (d~fun return-name (num 1st)
(cond

I I I

I I I

I I I

I I I

I I I

((eq num (caar 1st)) (nth 1 (car 1st)))
(t (return-name num (cdr 1st)))))

VIEW-DIRECTORY

(view-directory)
View-directory helps user to view the contents of directory.

(defun view-directory()
(pr int- heading)
(cond

((eq (read-file 'directory) nil)
(message "No attributes in directory")
(print-return-message))

(t (read-dir 80 120 1)
(close my-inport)
(print-return-message))))

,,,==
;;;PRINT-HEADING
,,,=======================================
I I I

I I I

I I I ...
I I I

(print- heading)
Print-heading prepares screen for displaying the contents of directory.

(defun print-heading ()
(init-graphics-mode :lines 5)

...
I , I

I I I

I I I

(draw-line (make-Point x O y 10) (make-Point x 625 y 10))
(paint-string 10 20 "View-directory: ")
(draw-line (make-Point x O y 35) (make-Point x 625 y 35))
(draw-line (make-Point x 80 y 70) (make-Point x 500 y 70))
(paint-string 80 90 "attribute-name")
(paint-string 230 90 "weight")
(paint-string 340 90 "function-name")
(draw-line (make-Point x 80 y 120) (make-Point x 500 y 120)))

READ-DIR

(read-dir <x> --<y> <count>)

, , ,

... ,

, , ,

x: row number
y: column number
count: entry number

This function gets records from the directory to be displayed on screen .

(defun read-dir (x y count)
(cond

, , ,

, , ,

((eq (tyipeek my-inport) -1))
((greaterp y 370) (print-message)

(print-heading)
(write-line (read my-inport) x 120 count)
(read-dir x 135 (addl count)))

(t (write-line (read my-inport) x y count)
(read-dir x (plus y 15) (addl count)))))

WRITE-LINE

(write-line <1st> <x> <y> <count>)
1st: directory entry
x: row number
y: column number
count: number of entry

This function displays 1st on screen.

(0efun write-line (1st x y count)
(cond

, , ,

((eq (car 1st) nil))
(t (paint-string (diff x 22) (plus y 10) (my-concat count))

(paint-string x (plus y 10) (car 1st))
(paint-string (plus x 150) (plus y 10) (cadr 1st))
(paint-string (plus x 260) (plus y 10) (caddr 1st)))))

;;;PRINT-MESSAGE
, , ,
, , ,

, , ,
, , ,

(pr int-message)
Print-message prints message to press return to get the next screen
display.

(defun print-message ()
(terpri)

, , ,
, , ,

... ,
, , ,
, , ,

(message "Hit return to get next screen")
(cond

((eq (tyi) 13))
(t (print-message))))

PRINT-RETURN-MESSAGE

(print-return-message)
This function prints message on screen to return from view-mode

'I

II
i!
I'
1:
I
I ,,

I

I
I

I
I
I
I

{defun print-return-message ()
(terpri)

, , ,
, , ,

, , I

I , ,

, , ,

(message "Hit RETURN to get menu-selection")
(cond

((eq (tyi) 13) (start))
(t (print-return-message))))

EDIT-DIRECTORY

(edit-directory)
This function lets user delete or modify directory entries. It gets the
the attribute name from the user and displays the directory entry of
that attribute from the directory. If the entry is not in the directory
it prints error message.

{defun edit-directory ()
(heading "Edit Directory: ")
(terpri)

. . ,
, , ,
, , ,

I , ,

I I ,

(format t " Attribute-name. . . . ")
{let ((name (my-ratom)))

(cond
((eq (read-file 'directory) nil)

(display-not-found-note name))
(t (search-dir name)))))

DISPLAY-NOT-FOUND-NOTE

(display-not-found-note <name>)
name: attribute-name

This function displays warning that given attribute has no entry in the
directory.

{defun display-not-found-note (name)

I , ,

, , ,

I I ,

, , ,

{CUP 2)
{CUF 45)
{CUF 45)

(format t "Warning: : -%")
(format t 111 -a' not found in directory!" name))

DISPLAY-EDIT-MORE-NOTE

{display-edit-more-note)
This function asks user if more directory entries are to be edited.

{defun display-edit-more-note ()
{CUP 4)

' , ,
, I ,

{CUF 45) (format t "Note::-%")
(terpri)
{CUF 45) (format t "Continue edit mode? (y/n) .. "))

GET-EDIT-ANSWER

I I I

I I I

(get-edit-answer <reply>)
reply: 'y' or 'n'

This function gets answer for the above note. If answer is y, then next
attribute entry will be selected else menu is displayed.

(defun get-edit-answer (reply)

I I I

I I I

(cond
((eq reply 'y) (clear-text-region) (edit-directory))
((eq reply 'n) (start))
(t (CUP 3)

(CUF 45) (format t "Wrong Selection! ")
(CUP 6 73) (format t " ")
(CUP 6 73) (get-edit-answer (my-ratom)))))

DISPLAY-DEL-MOD-NOTE

(display-del-mod-note <1st>)
1st: directory entry

This function asks user if the given entry has to be deleted or modified.

(defun display-del-mod-note(1st)
(CUP 4)

I I I

I I I

I I I

I I I

I I I ...
I I I

I I I

(CUF 45) (format t "Note: : ~%")
(CUF 45) (format t "1. Delete ~a -%" (car 1st))
(CUF 45) (format t "2. Modify ~a ~%11 (car 1st))
(terpri)
(CUF 45) (format t "Enter selection ... ")
(get-del-mod-answer (my-ratom) 1st))

GET-DEL-MOD-ANSWER

(get-del-mod-answer <reply> <1st>)
reply: 'y' or 'n'
1st: directory entry

This function checks if reply is valid and then passes control to
respective functions.

(defun get-del-mod-answer (reply 1st)

I I I

I I I

(cond
((eq reply 1) (delete-attribute 1st))
((eq reply 2) (modify-attribute 1st))
(t (CUP 2)

(CUF 45) (format t "Warning:: ~%11)

(CUF 45) (format t "Wrong Selection!")
(CUP 8 65) (format t " ")
(CUP 8 65) (get-del-mod-answer (my-ratom) 1st))))

SEARCH-DIR

(search-dir <name>)

I
I
I
I
I
I
I

, , ,

. . . ,
/ ,

name: attribute-name

This function searches directory for the entry belonging to given
attribute-name .

(defun search-dir (name)
(cond

, , ,

, , ,
, , ,

, , ,

((eq (tyipeek my-inport) -1) (display-not-found-note name)
(close my-inport)
(display-edit-more-note)
(get-edit-answer (my-ratom)))

(t (search-dir-help (read my-inport) name))))

SEARCH-DIR-HELP

(search-dir-help <1st> <name>)
1st: list of directory-entries
name: attribute-name

This function searches entry in the list of directory entries .

(defun search-dir-help (1st name)
(cond

, , ,

, , ,

((eq name (car 1st)) (close my-inport) (display-del-mod-note 1st))
(t (search-dir name))))

DELETE-ATI'RIBUTE

(delete-attribute <1st>)
1st: directory-entry

The entry is deleted from the directory and from each record in the
database, all attribute-value pairs for this entry are deleted .

(defun delete-attribute (1st)
(delete-from-dir 1st)
(delete-from-database 1st)

, , ,
, , ,
, , ,

, , ,

, , ,

(CUP 5)
(CUE 45)
(CUE 45)
(CUP 8)

(format t 111 -a' deleted!-%" (car 1st))
(format t " -%")

(CUE 45) (format t "
(display-edit-more-note)
(get-edit-answer (my-ratom)))

DELETE-FROM-DIR

(delete-from-dir <1st>)
1st: directory-entry

This function deletes directory entry from the directory. Tr. gets all
entries from directory and then writes back without given 1 ~,, r ry.

I
I
I
I
I
I
I
I
I
I
I
I
I

, , ,
(defun delete-from-dir (1st)

(read-file 'directory)

, , ,
, , ,

, , ,
, , ,
, , ,

(let ((dir-list (make-dir-list nil)))
(close my-inport)
(setq my-outport (outfile 'directory))
(write-back-dir dir-list 1st)

(close my-outport)))

MAKE-DIR-LIST

(make-dir-list <1st>) -
1st: list of directory entries

This function reads directory and returns a list of all entries.

(defun make-dir-list (1st)
(cond

((eq (tyipeek my-inport) -1) 1st)
((null 1st) (make-dir-list (cons (read my-inport) 1st)))
(t (make-dir-list (append 1st (list (read my-inport)))))))

WRITE-BACK-DIR

,,, (write-back-dir <dir-list> <1st>)
. , dir-list: list of directory entries

1st: entry to be deleted
, , ,

, , ,
This function writes the directory entries in directory except the one
whose attribute-name is same as the given entry.

(defun write-back-dir (dir-list 1st)
(cond

((null dir-list) t)
((eq (caar dir-list) (car 1st)) (write-back-dir (cdr dir-list) 1st))
(t (print (car dir-list) my-outport)

(write-back-dir (cdr dir-list) 1st))))

;;;======================================
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

DELETE-FROM-DATABASE

(delete-from-database <1st>)
1st: directory entry

This function deletes from database records the attribute-value pairs
whose attribute is same as attribute in given 1st. .•

(defun delete-from-database (1st)
(cond

, , ,

((read-file 'dbase) (update-database (read my-inport) 1st nil)
(close my-inport))

(t 't)))

, , ,

, , ,
, , ,
, , ,

, , ,

UPDATE-DATABASE

(update-database <dlist> <1st> <new-1st>)
dlist: database records
1st: directory entry
new-1st: new database records

This function takes the old database records and makes a new list with
deleted attribute value pairs.

(defun update-database (dlist 1st new-list)
(cond

, , ,

, , ,

, , ,

((null dlist) (update-file new-list))
(t (update-database (cdr dlist) 1st

UPDATE-E'ILE

(update-file <new-1st>)

(my-cons new-list (cons (caar dlist)
(my-delete 1st (cdar dlist) nil)))))))

new-1st: updated database records

This function writes the new records in database file .

(defun update-file (new-list)
(write-file 'dbase)

, , ,
, , ,
, , ,

, , ,

(print new-list my-outport)
(close my-outport))

MODIE'Y-ATIRIBUTE

(modify-attribute <1st>)
1st: directory entry

This function displays selected attribute entry and modifies the entry.

(defun modify-attribute (1st)
(clear-text-region)
(CUP 2) (format t II Attribute - name
(CUP 4) (format t II Weight
(CUP 6) (format t II E'unction-name ..

. (get-function-number
(read-file 'directory)
(let ((dir-list (make-dir-list nil)))

(close my-inport)
(write-file 'directory)
(write-modified-info dir-list 1st)
(close my-outport)
(clear-text-region)

: -a-%" (car 1st))
: -a-%" (cadr 1st))
: -a-%"
(caddr 1st) *function-list*))

Attribute-name. . . . -a 11 (car 1st))
(terpri)
(format t 11

(CUP 5)
(CUF 45) (format t 11 ' -a' modified! 11 (car 1st))
(display-edit-more-note)

(get-edit-answer (my-ratom))))

,1======================================

' ' ,
, ' ,
, , ,

, , ,

WRITE-MODIFIED-INFO

(write-modified-info <dir-list> <1st>)
dir-list: list of all entries in directory
1st: entry to be modified

This function writes the directory entries in directory with the given
entry modified.

(defun write-modified-info (dir-list 1st)
(cond

' , ,

, , ,

...
'

, , ,

((null dir-list))
((eq (caar dir-list) (car 1st)) (write-new-info 1st)

(write-modified-info (cdr dir-list) 1st))
(t (print (car dir-list) my-outport)

(write-modified-info (cdr dir-list) 1st))))

WRITE-NEW-INFO

(write-new-info <1st>)
1st: directory entry to be modified

This function gets the changed information about weight and function name
from the user and makes a new entry

(defun write-new-info (1st)
(CUP 4 21)

, , ,

, , '
, , ,

' , ,

' ' ,
, , ,
, , ,
, , ,
, , ,

(cond
((eq (tyipeek) 13) (tyi)

(print (list (car 1st) (cadr 1st) (get-function-name (caddr 1st)))
my-outport))

(t (print (list (car 1st) (get-weight) (get-function-name (caddr 1st)))
my-outport))))

GET-FUNCTION-NUMBER

(get-function-number <name> <flist>)
name: function-name
flist: function-list

For the given function-name, this function returns corresponding function
number.

(defun get-function-number (name flist)
(cond

((eq name (cadar fl ist)) (caar fl 1st))
(t (get-function-number name (cdr flist)))))

, .

, , ' CREATE-DATABASE
' , '

;;; (create-database)
,,, This function lets user enter object descriptions in the database.

l
~fun create-database ()

, , ,
, , ,

, , ,
, , ,
, , ,

(heading "Create-Database:")
(setq my-outport (outfile 'dbase))
(setq my-inport (infile 'directory))
(print (get-dbase-info (make-attribute-list nil) nil 'y 1) my-outport)
(close my-inport)
(close my-outport)
(start))

MAKE-ATIRIBUTE-LIST

(make-attribute-list <1st>)
1st: list of attributes in directory

This function makes a list of attributes present in directory.

(defun make-attribute-list (1st)
(cond

((eq (tyipeek my-inport) -1) 1st)
(t (make-attribute-list (my-cons 1st (car (read my~inport)))))))

· ·; GET-DBASE-INFO

, , ,

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

(get-dbase-info <a-list> <1st> <reply> <count>)
a-list: attribute-list
1st: description lists
reply : 'y' or 'n'
count: record number

For each description to be entered, this function gets the values for
the attributes which are already known in directory and makes attribute
value lists and enters in database.

(defun get-dbase-info (a-list 1st reply count)
(clear-text-region)

, , ,
, , ,

(cond
((eq reply 'n) 1st)
(t (get-dbase-info a-list

(my-cons 1st (get-record-info a-list a-list count 2 nil))
(display-more-dbase-note)
(addl count)))))

GET-RECORD-INFO
:::=====================================
, , , .. . ,

(get-record-info <lstl> <lst2>
lstl: attribute-list
lst2: record-description

,,, count: record number
, , , pos: cursor position

<count> <pos> <temp>)

I
I
I
I

, , , temp: temporary list

. . . , This function returns one description with record number appended . . ,
(defun get-record-info (lstl lst2 count pos temp)

(cond

, , ,
, , ,

, , ,

, , , ... , , ,

((null lstl) (append (list count) (get-values lst2 temp 2 0)))
((greaterp pos 15)

(get-record-info lstl lstl count 2 (get-values lst2 temp 2 0)))
(t (CUP pos 4) (format t "-a .. -%" (car lstl))

(get-record-info (cdr lstl) lst2 count (addl pos) temp))))

GET-VALUES

(get-values <a-list> <1st> <pos> <num>)
a-list: attribute-list
1st: list of attribute-value pairs
pos: cursor position where value is to be entered.
num: record number

This function gets values for attributes and makes a list.

(defun get-values (a-list 1st pos num)

, , ,
, , , ... , , ,
, , ,
, , ,
, , ,
, , ,

(cond
((greaterp num 13) (clear-text-region) 1st)
((null a-list) 1st)
(t (CUP pos 22)

(get-values (cdr a-list) (get-pairs a-list 1st)
(addl pos) (addl num)))))

GET-PAIRS

(get-pairs <a-list> <1st>)
a-list: list of attributes
1st: list of attribute-value pairs

This function returns attribute-value pairs.

(defun get-pairs (a-list 1st)
(cond

, , ,
, , ,
, , , . .. , , ,
, , ,
, , ,
, , ,

((eq (tyipeek) 13) (tyi) (my-cons 1st (list (car a-list) nil)))
(t (my-cons lst(list (car a-list) (my-ratom))))))

DISPLAY-MORE-DEASE-NOTE

(display-more-database-note)
This function asks if more records are to be added to database.

(defun display-more-dbase-note ()
(CUP 4 45)
(format t " Note: : -%")
(CUE 45) (format t "Add more records? (y/n) .. ")
(let ((reply (m.y-ratom)))

I I I

I I I

I I I

(cond
((or (eq reply 'n) (eq reply 'y)) reply)
(t (help-dbase-answer)))))

HELP-DBASE-ANSWER

(help-dbase-answer)
This function checks if answer is y or n, else asks the question

(defun help-dbase-answer ()
(CUP 2)
(CUF 45) (format t "Warning::-%")
(CUF 45) (format t "Wrong selection!-%")
(CUP 5 70) (format t " ")
(display-more-dbase-note))

I I I

I I I VIEW-DATABASE

I I I (view-database)
This function lets you look at any selected description in database.

I I I

I I I

(defun view-database ()
(heading "View Database")
'cond

I I I

I I I

I I I

I I I

((probe f ' dbase)
(setq my-inport (infile 'dbase))
(print-dbase (read my-inport))
(close my-inport))

(t (dbase-empty))))

DBASE-EMPTY

(dbase-empty)
This function displays message that there are no records in database

(defun dbase-empty ()

I I I

I I I

I I I

I I I

I I I

I I I

(init-graphics-mode :lines 5 :cursor-lee (make-Point x 300 y 200))
(terpri)
(message "No records in database")
(message "Use any mouse button to select from menu")
(menu-selection (menu-choose *menu*)))

PRINT-DBASE

(print-dbase <1st>)
1st: database descriptions

This function displays a record from database.

(defun print-dbase (1st)
(cond

I I I

I I I

I I I

I I I

((null 1st) (dbase-empty))
(t (clear-text-region)

(CUP 2)
(CUF 4) (format t "Record-number: -a-% " (caar 1st))
(terpri)
(print-record (cdr 1st) (cdar 1st) 1))))

PRINT-RECORD

(print-record <dlist> <rlist> <num>)
dlist: rest of database
rlist: present record to be displayed
num: record number

(defun print-record (dlist rlist num)
(cond

((null rlist) (display-more-records-note dlist))
((greaterp num 15) (display-more dlist rlist))
(t (print-pairs (car rlist))

(print-record dlist (cdr rlist) (addl num)))))

,,,=======================================
I I I DISPLAY-MORE
,,,======================================
,,, (display-more <dlist> <rlist>)
, , , dlist: rest of
(defun display-more (dlist rlist)

(CUP 20 4)

I I I

I I I

I I I

I I I

(format t "Note: : -%")
~format t" Hit return to continue: ")
(cond

((eq (tyipeek) 13) (tyi) (clear-text-region)
(CUP 2 4)
(print-record dlist rlist 1))

(t(display-more dlist rlist))))

PRINT-PAIRS

(defun print-pairs (1st)
(format t " -a: " (car 1st))
(format t 11 -a-%" (cadr 1st)))

I I I

; ; ; DISPLAY-MORE-RECORDS-NOTE
I I I

I I I

(defun display-more-records-note (1st)
(CUP 4)
(CUF 45) (format t "Note: : -%")
(CUF 45) (format t "View more records? (y/n) .. ")
(let ((reply (my-ratom)))

(cond
((eq reply 'y) (print-dbase 1st))
((eq reply 'n) (start))
(t (CUP 2)

(CUF 45) (format t "Warning: : -%")
(CUF 45) (format t "Wrong s_election! ")
(CUP 5 68) (format t " - ")

I
I
~
I
I
I
I
I
i
I

I
I

I
I
I

a

(display-more-records-note 1st)))))

, , EDIT-DATABASE

(def1.m edit-database ()
(heading "Edit-database")
(CUP 2 4) (format t "Record-number? .. ")
(let ((reply (my-ratom)))

(cond
((not (numberp reply)) (display-wrong-number-note))
(t (get-record reply)))))

DISPLAY-WRONG-NUMBER-NOTE

(def1.m display-wrong-number-note ()
(CUP 2)
(CUE 45) (format t "Warning::-%")
(CUF 45) (format t "Wrong Selection!")
(CUP 2 20) (format t "

; ; ; GET-RECORD

, , ,
(def1.m get-record (num)

(setq my-inport (infile 'dbase))

II))

) (let ((1st (search-record num (read my-inport))))
(cond

, , ,

((eq 1st nil) (CUP 2) (close my-inport)
(CUF 45) (format t "Warning::-%")
(CUF 45) (format t "Record #-a ·not in database-%" num)
(display-edit-more-note)
(get-dedit-answer(my-ratom)))

(t (del-or-mod-record 1st num)
(close my-inport)))))

; ; ; SEARCH-RECORD ... , , ,
, , ,
(defun search-record (num 1st)

(cond
((null 1st) nil)
((eq num (caar 1st)) (cdar 1st))
(t (search-record num (cdr 1st)))))

, , ,
' , , DEL-OR-MOD-RECORD
, , ,
, , ,
(defun del-or-mod-record (1st num)

(CUP 4)
(CUF 45) (format t "Note::-%")
(CUF 45) (format t "1. Delete record-%")
(CUF 45) (format t "2. Modify record-%")

, , ,

(terpri)
(CUF 45) (format t "Enter Selection .. ")
'let ((reply (my-ratom)))

(cond
((eq reply 1) (delete-record num))
((eq reply 2) (modify-record 1st num))
(t (CUP 2)

(CUF 45) (format t "Warning::-%")
(CUF 45) (format t "Wrong selection!-%")
(CUP 8 62) (format t " ")
(del-or-mod-record 1st num)))))

DELETE-RECORD

(defun delete-record (num)
(cond

, , ,

((probef 'dbase)
(setq my-inport (infile 'dbase))
(print (delete-help num (read my-inport) nil)

(setq my-outport (outfile 'dbase)))
(close my-outport)
(close my-inport) (display-delete-note num)) (t 't)))

DELETE-HELP

(, \m delete-help (num 1st lstl)
(cond

((null 1st) lstl)
((eq num (caar 1st)) {delete-help num (cdr 1st) lstl))
(t (delete-help num (cdr 1st) (my-cons lstl (changing-num (car 1st) num))))) :

(defun changing-num (1st num)
(cond

((lessp (car 1st) num) 1st)
(t (append (list (diff (car 1st) 1)) (cdr 1st)))))

, , ,
, , , MODIFY-RECORD
, , ,
, , ,
(defun modify-record (1st num)

(read-file 'dbase)
(let ((dir-list (read my-inport)))

(close my-inport)
(write-file 'dbase)
(print (modify-dbase dir-list (get-new-record 1st 1st nil num 2 25) num ni :
(close my-outport)
{display-modify-note num)))

(defun modify-dbase (dir-list new-rec num new-1st)
(cond

((null dir-list) new-1st)
((eq (caar dir-list) num) (modify-dbase (cdr dir-list) new-rec num (my-cons 1

(t (modify-dbase (cdr dir-list) new-rec num (my-cons new-1st (car dir-list)):

, , ,
GET-NEW-RECORD

, , ,
(defun get-new-record (1st lstl lst2 num posy)

, , ,

(cond
((null 1st) (get-help lstl lst2 num 2 y))
((greaterp pos 15) (get-help lstl lst2 num 2 y))
(t (CUP pos 4) {format t 11 -a-%" (caar 1st))

(CUU 1) (CUE' 24) (format t 11-a-% 11 (cadar 1st))
(get-new-record (cdr lst)lstl lst2 num (addl pos) y))))

GET-NEW-RECORD

(defun get-help (1st lstl num x y)
(CUP x y)

, , ,
, I

(cond
((null 1st) (append (list num) lstl))
((greaterp x 15) {clear-text-region) (get-new-record 1st 1st lstl num 2 y))
((eq (tyipeek) 13) (tyi) (get-help (cdr 1st) (my-cons lstl (car 1st))

num {addl x) y))
(t (get-help (cdr 1st) (my-cons lstl (list (caar 1st) (my-ratom)))

num (addl x) y))))

DISPLAY-MODIFY-NOTE

(a.'-_un display-modify-note (num)
(CUP 4)

, , ,
, , ,

(CUE' 45) (format t "Note:: -%11)

(CUE' 45) (format t "Record #-a modified
(display-edit-more-note)
(CUP 8 45) (format t 11

(CUP 6 73)
(get-dedit-answer (my-ratom)))

DISPLAY-DELETE-NOTE

(defun display-delete-note (num)
(CUP 4)

, , ,
, , ,
, , ,
, , ,

(CUE' 45) (format t "Note: : -%")
(CUE' 45) (format t "Record #-a deleted
(display-edit-more-note)
(CUP 8 45) (format t "
(CUP 6 73)
(get-dedit-answer (my-ratom)))

GET-DEDIT-ANSWER

(d tn get-dedit-answer(reply)
\cond

II)

")

c--(eq reply 'y) (clear-text-region) (edit-database))

I'

}

, , ,

, , ,

, , ,

((eq reply 'n)
(t (CUP 3)

MATCH

(CUF 45) (
(CUP 6 73)
(CUP 6 73)

(start))

format t "Wrong selection! II)
(format t " ")
(get-edit-answer (my-ratom)))))

This is the main routine which gets the description from the user and
compares it to each description present in the database.

(de fun match ()
(heading "Match-descriptions:")

(read-file 'directory)
(get-attribute-info)
(close my-inport)

(read-file 'directory)
(setq my-inportl (infile 'dbase))
(let ((alist (make-attribute-list nil))

{dlist (read my-inportl)))
(match-help dlist (get-desc alist alist nil 2)))

(close my-inportl)
(close my-inport)
(call-menu))

,==
, , ,
, , ,

D-MATCH

This is the second version of match routine described above. This is
instead of match when program is used for demonstration.

(defun D-match ()

, , ,
, , ,
, , , . .. ,

, , ,
, , ,

(heading "Match-descriptions:")

(read-file 'directory)
(get-attribute-info)
(close my-inport)

(read-file 'directory)
(setq my-inportl (infile 'dbase))
(let ((alist (make-attribute-list nil))

(dlist (read my-inportl)))
(D-match-help dlist (get-desc alist alist nil 2)))

(close my-inportl)
(close my-inport)
(call-menu))

GET-ATTRIBUTE-INFO

This function reads information from directory and puts function names
and weights as properties to attributes. Thus it reduces searching
time.

(defun get-attribute-info ()
(cond

, , ,
, , ,
, , ,

, , ,

, , ,

((eq (tyipeek my-inport) -1) t)
(t (add-attribute (read my-inport))

(get-attribute-info))))

ADD-ATIRIBUTE

This function gets function-name and weight of attribute from directory
and puts them on the property list of attribute. This saves the
the searching time.

{defun add-attribute {1st)

, , ,

, , ,

(putprop (car 1st) (caddr 1st) 'fname)
(putprop (car 1st) (cadr 1st) 'weight))

GET-DESC

This function displays attributes known in directory on screen and gets
the values from the user. It returns the description to the calling
program.

(defun get-desc {alist alistl temp pos)
(cond

((null alist) (get-values alistl temp 2 0))
((greaterp pos 15) (get-desc alist alist (get-values alistl temp 2 0) 2))
(t (CUP pos 4) {format t 11-a .. -%" (car alist))

(get-desc {cdr alist) alistl temp (addl pos)))))

,,,======================================
, , , MATCH-HELP
,,,======================================
{defun match-help {database desc)

(let ({sdatabase (sort-database database nil))
{sdesc (sort-data desc)))

(results (sort-results (compare sdatabase sdesc nil) nil))))

(defun sort-results(lst slist)
(cond

((null 1st) (sort-help (sortcar slist '>) nil))
(t (sort-results (cdr 1st)

(my-cons slist (append (cadar 1st) {list (caar 1st))))))))

(defun sort-help {1st slist)
(cond

, , ,
, , ,
, , '

... , , ,
, , ,

((null 1st) slist)
(t (sort-help (cdr 1st) (my-cons slist (list (car (last (car 1st)))

(delete (car (last (car 1st))) (car 1st))))))))

D-MATCH-HELP

This function sorts each record of database and description in ascending
order by their attributes. this helps in finding the missing attributes.

, , I then it calls compare to compare descriptions.
, , I

(-· '-fun D-match-help (database desc)

, , ,

, , ,
, , ,

(let ((sdatabase (sort-database database nil))
(sdesc (sort-data desc)))

(screen-demo (compare sdatabase sdesc nil) database desc 20 50)))

SORT-DATA

This function sorts the given list by its first elements in ascending
order.

(defun sort-data (1st)
(sortcar 1st nil))

SORT-DATABASE
, I ,

This function sorts each record in database.
, , ,
(defun sort-database (database 1st)

(cond

.. . ,

, , ,

((null database))
(t (cons (cons (caar database) (sort-data (cdar database)))

(sort-database (cdr database) 1st)))))

COMPARE

This function compares each description in database to given description
by calling match-desc which for each description returns a triple of
similiarity measures. All these lists are then made into one list and
returned .

(defun compare (database desc 1st)

, , ,
, , ,

, , I

I I ,

, I ,

(cond
((null database) 1st)
((eq database t) 1st)
(t (compare (cdr database) desc

MATCH-DESC

(my-cons 1st (match-desc (cdar database) desc
(caar database)))))))

This function matches the given descriptions. It creates a list which is
list of three lists on the basis of attributes common to both descriptions
or present only in either of them.

(defun match-desc (reel rec2 num)

, , ,
, I ,

, . .
, , ,
, , ,

(let ((new-list (make-lists reel rec2 nil nil nil)))
(calc-sim new-list num)))

MAKE-LISTS

Given two records, this function compares both by their attributes. The
common attributes to both, are put into mlist and if found only in reel
put into alist else in blist. Then it returns list of thes 1 · r.hree lists.

, , ,
(defun make-lists (reel rec2 mlist alist blist)

(cond
((and (null reel) (null rec2))

(list mlist alist blist))
((and (eq (cadar reel) nil)

(eq (cadar reel) nil))
(make-lists (cdr reel) (cdr rec2) mlist alist

(append blist (list (car reel)))))
((or (eq (cadar reel) nil)

(eq (cadar rec2) nil))
(make-lists (cdr reel) (cdr rec2) mlist

(append alist (list (car reel))) blist))
(t(make-lists (cdr reel) (cdr rec2)

(append mlist (merge (car reel) (car rec2)))
alist blist))))

,,,====================================
, , , MERGE
, , ,

(defun merge (lstl lst2)
(list (append lstl (cdr lst2))))

,,,====================================
CALC-SIM

,,,====================================
(defun calc-sim (1st num)

, , ,
, , ,

(let ((a {float (calc-a (car lst)O)))
(b (float (calc-b (car lst)O)))
(c {float (calc-c (cdr lst)O))))

(list num (list (round (quotient ab))
(round (quotient a (plus b c)))
(round (quotient (plus a c) (plus b c)))))))

CALC-A

(defun calc-a (1st num)
(cond

((null 1st) num)
(t(calc-a (cdr 1st) (plus num (times (get (caar 1st) 'weight)

(funcall (get (caar 1st) 'fname) (car 1st))))))))

, , ,
; ; ;CALC-B
,,,===================================
, , ,
(defun calc-b (1st num)

... ,

, , ,
, , ,

(cond
((null 1st) num)
((eq 1st nil) num)
(t (calc-b (cdr 1st) (plus num (get (caar 1st) 'weight))))))

CALC-C

(defun calc-c (1st num)
(cond

((nuJ.l 1st) num)
((eq 1st nil) num)
(t(calc-c (cdr 1st) (plus num (calc-b (car lst)0))))))

I I I

ROUND
I I I

(defun round (num)
(quotient (float (fix (times num 1000.0))) 1000.0))

,,,====================================
; ; ; RESULTS

(defun results (1st)
(init-graphics-mode :lines 5)
(draw-line (make-Point x 0 y 10) (make-Point x 625 y 10))
(paint-string 10 20 "Partial-Match Values:")
(draw-line (make-Point x 0 y 40) (make-Point x 625 y 40))
(draw-line (make-Point x 300 y 40) (make-Point x 300 y 400))
(paint-string 60 55 " V Vmin Vmax")
(results-help 1st 1 70 80)
(draw-graph 1st))

,,,====================================
; ; ; RESULTS-HELP .. ,

(defun results-help (1st count x y)
(cond

((null 1st))
((greaterp count 5))
(t (paint-string 5 y "Desc#")

(paint-string 45 y (caar 1st))
(write-string x y (explode (caadar 1st)) 0 0)
(write-string (plus 60 x) y (explode (cadadar 1st)) 0 0)
(write-string (plus 120 x) y (explode (caddadar 1st)) 0 0)
(results-help (cdr 1st) (addl count) x (plus 25 y)))))

;;;====================================
I I I WRITE-STRING
,,,====================================
, , ,
(defun write-string (x y num cnt flag)

(cond
((eq cnt 3))
((eq num nil))
((equal (car num) ' I . I)

(paint-string x y (car num))
(write-string (plus 8 x) y (cdr num) cnt flag))

((eq flag 1)
(paint-string x y (car num))
(write-string (plus 8 x) y (cdr num) (addl cnt) flag))

(t (paint-string x y (car num))
(write-string (plus 8 x) y (cdr num) (addl cnt) flag))))

I I I

SCREEN-DEMO

I

(c _un screen-demo (1st database desc xval yval)

I I I

I I I

(init-graphics-mode :lines 5)
(draw-line {make-Point x 0 y 200) (make-Point x 625 y 200))
(demol 1st database desc xval yval)
(draw-roomsl 20 250 desc)
(draw-graph 1st))

DEMOl

(defun demol (1st database desc xval yval)

I I I

I I I

I I I

(cond
((null database) 'done)
(t (draw-rooms xval yval (cdar database) (caar database) (car 1st))

(demol (cdr 1st) (cdr database) desc (plus 120 xval) yval))))

DRAW-ROOMS

(defun draw-rooms (xval yval dlist num 1st)

I I I

I I I

I I I

(draw-line (make-Point x xval y yval) (make-Point x (plus 100 xval) y yval))
(draw-line (make-Point x xval y yval) (make-Point x xval y (plus 100 yval)))
(draw-line (make-Point x (plus 100 xval) y yval) (make-Point x (plus 100 xval)
(draw-line (make-Point x (plus 100 xval) y (plus 100 yval)) (make - Point x xval
(draw-stripes xval yval (get-number dlist) (get-shade dlist))
(paint-string xval (diff yval 20) "Rec#")
(paint-string (plus 35 xval) (diff yval 20) num)
(paint-string xval (plus yval 110) "V: ")
(paint-string (plus 20 xval) (plus yval 110) (caadr 1st))
(paint-string xval (plus yval 120) "V-min: ")
(paint-string (plus xval 45) (plus yval 120) (cadadr 1st))
(paint-string xval (plus yval 130) "V-max: ")
(paint-string (plus xval 45) (plus yval 130) (caddadr 1st)))

DRAW-ROOMSl

(defun draw-roomsl (xval yval dlist)

I I I

, , ,
I I I

, , ,

(draw-line (make-Point x xval y yval) (make-Point x (plus 100 xval) y yval))
(draw-line (make-Point x xval y yval) (make-Point x xval y (plus 100 yval)))
(draw-line (make-Point x (plus 100 xval) y yval) (make-Point x (plus 100 xval)
(draw-line (make-Point x (plus 100 xval) y (plus 100 yval)) (make-Point x xval
(draw-stripes xval yval (get-number dlist) (get-shade dlist)))

DRAW-STRIPES

(defun draw-stripes (xval yval num shade)
-ond

((not (numberp num)) (dummy xval yval shade))

. , , ,
, , ,
, , ,

((eq num 0) 'done)
(t(fill-up xval yval shade)

(draw-stripes (plus 20 xval) yval (diff num 1) shade))))

GET-SHADE .

(defun get-shade (dlist)

, , ,

(cond
((null dlist) 'missing)
((eq (caar dlist) 'shade) (cadar dlist))
(t (get-shade (cdr dlist)))))

GET-NUMBER

(defun get-number (dlist)

, , ,
, , ,

(cond
((null dlist) 'missing)
((eq (caar dlist) 'number) (cadar dlist))
(t (get-number (cdr dlist)))))

FILL-UP

(defun fill~up (xval yval shade)
(cond

, I ,

, , ,
, , ,
I , ,

((eq shade 'missing)
(draw-line (make-Point x

(mak~- Point x
(draw-line (make-Point x

(make- Point x
((eq shade ' gray)

(plus
(plus
(plus
(plus

10 :xval)
10 :xval)
20 xval)
20 :xval)

y yval)
y (plus
y yval)
y (plus

100 yval)))

100 yval))))

(draw-rectangle (make-Rect x (plus 10 :xval) y yval w 10 h 100)
:halftone GrayHalftone))

((eq shade 'darkgray)
(draw-rectangle (make-Rect x (plus 10 :xval) y yval w 10 h 100)

:halftone DarkGrayHalftone))
((eq shade ' lightgray)

(draw-rectangle (make-Rect x (plus 10 :xval) y yval w 10 h 100)
:halftone LightGrayHalftone))

((eq shade 'verylightgray)
· (draw-rectangle (make-Rect x (plus 10 xval) y yval w 10 h 100)

:halftone VeryLightGrayHalftone))
(t (draw-rectangle (make-Rect x (plus 10 xval) y yval w 10 h 100)))))

DUMMY

(defun dummy (xval yval shade)
(cond

((eq shade 'gray)
(draw-rectangle (make-Rect x xval y yval w 100 h 100) :halftone GrayHalfton,

((eq shade 'darkgray)
(draw-rectangle (make-Rect x xval y yval w 100 h 100) :halftone DarkGrayHal

((eq shade 'lightgray)

)

(draw-rectangle (make-Rect x xval y yval w 100 h 100) :halftone LightGrayHa :
((eq shade 'verylightgray)

(draw-rectangle (make-Rect x xval y yval w 100 h 100) :halftone VeryLightGr;
(t (draw-rectangle (make-Rect x xval y yval w 100 h 100)))))

; ; ; DRAW-GRAPH

(defun draw-graph (1st)
(draw-graph-structl 350 220)
(draw-barsl 1st 350 1))

, , ,
; ; ; DRAW-GRAPH-S'IRUCTl

(defun draw-graph-structl (xval yval)
(draw-line (make-Point x xval y yval)

(make-Point x xval y (plus yval 160)))
(draw-line (make-Point x xval y (plus yval 160))

, , ,

(make-Point x (plus xval 200) y (plus yval 160)))
(setq pl (make-Point x (diff xval 5) y (plus yval 140)))
(setq p2 (make-Point x xval y (plus yval 140)))
(draw-helpl pl p2 0))

; ; ; DRAW-HELPl
,,,====================================
(r""'fun draw-helpl (pl p2 count)

.::ond
((eq count 10) (write-numl 320 220 0 ' ("1. 0" "0. 9" "0. 8" "0 . 7"

(t (draw-line pl p2)

"0 .6" "0 .5" "0 . 4" "0. 3"
"0.2" "0.1")))

(draw-helpl (make-Point x (Point->x pl) y (diff (Point->y pl) 15))
(make-Point x (Point->x p2) y (diff (Point->y p2) 15))
(addl count)))))

WRITE-NUMl
,,,====================================
, , ,
(defun write-numl (x y count num.)

(cond
((eq count 10) t)
(t (paint-string x y (car num.))

(write-numl x (plus y 15) (addl count) (cdr num.)))))

, , , DRAW-BAR.Sl
, , ,
, , ,
(defun draw-barsl (1st xval cnt)

(cond
((null 1st))

J ((greaterp cnt 5))
(t {draw-Vmin-bar (cadar 1st) (plus xval 20))

(draw-V-bar (cadar 1st) (plus xval 25) (caar 1st))
(draw-Vmax-bar (cadar 1st) (plus xval 30))

'I I,
I

Ii

(draw-barsl (cdr 1st) (plus xval 40) (addl cnt)))))

,DRAW-V-BAR

I I I

(defun draw-V-bar (1st x-val num)

, , ,

(draw-rectangle (make-Rect xx-val y (fix (diff 380 (times 160 (car 1st))))
w 5 h (fix (times 160 (car 1st))))
:halftone GrayHalftone)

(paint-string x-val 385 num))

; ; ; DRAW-VMIN-BAR
, , ,

(defun draw-Vmin-bar (1st x-val)

, , ,

, , ,

(draw-rectangle (make-Rect xx-val y (fix (diff 380 (times 160 (cadr 1st))))
w 5 h (fix (times 160 (cadr 1st))))
:halftone LightGrayHalftone))

DRAW-VMAX-BAR

(defun draw-Vmax-bar (1st x-val)

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

, , ,

, , ,

(draw-rectangle (make-Rect xx-val y (fix(diff 380 (times 160 (caddr 1st))))
w 5 h (fix (times 160 (caddr 1st))))
:halftone DarkGrayHalftone))

MY-CONCAT

(my-concat <count>)

RETURNS:

ARGUMENT:

If the argument to my-count is one-digit number, then it
returns argument concatenated by a space before it and period
after it. If it is two-digit number, then it returns the
argument with period after it.

1. count: integer

Example: -> my-concat(8)
8.

-> my-concat (10)
10.

(defun my-concat (count)
(cond

((lessp count 10) (concat 11 11 count 11 • 11))

(t(concat count 11 • 11))))

MY-CONS
. - ,
, , , (my-cons <l~tl> <lst2>)
, , ,

I

, , , RETURNS: list of both argumnets.
, , ,
, , , ARGUMENTS:

1. lstl: nil, atom or list
, ' , 2. lst2: nil, atom or list
, , ,
, , , Example -> (my-cons 2 nil)
, , , (2)
, , , -> (my-cons nil 2)
, , , (nil . 2)
, , , -> (my-cons I (a) I (b))
, , , (a (b))
, , , -> (my-cons I (a) 'b)
, , , (a b)
, , ,
(defun my-cons (lstl lst2)

, , , .. . , , ,

, , ,
, , ,

(cond
((eq lstl nil) (list lst2))
((eq lst2 nil) (list lstl))
(t (append lstl (list lst2)))))

MESSAGE

(message <string>)

Side-effect: Prints the string in the center of the text scrolling region

(defun message (string)

, , ,

, , ,

, , ,

, , ,

I I I

I I I

(msg (B (quotient (- 80 (flatsize string)) 2)) string N))

MY-DELETE

(my-delete <lstl> <lst2> <lst3>)

RETURNS: <lst3> is new list created which all the lists from <lst2>
except those whose first elements are same as first elements
in <lstl>

ARGUMENTS:
lstl list of atoms
lst2 : list of lists, each list is list of atoms
lst3 : new list created

Example: -> (my-delete ' (a b) ' ((d v) (c f) (a x) (e g)) nil)
((d v) (c f) (e g))

(defun my-delete (lstl lst2 lst3)

I I I

(cond
((null lst2) lst3)
((eq (car lstl) (caar lst2)) (my-delete lstl (cdr lst2) lst3))
(t (my-delete lstl (cdr lst2) (my-cons lst3 (car lst2))))))

READ-FILE

, , ,

, , ,
, ,
, , ,

, , ,

(read-file <filename>)

RETURNS: Sets my-inport to port for reading file. If an error occurs, then
returns nil.

ARGUMENT:
1. filename: file to be opened for reading

{defun read-file (filename)
(cond

, , ,

, , ,
, , ,

, , ,

, , ,

((null (setq my-inport (car (errset (infile filename) nil)))) nil)
(t 'my-inport)))

WRITE-FILE

(write-file <filename>)

RETURNS: Sets my-outport to port for writing. Toe previous contents are
lost .

ARGUMENTS:
1. filename: file to be opened for writing

(defun write-file (filename)

, , ,
, , ,
, , ,
, , ,

(setq my-outport (outfile filename)))

APPEND-FILE

(append-file <filename>)

RETURNS: Sets my-outport to port for writing. File pointer is set to end
end of file.

ARGUMENTS:
1. filename: file to be opened in append mode

(defun append-file (filename)

, , ,
, , ,

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

, , ,

(setq my-outport (outfile filename 'append)))

HEADING

(heading <string>)

RETURNS: t

SIDE-EFFECT: Changes the text scrolling region to 29 lines and displays
given string in the left corner of the display region.

ARGUMENT:
1. string: string to be printed

(defun heading (string)
(init-graphics-mode :lines 29)
(draw-line (make-Point x 0 y 10) (make-Point x 630 y 10))
(paint-string 10 20 string))

(defun my-ratom ()
(let ((a (ratom)))

(tyi) a))

, , ,
, , ,

, , ,
, , ,

, , ,
, , ,
, , ,

, , ,

, , ,
, , ,

FILE: /lisp/examples/draw.!

INIT-GRAPHICS-MODE

(init - graphics-mode :lines <num> : cursor-loc <point>)

Turn on Lisp graphics mode and sets the graphic region. Text scrol1ing
region is <num> lines and a visible graphic cursor is at <point>

; · · EXIT-GRAPHICS-MODE

, , ,

, , ,
, , ,
, , ,
, , ,
, , ,

, , ,
, , ,
, , ,
, , ,

, , ,

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

, . .
, , ,

(exit-graphics-mode)

Restore full screen text scrolling. The screen is cleared and the
text cursor is located in the upper left-hand corner of the display.

DRAW-LINE

(draw-line pointl point2)

Draw a line from pointl to point2 which are Point structures
created by make-Point.

CLEAR-TEXT-REGION

(clear-text-region)

Erase the scrolling text region, and home the cursor to the upper left
corner of the region.

FILE: /lisp/examples/menu.l

, , ,

, , ,

I , I

, , ,
I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

' ' '

MAKE-MENU

(make-menu <item-list>)

Create a menu from the item-list. A menu is a symbol with associated
structures and values maintained on a property list. The item-list is
a list of items, each of which is associated with one slot of menu.

MENU-CHOOSE

(menu-choose <menu>)

Pop up a menu and wait for a selection. A <menu> is an object returned
by make-menu. The menu is centered at the location of the graphic­
cursor. If the selector is pressed and released outside of the menu
nil is returned.

PAINT-S'IRING

(paint-string <x> <y> <string>)

Paint the specified <string>. The upper left corner of the first
character image is located at <x> <y>.

(defun startl () (tyi) (start)

' ' ,

)

