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ABSTRACT

Volcanic ash from the eruption of Mt . St . Helens was an important

component of the sediment which caused shoaling in the Columbia Rive r

and downstream in the estuary . The present research was conducted t o

assess the potential effects of volcanic ash upon the early life histor y

stages of the Pacific herring, Clupea harengus pallasi, a species which

spawns demersal eggs in the lower Columbia River estuary . These effects

were compared with effects of uncontaminated estuarine sediment . The

stages considered in this work were developing eggs, yolk-sac larvae, .

and newly feeding larvae .

Experiments conducted with eggs used both static and dynamic systems .

In the static experiments, ash or sediment suspensions were allowed t o

settle on the developing eggs ; increasing concentrations resulted in slowe d

development times and mortalities approaching 100% . The effects were

consistent with oxygen deprivation from smothering and were more dramati c

with estuarine sediment than with equivalent concentrations of volcani c

ash . In the dynamic experiments, suspensions were maintained nearly con -

stant throughout incubation . Although a fine layer of sediment or ash •

accumulated on the eggs, mortality rates and development times did not ,

differ from controls, suggesting that the chorion prevented abrasion an d

protected the developing embryos .

Experiments with newly hatched yolk-sac larvae were based upon a 2 4

hour exposure to suspensions . At the end of this period, mortalities base d

upon lack of heartbeat were no greater in experimental than in control group s

of larvae . Maintenance of these larvae in clean water beyond the 24 h period ,

however, suggested that slight increases in mortality were apparent in higher z

concentrations, with a more marked effect in the volcanic ash trials .
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Qualitative assessment of the larval finfold suggested that abrasion wa s

occurring and was more apparent in the ash experiments . This was confirmed

through histological analysis .

Experiments with feeding larvae showed interesting effects of both type s

of suspension upon feeding incidence and the mean number of food items con -

sumed . In sediments resuspended periodically, control values were belo w

those of virtually all suspensions, suggesting that the suspensions stimulat e

feeding . In experiments with continually suspended ash and sediment, contro l

values were greater than all but 500 mg/1 estuarine sediment suspensions and

500 and 1000 mg/1 volcanic ash suspensions . It is suggested that the sus -

pensions provide contrast between the prey items and the surrounding water ,

promoting feeding .

Overall, the effects of volcanic ash and estuarine sediment were not

severe upon herring larvae at environmentally realistic suspension concen-

trations . The greatest potential effect of increased suspended ash or

sediment in the lower Columbia River estuary will be upon the egg stage ,

where smothering may result in increased mortalities .



FOREWORD

The Water Resources Research Institute, located on the Oregon State

University campus, serves the State of Oregon . The Institute fosters ,

encourages and facilitates water resources research and education involvin g

all aspects of the quality and quantity of water available for beneficia l

use . The Institute administers and coordinates statewide and regiona l

programs of multidisciplinary research in water and related land resources .

The Institute provides a necessary communications and coordination lin k

between the agencies of local, state and federal government, as well as th e

private sector, and the broad research community at universities in the state

on matters of water-related research . The Institute also coordinates th e

inter-disciplinary program of graduate education in water resources at Oregon

State University .

It is Institute policy to make available the results of significan t

water-related research conducted in Oregon's universities and colleges . The

Institute neither endorses nor rejects the findings of the authors of suc h

research . It does recommend careful consideration of the accumulated fact s

by those concerned with the solution of water-related problems .
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INTRODUCTION

The eruption of Mt . St . Helens had far-reaching effects on aquati c

resources from the headwaters of the Toutle River to the Columbia Rive r

estuary, and was even noted offshore in the Columbia River Plume water s

(Baker and Curl 1981) . Virtually all of the fish in the Toutle River, an d

the Cowlitz River below its confluence with the Toutle, were killed . I n

addition, volcanic mud and debris buried large areas of the Toutle Rive r

watershed under 10 to 450 feet of mud, destroying fish habitats an d

adversely altering the physical properties of the flowing waters (Marti n

et al . 1982) . Shoals of ash and mud up to 25 feet deep were found in th e

Columbia River ; these deposits have also been carried to the estuary wher e

shoaling has been noted near the port of Astoria . It has been estimate d

that 14 million cubic yards of mud must be dredged to return the river t o

its original dimensions .

The effects of the eruption had important, direct effects upon th e

biota of area rivers and the Columbia River estuary through direct habita t

alteration, particularly for fishes . The direct habitat modification ma y

have an impact on fish distribution (through habitat selection), bu t

further effects of sedimentation and higher suspended particulate load s

may have effects upon the fishes' physiology (Redding and Schreck 1982) ,

behavior (Gardner 1981 ; Swensen and Matson 1975), and other indirec t

effects (Muncy et al . 1979) . Increased particulate load, and therefor e

certain of these effects, may continue in the Columbia River as ash an d

sediment are added to the water by erosion and disturbance from dredging .

Particularly, fine particles of volcanic ash flow downstream as suspende d
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particulates, continuing to settle in the waters of the lower estuary .

The Columbia River estuary is a nursery area for many marine species, an d

increased sedimentation rates may affect reproduction, hatching, an d

larval survival, as has been noted in other habitats (see Muncy et al .

1979 for a review) . Ash particles may have further detrimental effects o n

epidermal and gill tissues of juvenile chinook salmon ; more devastatin g

effects might occur in delicate tissues of early larvae, which are mor e

subject to sublethal effects than are later life stages . It is the inten t

of this research to focus on the effects on early life history stages of a

Columbia River estuary species, the Pacific herring (Clupea	 harenqu s

pallasi) .

The effects of suspended ash upon larvae has not been studied ;

effects on salmon ids were started almost immediately after the eruption ,

but the results are not completely clear . The Toutle and Cowlitz Rive r

systems had large runs of economically important salmonids before th e

volcanic eruption . The immediate effect on these fish was devastating an d

research has been conducted to determine the concentrations of volcani c

ash which impact salmonids . Early work centered on live-box bioassays ,

which showed values of LC50 of about 480 to 1300 mg/l of suspended ash an d

sediment, with lower levels generally apparent for smolts as compared t o

presmolts (Stober et al . 1982) . Laboratory bioassays by the sam e

investigators, however, showed a drastic increase (15 to 55-fold) in LC50 ,

with higher values characterizing smolts . The discrepancy in laborator y

and field trials may be attributed to the variable nature of water qualit y

parameters (temperature, velocity, and organic compounds, among others) i n

the live box bioassays, while only suspended ash and sediments varied i n

the laboratory bioassays .
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The sublethal effects of volcanic ash have also been examined i n

salmonids . Volcanic ash is composed primarily of silica (Fruchter et al .

1980), that has sharp, angular characteristics which might enhanc e

abrasion . Although early reports detected abrasion and puncturing damage

by ash particles (Amos 1980), Stober et al . (1982) found no effect of

suspended ash on the structure of gill tissue or upon the subsequen t

ability of the smolts to enter seawater or perform in swimming trials .

Under short term conditions, Redding and Schreck {1982) also found n o

mechanical abrasion of the gills, but found that an exposure to 2000 t o

3000 mg/l of sediment or ash causes physiological responses associate d

with sublethal stress,

	

including

	

increased

	

hematocrit and plasm a

corticosteroid levels .

	

Volcanic ash may thus lower the chances o f

subsequent survival of fish, and its sublethal effects may become mor e

pronounced when other

	

stressful

	

factors, such as increased wate r

temperature or velocity, are evident .

These studies have concentrated on juvenile and adult stages o f

salmonids . Adult fish populations may not be as susceptible to discharge s

of suspended sediments as fish eggs and larvae . In both the upper an d

lower Columbia River estuary, several species deposit demersal eggs whic h

eventually hatch and, as small pelagic larvae, feed and develop in th e

estuary . Demersal eggs are, by their nature, stationary on sediment o r

gravel and are thus subject to direct abrasion and smothering by settlin g

ash or sediments, which may inhibit gas exchange across the chorion to th e

developing embryos . After hatching, larvae lack the protection of the egg

chorion, and the free swimming yolk sac larvae are subject to direc t

abrasion and other detrimental effects of the ash . After depletion o f

yolk reserves, larvae must feed ; both turbidity and suspension of

particles similar in size to food items may alter the ability of fish t o
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discern and consume normal prey . Also, alterations in the penetration o f

light from increased turbidity may result in changes in the vertica l

distribution of larvae and subsequent separation of larvae from

appropriate food sources .

We know that survival of the egg and larval stages of marine fishe s

is important to population dynamics ; it has been suggested that critica l

periods of heightened mortality at these stages may result in th e

determination of year class strength (Hiort 1914 ; Hunter 1976) . While some

factors may be severe enough to cause larval mortalities, other, les s

direct factors may cause sublethal effects, leading to a decrease i n

survival potential later in life . Even a brief exposure to a toxin ma y

cause an energy deficit which the larva must overcome to surviv e

(Rosenthal and Alderdice 1976) .

A great deal of research has been conducted on the effects of

suspended sediments on fish eggs, but little is known of the actua l

concentrations at which lethal or sublethal effects occur . Concentration s

of 1000 mg,'l were found to have an effect on hatching success of striped

bass and white perch (Auld and Schubel 1978), and also on herrin g

(Rosenthal 1971) . The same concentrations had no effect, however, o n

yellow perch, alewife, or American shad (Auld and Schubel 1978) .

Similarly, Kiorboe et al . (1981) observed an effect of 500 mg,'l suspende d

sediment on the development of herring eggs . Although Auld and Schube l

(1978) and Kiorboe (1981) described no sublethal effects, Rosenthal (1971 )

observed increased malformations and retarded development in Atlanti c

herring hatching in 1250 mg/i of red mud . Morgan et al . (1973) observed

similar effects in striped bass .

After larvae hatch, habitat selection and limited avoidance behavior



may occur . Lack of the egg chorion will allow more rapid oxygen exchange ,

but direct epidermal abrasion due to ash may cause lethal or subletha l

stress . Swenson and Matson (1976) found that growth and survival of lak e

herring larvae were not influenced by suspended sediments at naturall y

occurring concentrations (1-28 mg/l) . At higher concentrations, shor t

term exposures to suspended sediment increased larval mortality in studie s

by Auld and Schubel (1978), Rosenthal (1971), and Sherk et al .

	

(1975) .

Another major sublethal effect on fish larvae is restricted foo d

availability ; appropriately-sized

	

food

	

must

	

be

	

present

	

in high

concentrations for significant survival and growth (Hunter 1972) .

Large-scale mortalities often occur among captive larvae immediatel y

following yolk absorption, implicating starvation as the major cause o f

death . Turbidity decreases feeding rates in juvenile bluegill (Gardne r

1981) . The effects upon larval fish feeding, however, remain unknown .

Larvae are generally visual feeders (Hunter 1981) and small

	

larvae

typically feed on particles about 50 11m wide .

	

The the possibilit y

exists for consumption of suspended particles with food . This coul d

result in either damage to intestinal tissues or to blockage of the

esophagus (Rosenthal 1971) .

The goals of this research were to determine the effects of suspende d

ash and estuarine sediment on the early life history stages of the Pacifi c

herring, Clupea harengus pallasi, a marine species which spawns demersa l

eggs in the lower Columbia River estuary .

	

This species has adhesive ,

demersal eggs, a common characteristic among estuarine-spawning fishes .

It is an important resource in the northern Pacific, both as commercia l

catch and as forage for other important species . Its range is from

southern California to Alaska, across the Bering straits, and south t o
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MATERIALS AND METHODS

Volcanic ash and estuarine sediment s

Volcanic ash from Mt . Saint Helens was obtained from the Oregon Stat e

University Soil Science Department . The original source was from airfal l

ash at Moses Lake, Washington . This ash was dominated (weight percen t

fraction) by 20-45 Pm particles (Fruchter et al . 1980) . Uncontaminate d

estuarine sediment was collected at low tide from a specific area nea r

Sally's Bend on Yaquina Bay, Oregon . Both sediment and volcanic ash wer e

standardized with respect to size by settling techniques . Particle s

larger than 24 Pm were removed by settling over 10 cm . This resulted i n

a particle size distribution smaller than that used in other experimenta l

studies (Stober et al . 1982 ; Redding and Schreck 1982), but was necessar y

for the work on fish larvae . Maintenance of suspensions of large r

particles would not have been compatible with the relatively

	

low

turbulence

	

necessary for larval fishes ; for flow-through

	

systems ,

moreover, larger particles would have clogged the screens necessary t o

segregate the larvae . Secondly, the smaller particles may be mor e

realistic with respect to what larvae may encounter in the lower Columbi a

River estuary . Particles remaining in suspension (those smaller than 2 4

Pm) were allowed to settle over 48 hours . After this time, the ash an d

sediment were treated differently . For both, the supernatant was siphone d

off the settled material . For the volcanic ash, the remaining materia l

was dried and the ash subsequently dispersed . The sediment was autoclave d

and maintained in a liquified state to maintain particle separation ; thi s

solution typically contained about 80% water .

	

Final

	

particle sizes o f
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volcanic ash and estuarine sediment were analyzed with a Coulter counter

and were slightly different (Table 1) . Standardized suspensions (mg./1) of

sediment and ash were used to develop calibration curves of optica l

density ; these curves were used to check the concentrations of suspension s

during experiments .

Specimen collection and maintenanc e

All experiments were conducted at the Oregon State University Marin e

Science Center . The seawater system for these facilities draws water fro m

Yaquina Bay during high tides to maintain salinities in excess of 27 ppt .

This water flows through settling and storage tanks into th e

laboratories . Adult herring, when maintained in the laboratory, were hel d

in this seawater at ambient temperature . For experimental use, the wate r

was passed through a sand and gravel filter to remove particulate matte r

and then irradiated with ultraviolet light to eliminate pathogens .

	

It was

mixed with the appropriate amount of dechlorinated fresh water to brin g

the final salinity to 15 ppt, and held

	

in a large aerated reservoir in a

constant temperature room to

	

allow

	

equilibration

	

to the desire d

temperature and ambient dissolved oxygen levels . Light in the constan t

temperature room, where all egg incubation, larval rearing, an d

experiments were conducted, was maintained at an intensity of 15 0

ft-candles at the water surface ; photoperiod was adjusted to reflec t

seasonal changes in daylength .

Pacific herring (Clupea harenqus pallasi) were collected either a s

adults, which were spawned in the laboratory, or as naturally spawne d

eggs . This species spawns in Yaquina Bay during winter and early sprin g

months . In 1982, all work was conducted with naturally spawned eggs

collected along the north jetty of Yaquina Bay on 6 March, 14 April, an d

8



Table 1 : Particle size distribution of volcanic ash and estuarine sediment
after settling and preparation for egg and larval experiments .

SEDIMENT

	

ASH

Particle Size

um by number % by weight by number % by weight

19 .0 - 23 .9 0 .1 3 .9 0 .1 3 . 8

15 .1 - 19 .0 0 .3 8 .0 0 .6 8 . 7

12 .0 - 15 .1 1 .0 12 .1 2 .9 18 . 8

9 .5 - 12 .0 2 .4 14 .3 6 .0 21 . 4

7 .5 -

	

9 .5 5 .0 15 .1 10 .5 18 . 4

6 .0 -

	

7 .5 9 .9 15 .1 14 .6 12 . 9

4 .8 -

	

6 .0 19 .2 14 .6 18 .9 8 . 3

3 .8 -

	

4 .8 29 .5 11 .0 21 .8 4 . 9

3 .0 -

	

3 .8 32 .7 6 .0 24 .6 2 .8

9



16 April after natural spawns . After bringing the eggs to the laboratory ,

they were placed in static 40 liter aquaria with aeration at 10°C in a

constant temperature laboratory .

	

Approximately 50% of the water wa s

changed daily . As larvae hatched, they were transferred in small beaker s

to 250 liter tanks prior to use in experiments . Those used for yolk-sa c

larval experiments were used within two days of hatching .

	

Larvae to be

used for feeding experiments were monitored for yolk utilization an d

feeding

	

ability .

	

When specimens were capable

	

of

	

feeding,

	

th e

rotifer(Brachionus plicatilis),along with algal

	

culture, was added t o

the tanks in densities (see feeding experiments, below) which allowed a

high rate of feeding .

Adult herring were captured for egg and yolk-sac larval experiment s

in 1983 . Adults were captured in February during a commercial roe fisher y

in Yaquina Bay and in March by fishing from local piers .

	

Gravi d

individuals from the fishery were immediately spawned onto glass

microscope slides ; the adhesive eggs remained in monolayers on the slide s

and were fertilized by immersing in small containers containing freshl y

extruded sperm . After several minutes, which insured virtually 100 %

fertilization, slides were washed and suspended in aquaria from styrofoa m

floats . Water and egg handling was subsequently conducted as describe d

above .

	

The adults captured live in March were maintained in th e

laboratory for short periods in running seawater at

	

ambient

	

bay

temperatures prior to spawning .

Eqqexperiment s

All experiments on the effects of suspended volcanic ash an d

estuarine sediment upon herring eggs were conducted during 1983, whe n

adult fish were available,

	

allowing controlled timing for fertilization

10



and controlled substrate for incubation . Two sets of experiments wer e

conducted, static and dynamic, as described below .

	

All egg experiment s

were conducted at a constant temperature of 12°C, which is associated

with a hatching time of 10 .5 days (Alderdice and Velsen 1968) . The stati c

experiments were conducted in 4 liter glass vessels filled with 2 .5 liter s

of ash or sediment suspension, resulting in a water column height of 1 5

cm . Other than gentle aeration, there was no disturbance in these vessel s

during the experiments to maintain the ash or sediment in suspension .

Eggs for the experiments were spawned on 7 February from fish captured by

commercial fishermen . Slides were allowed to remain in clean seawater fo r

24 hours at 12°C . At this time, eggs were observed and all unfertilized

eggs were removed from the

	

slides ;

	

the slides were then place d

horizontally in small holders on the bottoms of the experimental vessel s

and the suspension was uniformly mixed .

	

Two slides, with 201 to 443 eggs

each, were placed in each of the following treatment vessels :

Estuarine sediment : 0, 500, 1000, 2000, 4000, and 8000 mg/liter .

Volcanic ash : 0, 500, 1000, 2000, 4000, and 8000 mg/liter .

During the experiments, water and ash suspensions were changed at 72 h

intervals . At 48 h intervals, the dead or deformed eggs were removed fro m

the slides with forceps and dissecting needles and enumerated ; prior t o

returning the slides

	

to

	

the appropriate experimental vessel, th e

suspensions of ash or sediment were thoroughly stirred . This procedur e

was continued until 216 hours post-fertilization, when the first sign o f

hatching was apparent . To prevent loss of larvae hatching under sedimen t

11



and not being recovered, all slides were removed from the suspensions an d

floated vertically from small styrofoam floats in one-liter beakers o f

clean seawater . This allowed hatching to proceed and the larvae to b e

recovered and recorded from individual replicate slides . Hatching wa s

monitored until 288 hours post-fertilization, or approximately 32 hour s

after the time of median hatching as predicted by Alderdice and Veise n

{1968) . At this time, all slides were preserved in 10% formalin for late r

enumeration of the total numbers and stage of development of the remainin g

eggs .

For the dynamic dosing experiments with herring eggs, a differen t

apparatus was necessary to maintain the volcanic ash and estuarin e

sediment in continuous suspension and to circulate it over the eggs . Thi s

apparatus was designed to eliminate the need for manual suspension o f

sediments and to create more uniform exposure of the suspensions to eac h

larval container . The actual device (Figure l) was designed to test thre e

replicate groups of eggs or larvae at six concentrations . Three 1-lite r

experimental chambers were cut from 4 inch (I .D .) black ABS plastic pip e

covered at one end with 335 Im nylon mesh screen and connected in a

rosette pattern to a center PVC pipe which supported both the chambers an d

an airlift device . The rosette was partially submerged in a round 1 0

liter black plastic tank containing the suspension of ash or sedimen t

which was kept in suspension outside the chambers by a variable-spee d

stirrer .

	

The nylon screen was small enough to keep larvae and egg s

contained and still allow suspensions (and for later experiments, larva l

food) to be recycled back into the 10 liter container . A concav e

deflector was placed in the fourth position (Figure l) to create a mixin g

area within the larger container . Two airstones placed beneath the cente r

pipe airlifted the suspensions through three glass tubes (9 mm I .D .) . Th e

12



P .

TOP VIEW

	

A

Figure 1 : The three-chambered dynamic dosing device used in the eggs, yolk -

sac larvae, and feeding larvae experiments with Pacific herring . Total

volume of the containers holding the larvae was one liter, the volume o f

the larger tank 10 liters . The flow rate into the smaller chambers wa s

maintained at approximately 240 ml/min . A, airstone ; AL, airlift system ;

C, dosing chamber ; D, flow regulator ; M, mixing area ; N, 335 pm nylo n

screen ; 0, overflow ; P, 10 liter tank ; S, stirrer connected to variabl e

speed motor ; WL, water level . Arrows indicate the direction of the flo w

of suspension through the apparatus .
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tubes passed through a rubber stopper within the center pipe, These glas s

tubes were bent at right angles at the top and directed into the thre e

dosing chambers .

	

The airlift system above the test containers wa s

continued with 1 .3 cm (0 .D .) plastic tubing with three 0 .140 inch hole s

bored along one side to allow control of the trickle of suspensions int o

the test containers . Flow rates were maintained at approximately 24 0

ml/minute .

The dynamic bioassays were conducted with herring eggs spawned on 7

February (concurrent with the static bioassays) for trials with volcani c

ash and with eggs spawned 21 March for the estuarine sediment trials .

Protocol for spawning eggs onto slides was handled

	

as

	

describe d

previously .

	

Briefly, 247 to 490 eggs (ash trials) or 99-140 egg s

(sediment trials) were spawned in a monolayer onto cleaned

	

glass

microscope slides and fertilized with sperm from several males .

	

Afte r

washing in seawater, they were suspended from styrofoam floats in 40 lite r

tanks . After 24 hours, the slides were examined and unfertilized eggs

were removed prior to initiating experiments . Four replicate slides wer e

introduced to each of six suspension concentrations (0, 500, 1000, 2000 ,

4000, and 8000 mg/l) ; during the trials, the labelled slides wer e

suspended from styrofoam floats within the dosing chambers of the dynami c

device (Figure 1) . Slides were removed from the device each 48 hours t o

count and remove dead or deformed eggs and embyros .

	

The seawater an d

suspensions were changed once during the trials, which lasted until larva e

began to hatch . At this time (216 h past-fertilization in the ash

experiments and 192 h post-fertilization in the sediment trials) slide s

were moved to individual 1-liter beakers with clean, aerated seawater .

These were checked daily, with hatched larvae enumerated as deformed o r

normal (following Barahona-Fernandes 1982) and dead eggs removed .

	

Fo r
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both experiments, termination occurred at 288 h post-fertilization, whe n

remaining eggs were classified as dead, arrested development, or norma l

development (the latter category may have hatched given sufficient time) .

Voucher specimens from each treatment were preserved in 10% formalin .

Yolk-sac larvae experiment s

Two types of experiments were conducted to evaluate the effects o f

continually suspended sediment and ash on newly hatched herring larvae .

The first set of experiments was carried out in 1982 and was designed t o

determine the immediate effects of a 24 h exposure on larvae . The secon d

set was carried out in 1983 ; after a 24 h exposure to the suspensions ,

larvae were transferred to separate containers and mortality was followe d

over time for unfed larvae .

The first set of experiments was carried out on 19 March with egg s

which had been naturally spawned on the north jetty of Yaquina Bay . After

hatching, larvae were counted to individual l-liter containers held withi n

larger containers . The small containers had a nitex false bottom to allow

free flow of sediment and ash suspensions . Larvae were introduced fro m

small beakers into duplicate containers at the six levels of suspended as h

or sediment ; each two hours the suspension was replaced with a new on e

liter volume slowly siphoned into the vessel . After 24 hours, th e

;folk-sac larvae were removed to petri dishes and enumerated as either dea d

or alive . The criterion of death was lack of a heartbeat at the end o f

the 24 h period .

	

Live larvae were subsequently preserved for late r

microscopic analysis .

The 24 h dose itself may not have resulted in direct mortalities as

measured by the absence of a heartbeat, but rather may have induce d
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sublethal effects, with later mortality . The 1983 experiments wer e

designed to address both the constant introduction of sediment and as h

suspensions as well as the subsequent development and survivai of th e

larvae beyond the 24 h term of the experiment . These experiments wer e

conducted on 4 and 5 March with larvae hatched on the previous day .

Again, approximately 20 larvae were counted out and introduced to eac h

experimental vessel ; three replicates were run for each concentration of

the appropriate suspension . After 24 h of exposure in the dynamic dosin g

device, the stirrers and aeration keeping the ash or sediment i n

suspension were turned off and the sediment and ash allowed to settle .

Larvae were individually pipetted out and enumerated ; live larvae wer e

placed in 1-liter containers of clean seawater . Larval mortalities wer e

monitored over the subsequent nine days .

Feeding experiment s

Larval feeding trials were conducted with the prey source consistin g

of the rotifer Brachionus	 p1icatilis . Methods of mass culture of th e

rotifer followed Theilacker and McMaster (1971) . The culture require d

daily maintenance to provide Brachionus with adequate food for growth .

The marine phytoplanktonic alga, Isochrysis sp .

	

(Evart and Epifani o

1981), was cultured as food for the rotifers . Piexiglass tanks containin g

50 liters of algae at a density of approximately one million cells per m l

were innoculated with between 150,000 and 200,000 Brachionus . Aeration

and constant illumination were provided at a temperature of 18°C . Algae

were added as necessary to the increasing populations of rotifers .

Maximum densities of 100 rotifers per ml were attained before the culture s

began to decline . Mass cultures were maintained for approximately 30 day s

with minimal harvesting . The average size of Brachionus was .220 mm
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long and .125 mm wide, a size acceptable to first feeding herring larvae .

Rotifers were harvested for experiments by seining through a 65 P m

screen, washed in clean seawater, and placed in a larger vessel overnigh t

to acclimate to the 12 0 0 experimental temperature .

Two types of experiments were conducted with feeding larvae .

	

Th e

first was based upon experiments which minimized turbulence an d

disturbance to the larvae during feeding trials . First-feeding planktoni c

larvae are visual feeders with stereotyped behavioral sequences necessar y

for feeding <Hunter 1972 ; Blaxter and Staines 1971) .

	

Therefore th e

excessive

	

disturbance necessary for constant maintenance of

	

give n

suspensions might

	

inhibit feeding capabilities, resulting

	

in very low

feeding incidence even in controls <Browneil 1980) . The two types o f

experiments were therefore based upon periodic suspension of ash o r

sediment in the first set and constant maintenance of he suspensions i n

the second set . This latter set of experiments resulted in highe r

turbulence but maintained mean suspension concentrations within 10% of th e

nominal value ; thus lower feeding incidence was expected a priori .

The first set of experiments was conducted in 10-liter black circula r

tanks containing a total volume of 5 liters during the experiments .

Larvae were chosen at times when all had initiated feeding ; experiment s

were run on 24 and 25 March . On the night prior to the experiment, 100 t o

200 larvae were introduced into three liters of water in the experimenta l

vessel without food to allow evacuation of stomach contents .

	

Preliminar y

experiments demonstrated that this period of time would result

	

i n

evacuation of identifiable food items . The following morning, a n

additional 2 liters of suspended ash or sediment was added to make fina l

concentrations of 0, 500, 1000, 2000, 4000, and 8000 mg/l . The pre y

17



(Brachionus p1icatilis) was then added, followed by thorough stirrin g

with a paddle, to begin the experiments .

	

Food concentrations wer e

provided at 6 rotifers per ml, a density which would initiate a

well-defined feeding response in the larvae .

	

The duration of th e

experiment was two hours with resuspension of ash or sedimen t

concentrations at 15 min intervals . While this treatment kept turbulenc e

low, it also resulted in some loss of suspension concentration . Separat e

trials were conducted to determine the change in suspension concentratio n

at the surface, middle, and bottom of the experimental vessel at the en d

of the 15 min stirring interval . Monitoring the concentrations showe d

that the surface layer (top 0 .5 cm) densities decreased, averaging 32%

lower than the nominal concentrations . In the middle depth, there was a n

average 16% decrease in concentration, and at the

	

bottom of th e

containers, a 50% increase in concentration . A similar trend of change s

in the densities of food organisms was apparent, with increasing abundanc e

of food particles in the denser ash or sediment at the bottom of th e

experimental vessels at the end of the 15 min . At the end of the 2 h

feeding period, experiments were terminated by quickly seining th e

suspensions and larvae through a .335 mm nylon screen and immediatel y

preserving the larvae in 10% formalin to minimize potential regurgitation

of food . Although this handling may cause regurgitation in this species ,

it was consistent among treatments and therefore resulted in no bias i n

the results .

In the 11 and 13 May feeding experiments, the 3-chamber dosing devic e

described above (under dynamic egg dosing experiments) was used .

	

Thre e

replicates of about 20 larvae were tested per treatment, in which th e

suspensions were continually maintained . Again, larvae were preserved a t

the termination of experiments for later enumeration of feeding incidenc e
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and number of food particles . Preserved larvae were examined individuall y

under a dissecting microscope for presence of food . Discrete food

particles were enumerated and recorded for each larva . This could be don e

without dissection as the gut

	

is straight in herring larvae and th e

transparent gut wall makes observation possible .

Histological	 preparation and analysi s

After 24-h yolk-sac and larval feeding experiments, selected larva e

were preserved in 2% buffered glutaraldehyde in teleost saline . Preserved

larvae were randomly selected from these experiments and subsequentl y

processed for histological analysis . Larvae were dehydrated with alcohol ,

cleared

	

with

	

toluene, and embedded in

	

paraffin

	

(Paraplast-plus ,

56-57 0 C) . Within the limits of larval

	

body configuration

	

in th e

paraffin, larvae were embedded for sagittal and longitudinal sections .

Larvae were serially sectioned at a thickness of 6 ism on a rotar y

microtome . Sections were mounted on glass slides and stained with Harris '

hematoxylin and eosin-phloxine B . Sectioned specimens were examined under

a microscope for evidence of abrasion to the epidermis in both yolk-sa c

and feeding treatments .

Specimens from the yolk-sac larval experiments were also prepared fo r

scanning electron microscopy . Larvae were prepared for observatio n

following the procedures of Dobbs (1974) . Briefly, larvae were preserve d

in 2% glutaraldehyde, dehydrated through a graded series of alcohols, an d

put in two changes of liquid freon . Larvae were placed in small porou s

capsules and processed in a critical point dryer (Bomar) . They wer e

mounted on studs using double-stick tape and coated with a thin layer o f

gold-palladium in a vacuum evaporator . These specimens were examined o n

an AMR 1000 scanning electron microscope at the Oregon State Universit y
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Electron Microscopy Facility . Particular attention in these specimens wa s

paid to the epidermal tissues and the presence of ash or sediment-relate d

damage .
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RESULTS

Eqq experiment s

The static experiments were conducted in a manner similar to thos e

described by Rosenthal (1971) with horizontal slides ; in the curren t

experiments, however, the volume of water (and therefore the suspension )

in the experimental vessels was approximately four times that

	

i n

Rosenthals experiments . With a water column height of 15 cm, ful l

settlement of the volcanic ash or estuarine sediment would therefor e

result in 0, 7 .5, 15, 30, 60, and 120 mg/cm 2 , coating the eggs in th e

six different treatments . Since the slides were kept in the suspensio n

until hatching began, they remained in the suspension vessels for 216 h ,

when all were removed and slides placed individually in 1-liter beakers o f

clean, aerated seawater, where they were maintained until

	

288

	

h

post-fertilization .

	

Larvae

	

were

	

removed

	

daily,

	

enumerated,

	

an d

preserved . At the end of the experiment, many of the eggs remaine d

unhatched but apparently contained viable, developed larvae . The number s

of eggs per slide, dead eggs removed, normal and abnormal hatched larvae ,

and viable and non-viable embryos remaining at the termination of th e

experiment are shown in Table 2 . Since unfertilized eggs were removed i n

the first 24 h after development (when the experiments began), mortalit y

is calculated as the percentage of the sum of dead eggs removed, moribun d

or deformed larvae removed at hatching, and eggs which had not develope d

to the eyed larval stage by 288 h post-fertilization . This latte r

category, which showed no further development after transfer to clea n

water, represented the majority of the mortalities (Table 2) . Th e
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Table 2 : Herring egg experiments in the static egg incubation system
with doses of ash or sediment suspensions . Column legend s
are as follows : A, total number of eggs per slide ; B, dead
eggs removed during incubation ; C, larvae hatched normally ;
D, deformed, hatched larvae ; E, eggs unhatched at terminatio n
of experiment, but viable, developed ; F, non-viable, undeveloped
eggs at termination of experiment .

CONTROL

Replicate A B C D E F

1 342 6 66 4 193 73
2 250 8 70 13 107 52
3 231 4 150 9 68 0
4 365 3 139 21 202 0

A. Volcanic Ash
Concentration

(mg/1 )

500 1 313 2 86 10 144 7 1
500 2 293 3 102 4 118 6 6

1000 1 433 2 87 13 229 10 2
1000 2 344 3 119 14 133 7 5

2000 1 442 7 110 10 148 16 7
2000 2 302 4 70 3 130 9 5

4000 1 285 4 64 2 105 110
4000 2 379 14 41 3 137 184

8000 1 201 21 10 0 84 86
8000 2 228 26 3 1 38 16 0

B . Estuarine
Sediment

500 1 312 15 53 8 125 111
500 2 255 2 73 6 127 47

1000 1 356 6 30 8 60 25 2
1000 2 274 4 26 5 92 147

2000 1 443 56 5 3 33 346
2000 2 218 3 11 3 72 129

4000 1 377 43 0 0 15 319
4000 2 293 11 0 0 20 262

8000 1 276 39 0 0 0 237
8000 2 361 19 0 0 0 342
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mortality rates showed an increase with increasing sediment or ash

concentration {Table 3) . Percent mortalities were arcsin transformed an d

compared using a one-way analysis of variance with level of suspension a s

treatments . The estuarine sediment showed an increased effect as compare d

to the volcanic ash (Table 3, Figure 2) . In the ash trials,

	

the onl y

significantly higher mortalities were in the two highest levels o f

suspension, whereas significantly higher mortalities were apparent in al l

sediment treatments except that with 500 mg./l (LSD, P = .05) . The effect s

are apparently related to the smothering effects rather than abrasion .

Although the overlying water in all treatments was continuously aerated ,

the embryos in the higher suspension treatments developed grey, granular

yolk which is characteristic of embryos deprived of oxygen (Braum 1973) .

Had we analyzed the data in the manner of Kiorboe et al . {1981) ,

considering the percent survival of embryos with time, there would hav e

been no noticable effect except for slowed development, as the numbers of

dead eggs removed, although showing a trend of increase with increasin g

suspension concentration, were not great (Table 2) . Thus the lack of

development at the end of 12 days post-fertilization, and particularly a

lack of further development after removal from the suspensions, was take n

as a sign of mortality in these trials .

Due to the availability of the dynamic dosing devices, the lengths o f

the experiments, and the availability of spawning herring, the dynamic eg g

bioassays were run in two sets of trials . The first was conducted wit h

eggs spawned on 7 February (ash experiments) and the second with egg s

spawned on 21 March (sediment experiments) . Since these experiments wer e

not run concurrently with eggs from the same spawning groups of herring ,

individual controls were run concurrently with each experiment . Th e

numbers of eggs per slide, dead eggs removed during the experiments ,
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Table 3 : Mean mortality rates and percent deformed, hatched herrin g
larvae in the static dosing experiments . M = mean percent
mortality, D = mean percent deformed, SE = standard error .
In the mortality columns, an asterisk indicates significantl y
increased mortalities (ANOVA, Least significant difference ,
P < .05) .

Concentration

	

Volcanic Ash

	

Estuarine Sedimen t

M

	

SE

	

D

	

SE

	

M

	

SE

	

D

	

SE

0

	

16 .4

	

6 .04

	

11 .4

	

3 .20

	

16 .4

	

6 .04

	

11 .4

	

3 .20

500

	

25 .7

	

0 .80

	

7 .8

	

3 .85

	

32 .3

	

10 .7

	

11 .7

	

3 .44

1000

	

27 .0

	

0 .14

	

13 .4

	

1 .59

	

65 .8
*

	

8 .89

	

22 .9

	

3 .72

*
2000

	

37 .7

	

3 .93

	

6 .7

	

2 .40

	

76 .7

	

14 .75

	

43 .6

	

16 . 4

*

	

*
4000

	

46 .9

	

6 .15

	

5 .2

	

2 .10

	

94 .6

	

1 .42

*

	

*
8000

	

67 .6

	

14 .39

	

16 .7

	

16 .7

	

100

	

0
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Figure 2 : Effects of static estuarine sediment and volcanic ash suspension s

on the mortality of Pacific herring eggs . Experiments were terminated 28 8

hours post-fertilization . Bars indicate ± 1 S .E .
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normal hatched larvae, abnormal hatched larvae, developing, viable embryo s

in e gg s at the end of 288 h post-fertilization, and the non-viable ,

undeveloped embryos at the end of the experiment are presented in Table 4

for the volcanic ash experiments and in Table 5 for the estuarine sedimen t

experiments . Overall mortality levels in these experiments, particularl y

that contributed by the non-viable, undeveloped embryos (Column F, Table s

4,5) were much lower than those in the static experiments, where thi s

category represented the majority of mortality, particularly at highe r

concentrations of sediment or ash (Table 2) .

The mortality rates observed in the experiments were independent o f

the concentration of either volcanic ash or estuarine sediment (Table 6 ,

Figure 3), as were the deformed larvae as a percentage of those hatchin g

during the experiments . We interpret the difference between static an d

dynamic experiments as a function of delivery of oxygen to the developin g

embryos ; in the static dosing device, where the settled ash or sedimen t

could smother the eggs despite aeration of the overlying water, where the

water movement in the dynamic device, along with the constant aeratio n

from the airlift in the center of the experimental vessels (Figure 1) ,

prevented smothering of the embryos despite a fine coating of sediment or

ash . Although there was no apparent effect of sediment or ash

concentration on mortality rates, the mean mortality and percent deformed

larvae {Table 6, Figure 3) were significantly higher for the ash trials .

This may have been a function of the difference in females from which th e

eggs were taken .

	

The control eggs in the dynamic ash experiments showe d

mortality rates similar to the controls of the static experiments, whic h

were spawned at the same time . The effects of sediment, in general, wer e

greater than those of ash in the static trials (Figure 2) . The dynami c

sediment trials, however, showed earlier first hatching (192 hour s
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Table 4 : Dynamic herring egg experiments with ash suspensions . Column
legends are as follows : A, total number of eggs per slide ;
B, dead eggs removed during incubation ; C, larvae hatching
normally ; D, deformed, hatched larvae ; E, viable, develope d
embryos unhatched at termination of experiment ; F, non-viable
or undeveloped eggs at termination of experiment .

Concentration
(mg/1) Replicate A B C D E F

0 1 306 3 157 15 116 1 5
2 440 10 56 15 266 9 3
3 365 6 111 10 196 2 2
4 352 10 191 35 100 16

5. 00 1 392 20 64 22 251 35
2

	

' 370 9 88 16 193 64
3 418 16 60 15 225 102
4
*

1000 1 416 14 31 21 275 75
2 319 8 75 14 189 33
3 281 7 131 16 102 25
4 374 7 44 14 270 39

2000 1 247 1 178 10 39 19
2 401 8 162 15 188 28
3 279 8 197 11 62 1
4 317 6 182 10 108 11

4000 1 444 11 95 23 266 4 9
2 490 10 70 13 235 16 2
3 366 14 40 7 246 5 9
4 456 10 108 12 261 6 5

8000 1 368 7 73 21 214 53
2 388 4 147 11 180 46
3 400 7 178 26 176 13
4 392 9 134 16 176 57

slide damaged, sample los t
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Table 5 : Dynamic herring egg dosing experiments with estuarine sedimen t
suspensions . Column headings are as in the preceeding table .

Concentration
(mg/1) Replicate A C

0 1 137 1 97 11 25 3
2 99 5 88 3 3 0
3 126 3 101 6 15 1
4 120 3 104 2 11 0

500 1 121 25 68 15 8 5
2 122 3 74 5 40 0
3 110 4 94 2 10 0
4 132 5 99 4 24 0

1000 1 140 2 101 8 29 0
2 128 29 71 13 11 4
3 116 4 87 5 20 0
4 135 7 98 9 20 1

2000 1 107 1 83 4 18 1
2 121 30 66 7 13 5
3 136 4 71 12 48 1
4 122 3 81 2 34 2

4000 1 109 3 78 4 24 0
2 117 3 90 5 15 4
3 134 3 77 10 41 3
4 126

	

' 3 61 18 43 1

8000 1 126 6 76 4 40 0
2 137 3 56 8 70 0
3 132 7 81 5 39 0
4 123 2 73 4 43 1
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Table 6 : Mean mortality rates and percent deformed, hatched herring larvae
in the dynamic dosing device . M = mean percent mortality . D =
mean percent deformities of all hatched larvae, SE = standar d
error . Experimental values are not significantly differen t
from the mean

	

(ANOVA, LSD) .

Volcanic Ash

	

Estuarine Sedimen t

Concentration
(mg/1) M SE D SE M '

	

SE D SE

0 16 .3 3 .8 13 .4 3 .1 7 .8 1 .4 5 .3 1 . 8

500 25 .2 3 .6 20 .3 2 .9 14 .0 7 .7 7 .6 3 . 6

1000 19 .2 2 .4 22 .8 6 .5 15 .9 6 .8 9 .2 2 . 2

2000 10 .1 1 .3 6 .1 0 .8 14 .6 6 .9 7 .8 2 . 7

4000 24 .4 4 .5 15 .0 2 .0 11 .5 2 .3 11 .1 4 . 2

8000 17 .5 2 .4 13 .2 3 .3 7 .7 0 .7 7 .1 1 .$
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Figure 3 : Effects of dynamic, continuously maintained suspensions .of

estuarine sediment and volcanic ash on the mortality of Pacific herring

eggs . Experiments were terminated 288 hours post-fertilization . Bars

indicate ± 1 S .E .
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post-fertilization versus 216 hours in the ash trials) and a greate r

percentage hatching within the 288 h term of the experiment . We attribut e

this difference to different spawning groups, as the adults from which th e

eggs were spawned were collected some 6 weeks apart ; the first group ha d

spawned and probably departed from Yaquina Bay . Different spawning group s

of herring may have different egg characteristics (Blaxter and Hempe l

1966) .

Yolk-sac larvae experiment s

The initial yolk-sac larval experiments with the 1-liter container s

and 2-hour suspension replacement time resulted in mortality rates whic h

were variable but unrelated to the concentration of the suspensions used .

For the trials with volcanic ash, the mean mortality over al l

concentrations (including controls) was 5 .40% (standard deviation 5 .72% ,

n= 12) ; the corresponding value for estuarine sediment was 5 .28% (s=

8 .15%, n= 12) . We considered that the criterion for survival after 24 h ,

which was based upon the presence of heartbeat alone, was insufficient t o

determine the possible effects of the suspensions, since subjectively ,

larvae appeared in worse condition in the higher concentrations of ash .

This assessment was based upon condition of finfold and possible epiderma l

damage (see discussion of histological assessment, below) .

The 1983 experiments were designed to assess the effects of a 24 h

exposure by monitoring survival of the remaining larvae for nine day s

following the tests . The surviving larvae are enumerated in Table 7 for

volcanic ash and Table 8 for estuarine sediment . Although the mea n

mortalities are variable with time, there is a trend of decreasin g

survival with time in increasing volcanic ash concentration

	

(Figure 4) .

These data fall into roughly two groups, with lower mortality observed i n
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Table 7 : Effects of volcanic ash suspensions on herring yolk-sac larvae .
Values presented are the percent of initial larvae survivin g
with time . Larvae were exposed to continual suspensions o f
ash from time zero to 24 hours ; the value at day one represent s
survival at the end of the 24 h exposure . Other values were
determined on successive days with larvae maintained in clean
water.

Time (days )

Concentratio n
(mg/l) Replicate 1 2 3 4 5 6 7 10

0 1 100 85 65 50 45 40 35 35
2 100 100 95 .5 40 .9 40 .9 31 .8 31 .8 31 . 8
3 95 95 80 60 55 45 45 40

x 98 .3 93 .3 80 .2 50 .3 47 .0 38 .9 37 .3 35 . 6
s 2 .9 7 .6 15 .3 9 .6 7 .3 6 .7 6 .9 4 . 1

500 1 100 76 .2 66 .7 42 .9 23 .9 19 .0 19 .0 19 . 0
2 94 .7 89 .5 73 .7 57 .9 47 .4 42 .1 42 .1 42 . 1
3 100 89 .5 73 .7 52 .6 36 .8 21 .1 21 .1 10 . 5

x 98 .2 85 .1 71 .4 51 .1 36 .0 27 .4 27 .4 23 . 9
s 3.1 7 .7 4 .0 7 .6 11 .8 12 .8 12 .8 16 . 4

1000 1 57 .1 28 .6 4 .8 0 0 0 0 0
2 85 .7 76 .2 71 .4 61 .9 57 .1 52 .4 47 .6 47 . 6
3 70 35 15 0 0 0 0 0

x 70 .9 46 .6 30 .4 20 .6 19 .0 17 .5 15 .9 15 . 9
s 14 .3 25 .8 35 .9 35 .7 33 .0 30 .3 27 .5 27 . 5

2000 1 75 35 25 0 0 0 0 0
2 71 .4 47 .6 28 .6 9 .5 0 0 0 0
3 50 40 20 5 0 0 0 0

x 65 .5 40 .9 24 .5 4 .8 0 0 0 0
s 13 .5 6 .3 4 .3 4 . 8

4000 1 65 60 40 25 15 15 10 10
2 100 94 .4 83 .3 55 .6 50 38 .9 38 .9 38 . 9
3 90 .5 85 .7 71 .4 61 .9 57 .1 57 .1 57 .1 57 . 1

x 85 .2 80 .0 64 .9 47 .5 40 .7 37 .0 35 .3 35 . 3
s 18 .1 17 .9 22 .4 19 .7 22 .5 21 .1 23 .8 23 . 8

8000 1 28 .6 0 0 0 0 0 0 0
2 68 .8 50 43 .8 31 .3 25 18 .8 18 .8 18 . 8
3 54 .5 40 .9 40 .9 22 .7 22 .7 22 .7 22 .7 13 . 6

x 50 .6 30 .3 28 .2 18 .0 15 .9 13 .8 13 .8 10 . 8
s 20 .4 26 .6 24 .5 16 .2 13 .8 12 .1 12 .1 9 .7
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Table 8 : Effects of estuarine sediment suspensions on herring yolk-sa c
larvae . Values presented are the percent of initial larvae
surviving with time . Larvae were exposed to continual suspension s
of ash from time zero to 24 hours . The value at day one represents •
survival at the end of the 24 h exposure . Other values represen t
survival on successive days with larvae maintained in clean water .

Time (days )

Concentration
(mg/l) Replicate 1 2 3 4 5 6 7 10

0 1 94 .7 78 .9 73 .7 52 .6 47 .4 42 .1 36 .8 31 . 6
2 100 100 88 .9 66 .7 55 .6 44 .4 44 .4 22 . 2
3 95 .2 71 .4 38 .1 23 .8 23 .8 19 .0 19 .0 19 . 0

x 96 .6 83 .4 66 .9 47 .7 42 .3 35 .2 33 .4 24 . 3
s 2 .9 14 .8 26 .1 21 .9 16 .5 14 .0 13 .0 6 . 5

500 1 83 .3 77 .8 77 .8 55 .6 44 .4 38 .9 27 .8 22 . 2
2 100 94 .7 73 .7 52 .6 31 .6 21 .1 21 .1 15 . 8
3 80 80 45 25 25 25 25 20

x 87 .8 84 .2 65 .5 44 .4 33 .7 28 .3 24 .6 19 . 3
s 10 .7 9 .2 17 .9 16 .9 9 .9 9 .4 3 .4 3 . 3

1000 1 100 100 70 40 30 10 10 10
2 95 95 65 50 45 45 45 40
3 100 100 93 .3 53 .3 53 .3 46 .7 46 .7 40 . 0

x 98 .3 98 .3 76 .1 47 .8 42 .8 33 .9 33 .9 30 . 0
x 2 .9 2 .9 15 .1 6 .9 11 .8 20 .7 20 .7 17 . 3

2000 1 83 .3 83 .3 61 .1 38 .9 33 .3 11 .1 11 .1 11 . 1
2 88 .9 83 .3 61 .1 55 .6 50 50 50 5 0
3 - 100 100 80 70 70 65 65 6 5

x 90 .7 88 .9 67 .4 54 .8 51 .1 42 42 4 2
s 8 .5 9 .6 10 .9 15 .6 18 .4 27 .8 27 .8 27 . 8

4000 1 90 85 75 60 60 60 60 5 5
2 90 80 65 40 40 40 40 3 5
3 95 85 45 30 25 25 25 20

x 91 .7 83 .3 61 .7 43 .3 41 .7 41 .7 41 .7 36 . 7
s 2 .9 2 .9 15 .3 15 .3 17 .6 17 .6 17 .6 17 . 6

8000 1 73 .7 73 .7 15 .8 15 .8 15 .8 15 .8 15 .8 15 . 8
2 77 .3 68 .2 63 .6 40 .9 36 .4 36 .4 36 .4 31 . 8
3 44 .4 38 .9 16 .7 16 .7 5 .6 5 .6 5 .6 5 . 6

x 65 .1 60 .3 32 .0 24 .5 19 .3 19 .3 19 .3 17 . 7
s 18 .0 18 .7 27 .3 14 .2 15 .7 15 .7 15 .7 13 .2
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YOLK-SAC LARVAE
ASH EFFECTS CLUPEA HARENGUS

100
k-* CONTROL
■---I 500 MG/L
4-4 1020 MG/L
k--* 2000 MG/L
0-0 4202 MG/LL,
*--Y 6000 MG/L80 -

60 -

42

20 -

TIME (HOURS)

0

Figure 4 : Effects of 24 h exposure to dynamic, continuously maintaine d

suspensions of volcanic ash upon the subsequent survival of yolk-sac larvae

of Pacific herring . Larvae were exposed to suspensions for the first 24 h ,

transferred to clean seawater, and survival monitored each 24 hours .
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concentrations of 0, 500, and 4000 mg/l, and higher mortalities observe d

in 1000, 2000, and 8000 mg/1 . There is thus a trend of decreased surviva l

with increasing ash concentration with the exception of the 4000 mg/ i

experiments . Concentrations of estuarine sediment from 500 to 4000 mg/ i

show no clear effect on survival (Figure 5) . All of these treatments wer e

characterized by patterns of survival with time similar to the controls ,

with the exception of the 8000 mg/1 concentration, which showed a surviva l

curve similar to those with lower survival under suspensions of volcani c

ash . Overall, the survival of yolk-sac larvae with time in suspensions o f

volcanic ash is significantly less than in suspensions of estuarin e

sediment (P< .001, 4ilcoxon matched-pairs signed rank test) . This resul t

was not observed in the periodically resuspended ash and sediment trials .

The observed differences when larvae were kept for extended periods o f

time may be due to sublethal, abrasive effects of volcanic ash .

Larval herring feeding experiment s

The herring larvae used in all experiments readily fed upon the prey ,

the rotifer Brachionus	 plicatilis .

	

The first set of experiments ,

conducted in the larger experimental containers, was semi-static, wit h

stirring every 15 min to resuspend the volcanic ash or sediment . A tota l

of 1502 larvae were examined from the volcanic ash suspension feedin g

experiments and 1272 from the estuarine sediment feeding experiments, wit h

an overall average of 69% and 74%, respectively, of the larvae feedin g

during the 2 h duration of the experiment . The numbers of larvae in eac h

experiment which had acrd had not fed, ttie numbers of Bras=h i onu s

consumed, and the average food items consumed per larva are shown in Tabl e

9 for both sediment and volcanic ash . In both sets of experiments, th e

percentage of larvae feeding increased dramatically from the contro l
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I

	

I

	

1

	

1

	

I

	

1

	

I

	

I

	

I

0

	

22

	

40

	

62

	

82

	

100

	

120

	

142

	

162

TIME (HOURS )

Figure 5 : Effects of 24 h exposure to dynamic, continuously maintained

suspensions of estuarine sediment upon the subsequent survival of yolk-sac

larvae of Pacific herring . Larvae were exposed to suspensions for the firs t

24 h, transferred to clean seawater, and survival monitored each 24 hours .
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Table 9 : Feeding success in herring larvae exposed to suspension o f
volcanic ash or estuarine sediments resuspended at 15 mi n
intervals . The duration of the feeding trials was 2 hr .
Prey in these experiments were the rotifer, Brachionus
plicatilis .

A .

	

Volcanic Ash
No .

larvae
Feeding
larvae

Non-feeding
larvae

Total no .
prey

Prey per
larva

Prey per
feeding larva eConcentration

	

Replicate
(mg/1 )

0

	

1 87 56 31 453 5 .2 8 . 1
2 123 53 70 593 4 .8 11 . 2

500

	

1 119 103 16 1761 14 .8 17 . 1
2 76 66 10 1059 13 .9 16 . 0

1000

	

1 131 120 11 1693 12 .9 14 . 1
2 167 139 28 2180 13 .1 15 . 7

2000

	

1 130 93 37 110]. 7 .8 10 . 9
2 143 115 28 1601 11 .2 13 . 9

4000

	

1 106 63 43 650 6 .1 10 . 3
2 154 105 49 1242 8 .1 11 . 8

8000

	

1 128 55 73 452 3 .5 8 . 2
2 138 62 76 629 4 .6 10 . 1

B .

	

Estuarine Sediment

91 40 51 287 3 .2 7 . 2

Concentratio n
(mg/1)

Replicate

10
2 64 14 50 98 1 .5 7 . 0

500 1 93 87 6 1406 15 .1 16 . 2
2 90 66 24 1023 11 .4 15 . 5

1000 1 150 143 7 2175 14 .5 15 . 2
2 72 58 14 706 9 .8 12 . 2

2000 1 110 94 16 1237 11 .2 13 . 2
2 137 115 22 1460 10 .7 12 . 7

4000 1 133 102 21 1083 8 .1 10 . 5
2 94 71 23 801 8 .5 11 . 3

8000 1 124 85 39 675 5 .4 7 . 9
2 114 66 48 562 4 .9 8 .5
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experiments to 500 and 1000 mg/1 before showing a gradual decline wit h

successive increases in sediment or ash concentrations to near that of th e

controls at 8000 mg/l (Figure 6) . Although there was a general trend o f

increased feeding incidence in larvae in sediment,

	

it does not diffe r

significantly

	

from

	

that

	

in volcanic ash

	

(Wilcoxon

	

matched-pair s

signed-ranks test, P< .05) . A similar trend is seen in the mean number of

prey consumed per feeding larva .

	

In the ash suspensions, control larva e

each consumed approximately 10 Brachionus whereas larvae at 500 mg/ 1

showed the maximum number at nearly 17 . Values declined until those a t

8000 mg/l were near those of the controls (Figure 7) . A similar pattern i s

seen for sediment suspensions (Figure 8) . The effects of sediment and as h

on the larval feeding response are not significantly different (P< .05) .

It is apparent from these semi-static feeding trials that bot h

sediment and volcanic ash stimulate feeding incidence and activity as

compared to control fish . In these trials, the settlement of th e

suspended particles between stirring lowered the effective suspension

concentration in the top one-half cm by 32:, in the middle of the tank by

161, while the bottom increased by some 501 . Swenson and Matson (1976 )

noted that larval lake herring swim up in the water column in response t o

suspended sediment . This may have occurred in these experiments as well ,

resulting in increased visibility of prey organisms in the lowere d

suspensions . The lower rates of feeding in the controls, however, are no t

explained by the tank or experimental design . We have noted that herrin g

larvae in glass-walled aquaria will feed even less than in black walle d

enclosures, a point noted with several other species of larval fishes b y

other investigators as well . If the black walled containers promot e

feeding by increasing the visual contrast between prey and background, i t

is possible that the suspension of ash or sediment in the water resulte d
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SUSPENSION EFFECTS ON FEEDING SUCCES S
STATIC BIOASSAY CLUPEA HARENGU S

100 _

90 _

4--a ASH
'--- SEDIMENT

2000 3000 4000 5000

~

	

r

6000 7000 8000

CONCENTRATION CMG/L)

Figure 6 : Effects of periodically suspended estuarine sediment and volcani c

ash upon the feeding success (percent of larvae feeding) of Pacific herring

larvae . Larvae were allowed to evacuate overnight and were allowed a 2-h

feeding period with 6 Brachionus plicatilis per ml in the suspensions .

Solutions were uniformly resuspended by stirring every 15 min during th e

feeding period .
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SUSPENDED ASH ; EFFECT ON FEEDING SUCCESS
STATIC BIOASSAY
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Figure 7 : Effects of periodically suspended volcanic ash upon the feedin g

success (prey consumed per feeding larva) of larval Pacific herring .
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SUSPENDED SEDIMENT ; EFFECT ON FEEDING SUCCESS
STATIC BIOASSAY

	

CLUPEA HARENGUS

Figure 8 : Effects of periodically suspended estuarine sediment upon th e

feeding success (prey consumed per feeding larva) of larval Pacific herring .
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in an increased visual contrast at closer distances, resulting in greate r

availability of food organisms to the larvae .

The dynamic feeding experiments were conducted in the three-chambere d

dynamic dosing device, where suspensions remained within 10% of th e

nominal value during the course of the experiment . These experiments wer e

run in triplicate at each suspension concentration with data analysi s

similar to the semi-static experiments .

	

The container size

	

in thi s

experiment was 1 liter as compared to the five liter volume of h e

semi-static experiment . Feeding incidence was lower, averaging 31% for

ash and 23% for sediment over all concentrations (Tables 10, 11) . As a

function of concentration, the curves of feeding incidence for ash an d

sediment were not significantly different (P< .05, Wilcoxon matched-pair s

signed-rank test) but showed a different trend from the semi-stati c

experiments (Figure 9) . The percentage of larvae feeding again increase d

as compared to the controls, but then decreased with increasing suspensio n

concentration, reaching nearly zero at 4000 mg/i for sediment . In these

experiments the variability in the numbers of Brachionus consumed pe r

larva within experiments as well as within replicates was high (Figure s

10, 11), suggesting significant variability among individuals .

The differences between ash and sediment were therefore no t

significant, even though the means show a significant trend of reduce d

feeding with increasing concentration which is more pronounced in sedimen t

than in ash suspensions . Again, the mean number of Brachionus consumed

increased as compared to the controls, to a maximum at 1000 mg./1 in th e

ash experiments (Figure 10) and at 500 mg/1

	

in the sediment experiment s

(Figure 11) . In the sediment experiments,

	

the value at 1000 mg/l wa s

nearly zero, as were all higher concentrations .

	

Equivalent values i n
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Table 10 : Feeding success in herring larvae exposed to continuous
suspensions of volcanic ash in the dynamic dosing device .
Feeding trials were 2 h in duration. Prey was the rotifer ,
Brachionus plicatilis .

Concentration
(mg/1)

Replicate
No .

larvae
Feeding
larvae

Non-feeding
larvae

Total
No . prey

Prey per
larva

Prey per
feeding
larva

0 1 20 7 13 155 7 .8 22 . 1
2 18 5 13 53 2 .9 10 . 6
3 20 10 10 69 3 .5 6 . 9

500 1 17 14 3 345 20 .3 24 . 6
2 20 8 12 70 3 .5 8 . 8
3 19 11 8 178 9 .4 16 . 2

1000 1 22 16 6 345 15 .7 21 . 6
2 21 11 10 289 13 .8 26 . 3
3 19 2 17 11 .58 5 . 5

2000 1 17 0 17 0 0 0
2 20 3 17 4 0 .2 1 . 3
3 20 7 13 134 6 .7 19 . 1

4000 1 18 2 16 3 .17 1 . 5
2 20 4 6 14 .7 3 . 5
3 25 8 17 27 1 .1 3 . 4

8000 *1 17 0 17 0 0 0
2 18 1 17 1 0 1
3 16 0 16 0 0 0
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Table 11 : Feeding success in herring larvae exposed to continua l
suspensions of estuarine sediment in the dynamic dosin g
device . Feeding trials were 2 h in duration . Prey was
the rotifer, Brachionus plicatilis .

Concentratio n
(mg/1)

Replicate

	

No .
larvae

Feeding
larvae

Non-feeding
larvae

Total
no . prey

Prey pe r
larva

Prey per
feeding
larva

0 1 25 6 19 66 2 .6 11 . 0
2 20 10 10 131 6 .6 13 . 1
3 25 11 14 162 6 .9 14 . 7

500 1 22 14 8 358 16 .3 25 . 6
2 22 11 11 382 17 .4 34 . 7
3 22 17 5 432 19 .6 25 . 4

1000 1 19 2 17 3 .2 1 . 5
2 19 4 15 16 .8 4 . 0
3 19 3 16 10 .5 3 . 3

2000 1 13 3 10 10 .8 3 . 3
2 25 3 22 6 .2 2 . 0
3 23 0 23 0 0 0

4000 1 22 0 22 0 0 0
2 22 0 22 0 0 0
3 24 0 24 0 0 0

8000 1

	

• 23 1 22 2 .1 2
2 24 1 23 1 0 1
3 16 1 15 1 .1 1

44



SUSPENSION EFFECTS ON FEEDING SUCCESS
DYNAMIC BIOASSAY CLUPEA HARENGUS

A-"I ASH
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CONCENTRATION CMG/L)

Figure 9 : Effects of continuous suspensions of estuarine sediment an d

volcanic ash upon the feeding success of Pacific herring larvae . Larvae

were allowed to evacuate overnight and were allowed a 2-h feeding perio d

with 6 Brachionus plicatilis per ml in the suspensions . Suspensions were

maintained in the dynamic dosing device .
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SUSPENDED ASH; EFFECT ON FEEDING SUCCESS
DYNAMIC BIOASSAY
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Figure 10 : Effects of continuously suspended volcanic ash on the feeding

success (prey consumed per feeding larva) of larval Pacific herring .
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SUSPENDED SEDIMENT ; EFFECT ON FEEDING SUCCESS
DYNAMIC BIOASSAY
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Figure 11 : Effects of continuously suspended estuarine sediment upon th e

feeding success (prey consumed per feeding larva) of larval Pacific herring .
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volcanic ash were not reached until a concentration of 8000 mg/1 .

The differences between the semi-static and dynamic feeding trials ,

although conducted in different tanks, are apparently due to th e

decreasing concentrations of sediment or ash in the upper levels of th e

semi-static tank in the intervals between stirring ., In the dynami c

trials, despite a turnover of 25% of the water in the experimental vesse l

per minute, larvae were clearly able to feed in lower concentrations o f

both ash and sediment (FIgures 10, experiment) . While feeding incidenc e

was generally lower-, the mean number of prey consumed per feeding larv a

was greater in the dynamic experiments for the controls and concentration s

of 500, 1000, and 2000 mg/1 in the ash suspensions (Figures 7, 10) bu t

only in the controls and 500 mg/1 in the sediment suspensions (Figures 8 ,

11) . We thus interpret the continued feeding by the larvae in th e

semi-static experiments at suspension concentrations greater than 200 0

mg./1 in ash and greater than 1000 mg/l in sediment to be a result of th e

decreasing concentration in the surface of the tank and possibly th e

behavioral movement of the larvae to this level as well .

In the feeding trials, sediment and ash were taken into the gut i n

limited amounts . From the dynamic feeding experiments, groups of 2 0

larvae from each concentration were examined for presence or absence of

ash or sediment in the intestine and also qualitatively for amount .

Generally, with increased concentration of the suspension (beyond th e

control), the incidence of particles in the gut decreased (Table 12) .

Only in the highest concentration (8000 mg/l) of both ash and sediment ,

were some individuals present with large amounts in the gut . Generally ,

only traces of ash or sediment were apparent . The observation of th e

greatest incidence at the lowest suspension concentration would suppor t
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Table 12 : Presence of ash or sediment in guts of larval herring from the
feeding trials conducted 11 and 13 May, 1982 . From each
concentration, 20 larvae were examined .

% incidence in larval guts
Suspension

Concentration (mg/1) Volcanic Ash Estuarine Sediment

0 0 0

500 95% 100 %

1000 70% 80 %

2000 50% 40 %

4000 30% 50 %

8000 25% 50%
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that ingestion was associated with feeding, since feeding incidence wa s

also highest at these concentrations (Figures 6, 9) .

Analysis of larval	 epidermis The major emphasis of the histologica l

analysis was upon epidermal surfaces of the yolk-sac larvae . In th e

initial yolk-sac experiments, where the presence of a heartbeat was use d

as a criterion of survival, no real differences in mortality were apparen t

between controls and the suspensions of ash and sediment, despite a n

apparent difference in the subjective condition of the larvae based upo n

epidermal "roughness"( Figures 12A,B) . To examine the abrasive effects o f

sediment and ash upon the epidermis, we histologically examined th e

epidermis of yolk-sac larvae under the light and scanning electron

microscope . Live larvae were chosen from the experiments, embedded i n

paraffin, and sectioned in both sagittal and longitudinal orientation .

Two areas were chosen for detailed analysis of epidermal structure . Th e

first was the epidermis on the ventral surface of the yolksac, the secon d

the epidermis on the dorsal surface in the region of the nape, jus t

posterior to the head . In serial sections from each larvae, four section s

from the areas of interest were randomly chosen and examined at 100 0

magnifications . Each of these sections were graded on a qualitative basi s

from 1 (good, characteristic of normal fish ) to 3 ( poor, characterizing

severely abraded epidermis) . The criteria for these assessments is as

follows :

1. good ; epidermis smooth at surface, characterized by some smal l

protrusions . Occasional eosinophilic vessicles, particularly in th e

ventral region . No separation of epidermis from underlying tissues

or shrinkage apparent (Figure 12D) .

2. intermediate ; epidermis smooth to slightly abraded, with thin ,
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irregular eosinophilic processes differing from the protrusion s

noted above . Some separation of epidermis from underlying tissues .

3 . poor ; external surface of epidermis rough, with apparent abrasio n

and epidermal puncturing . Frequent separation of epidermis from

underlying tissues (Figure 12E,F) .

In the consideration of these histological sections, care was take n

to ignore damage from histological procedures, which was present as

section fracturing ; this was particularly apparent on the yolk-sa c

epidermis, where the brittle yolk is difficult to section smoothly . Afte r

the four sections were examined from each specimen and the conditio n

assigned, a mean value for each area was determined . The mean of these

mean values for a number of specimens is presented as the value for a

given concentration of suspensions . Overall, about 65% of the score s

within sections agreed . Mean scores showed a general trend of increas e

with increasing ash or sediment concentration in both dorsal and ventra l

epidermal areas (Table 13) . In the controls, the mean score was bette r

for the dorsal than the ventral (yolk-sac) region .

	

Within areas an d

treatments, the effects of concentration were determined with one-wa y

analysis of variance . For the ventral epidermis, there was no effect of

increasing sediment concentration on the epidermal structure, whereas a n

effect was noted in volcanic ash, with mean scores at suspensions greater

than 2000 mg_ ./l significantly greater than those for the controls . In th e

dorsal nape region, effects were noted for both estuarine sediment an d

volcanic ash . The controls were significantly different from the sedimen t

concentrations of 4000 and 8000 mg/l, and from all ash concentrations o f

1000 mg/l and greater (Table 13) . Since the same controls were considere d

for both ash and sediment, the abrasive effects of ash appear to b e
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Figure 12 : Photomicrographs of the epidermis and finfold of yolksac larvae

from the experiments conducted 19 March 1982 . A. Caudal region from a

larva in the control . The finfold is generally intact with the exception

of minor damage to the most posterior region. B . Caudal region from a

larva exposed to the 2000 mg/1 ash suspension . Note the irregular natur e

of the finfold and the abrasion to the margin, particularly on the cauda l

finfold . C . Head region of a larva from the 1000 mg/1 yolk-sac experiment .

Note the sediment particles in the gullet ; the gut in this yolk-sac larv a

is not yet open (720 x) . D . Epidermis in the. yolk-sac region of a larv a

exposed to 2000 mg/1 sediment . The epidermis is smooth and uniform and wa s

graded as condition 1 (cross section, 3500 x) . E . Epidermis in the yolk-

sac region of a larva exposed to 4000 mg/1 sediment . The epidermis was

graded as condition 3 (poor) . Note the deterioration and rough surfac e

(cross section, 2200 x) . F . Epidermis from the yolk-sac region of a larv a

exposed to 8000 mg/1 volcanic ash . The epidermis was graded as conditio n

3 (poor) ; it is discontinuous and abraded (longitudinal section, 2200 x) .

e, epidermis ; y, yolk mass ; s, sediment particles ; f, finfold ; r, retina .
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Table 13 . Histological assessment of epidermal structure in larval herrin g
from the 13 March yolk-sac experiments . Four sections of epidermis
on each specimen were graded on a subjective scale of 1 (good) t o
3 (poor) for dorsal surface and ventral yolk-sac regions . Values
in the table represent the mean value in each treatment . Experiment s
were run concurrently and controls were combined . Asterisks indicat e
treatment means significantly different from the appropriate control s
(ANOVA, LSD, p < .05) . N, number of specimens ; h, mean ranking ;

Estuarine Sedimen t

S, standard deviation .

Volcanic Ash

Concentration
(mg/1)

N X S N X S

A. Ventral yolk-sac 0 10 1 .35 0 .36 10 1 .35 0 .36
region

500 5 1 .75 0 .56 4 1 .25 0 .20

1000 5 1 .90 0 .52 3 1 .33 0 .14
*

2000 6 2 .00 0 .72 3 1 .42 0 .29
*

4000 6 1 .96 0 .56 5 1 .65 0 .6 5

8000 6 2 .03
*

0 .49 4 1 .63 0 .32

B . Dorsal nape region 0 9 1 .11 0 .13 9 1 .11 0 .13

500 3 1 .25 0 .25 4 1 .13 0 .14

1000 5 1 .65 0 .29 3 1 .33 0 .14
*

2000 3 1 .83 0 .29 3 1 .25 0 .25

4000 6 1 .96
*

0 .19 5 1 .45
*

0 .21
* *

8000 5 1 .87 0 .31 3 1 .75 0 .25
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greater than those of sediment .

Observations with the scanning electron microscope are in genera l

concurrence with the histological observations . Observation of th e

lateral epidermis of yolk-sac larvae shows structure typical of developin g

teleost epidermis (Roberts et al .

	

1973), with distinct cellular border s

and microridges (Figure 13A) .

	

Small,

	

irregular particles, possibl y

associated with the processing, are irregularly apparent . The margins of

the finfold are normal .

	

Specimens examined from either ash or sedimen t

suspensions, however,

	

showed moderate to abundant ash or sedimen t

particles on the epidermis . Specific abrasion is apparent in the as h

experiments, which results in tear- and puncture-type damage rather than a

smooth overall abrasion . Puncture wounds at 1000 mg/l ash were commo n

over the body surface, ranging in size from about 1 to 5 Pm (Figur e

13B) . The finfold margins are rough as compared to the controls . Similar

finfold damage is seen on most larvae in ash suspensions . In larvae from

8000 mg/l, puncture wounds and ash particles are apparent on the latera l

epidermis, with possibly embedded ash particles (Figure 13C) . In th e

higher ash concentrations, the ash particles in many cases comprise a fin e

coating, particularly on the head region . Groups of particles seem to be

maintained in some kind of coating, possibly mucous .

In the specimens from estuarine sediment experiments, the

puncture-type epidermal damage is not apparent as in the ash experiments .

The epidermis generally appears similar to that of the controls with th e

ex-ce-ptton of 1-ess list-i-nct microrid-ges and rncreasing abund nc- e

particles of sediment on the larvae in the higher concentrations . Again ,

the agglutinated groups of sediment particles are most commonly found o n

the head region (Figure 12D) . The finfold margins were not roughened a s

in the ash trials .
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Figure 13 : Scanning electron micrographs ofthe epidermis from yolk-sac

larvae in the 19 March 1982 experiments . A. control larva . Normal epidermi s

on the lateral body surface near mid-body . Microridges and cell boundarie s

are distinct . B . Lateral body surface epidermis from a larva exposed t o

1000 mg/1 volcanic ash . Note the small puncture and tear-type abrasions

and the particles on the body surface . C . ' Lateral body surface epidermi s

from a larva exposed to 8000 mg/1 ash . The small tears are apparent, as are

ash particles . D . Head region of a larva exposed to 8000 mg/l estuarin e

sediment . Note the fine layer of sediment coating the head region . a ,

abrasive damage to epidermis ; m, epidermal microridges ; e, eye ; s, sediment

particles .
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DISCUSSION

Survival of fishes through early life history stages is an importan t

aspect of population dynamics and should be studied when advers e

environmental impacts may affect it . Oviparous fishes which produce larg e

numbers of small eggs obviously suffer high mortality rates in early lif e

history stages . That these mortalities occur at discrete periods withi n

the larval phase has given rise to the concept of the critical period ;

such a "critical phase" may be defined as that stage wherein year-clas s

strength is largely determined (Gulland 1965) .

	

The major sources of

mortality for these early larvae are starvation and predation (Hunte r

1976,

	

1981) .

	

Environmental pollution may clearly

	

increase mortalitie s

during these early life history stages through either direct effect s

(Longwell and Hughes 1981 ; Hunter et al .

	

1978) or sublethal effect s

(Rosenthal and Alderdice 1976) .

The general effects of suspended solids upon the survival of fis h

eggs and larvae have received much more attention

	

in

	

freshwate r

environments than in estuarine and marine systems . A large number of

studies have addressed the effects of siltation on the eggs of salmonids ,

particularly in response to logging activities (see Alderdice et al .

1977) . Further, the effects of sediment on reproduction and early lif e

stages of warmwater fishes have recently been reviewed by Muncy et al .

(1979) . A variety of effects, dependent upon species and type of sediment ,

is apparent . For eggs, the most consistent effect appears to be th e

reduction in respiratory gas exchange . Normal development and growth o f

fish embryos and larvae requires high levels of dissolved oxygen (Carlson
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and Seifert 1974 ; Braum 1973) ; in the egg stage, sediment may serve t o

reduce the diffusion rate of respiratory gases across the chorion of th e

egg (Rosenthal 197i) . The burial of eggs by sediment may result in eithe r

retarded, abnormal development or mortalities .

Egg as well as larval stages of fishes are characterized b y

heightened sensitivity to stress and pollution as compared to later lif e

history stages . Rosenthal and Alderdice (1976) have reviewed th e

sublethal effects of pollutants and physical factors upon eggs and larva e

of fishes . Within the egg, developing embryos are subject to a wid e

variety of pollutants, including elevated temperature, salinity, heav y

metals,

	

ultraviolet radiation, lowered dissolved gases, and

	

othe r

factors . The embryonic stage, moreover, may be more sensitive at selecte d

critical periods of development ('Vladimirov 1975), when cytological

	

or

genetic damage may occur .

The effects of increased sediment load and suspended particulates o n

the egg stages of estuarine fish eggs have been unclear and have varie d

with species and sediment type . Auld and Schubel (1978) used sedimen t

concentrations from 2 to 1000 mg/1 and observed varying responses fro m

different species . Eggs of several species hatched normally under al l

tested concentrations, whereas others showed reduced hatching success .

Rosenthal (1971) and Kiorboe et al . (1981) considered the effects of "re d

mud" and estuarine sediment, respectively, upon eggs of the Atlanti c

herring,Clupea	 harengus harengus . Rosenthal

	

(1971) conducted two type s

of experiments .

	

In the first, slides were held vertically so tha t

settling sediment did not smother them ; here, mortality ranged from 11 %

(control) to 55% (about 6000 mg/1) .

	

In the second set of experiments ,

slides were arranged horizontally on the bottoms of the suspension
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containers so that greater settlement occurred on the eggs ; here ,

mortality increased from 13 .5% (controls) to 100% (7500 mg/l) . Kiorboe e t

al . (1981) used concentrations of suspended sediments from 5-500 mg/l an d

observed no effect of sediment on hatching success and development ,

concluding that no adverse effects of mining or dredging near herrin g

spawning grounds would occur .

In the present study, our experiments with the eggs of the Pacifi c

herring, Clupea harenqus pallasi, showed clear effects depending upo n

the type of experiment . In static systems, where the suspended solid s

were able to settle upon the eggs on horizontally oriented slides ,

mortalities showed a clear relationship with suspension concentratio n

(Tables 2,3 ; Figure 2) . These results relate to those of Rosenthal (1971 )

with horizontal slides . The doses used by Kiorboe et al . (1981) ,

however, were below the range used in the current experiments . Had we

limited our range as he did, our results would be substantially the same .

Our results are consistent with smothering and lack of dissolved oxygen a s

the major causes of mortalities in the higher suspensions ; the lack o f

development, grey, particulate yolk, and cessation of growth of th e

embryos are very similar to the results of 8raum (1973), who noted th e

same characteristics in developing embryos of Atlantic herring deprived o f

oxygen . As distinct from the study of Rosenthal (1971), however, th e

present study did not observe an increase in the frequency of deformed ,

hatched larvae with increasing concentration .

The dynamic experiments in the present study would relate mos t

closely to those of Auld and Schubel (1978), who maintained approximatel y

constant suspensions during experiments and therefore minimized th e

effects of smoth e
i
ring . In our experiments, despite a fine coating of ash

{
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or sediment on the eggs during development, development rate of the egg s

was no different from that of the controls, and the mortalities were no t

significantly different as a function of suspension concentration (Tabl e

6, Figure 3) . This suggests that abrasion was not a problem for the eg g

chorion, which is generally thick in species with demersal eggs an d

therefore resistant to mechanical damage ; in the herring, for example ,

Biaxter- and Hempel (1966) have estimated that the proteinaceous chorio n

represents from 15 - 30% of the ash-free dry weight of the egg . We also

observed no detachment of eggs from slides in the dynamic experiments .

Devinny and Volse (1978) suggested that abrasive scour of sediments i n

moving water prevented proper attachment of gametophytes of Macrocysti s

pyrifera . This may have been a potential problem if the fertilization s

were carried out in the suspensions .

When larvae hatch, they no longer have the protection of th e

chorion . Hunter (1972) and Weihs (1979) demonstrated that newly hatche d

Northern anchovy (EnQraulis mordax) larvae depend upon the epidermis fo r

gaseous exchange, a situation typical of many fish larvae .

	

If larva e

develop a coating of particulates over the epidermis, smothering may agai n

become a problem for respiratory gas exchange . The epidermis in earl y

larvae, furthermore, is only a few cells thick (O'Connell

	

1976,

	

1981 ;

Jones et al . 1966), making larvae subject to abrasion damage and othe r

potentially sublethal effects . The experiments with yolk sac larva e

showed no specific differences in mortality after a 24 h exposure t o

suspensions when the presence of a heartbeat was used as a criterion o f

survival . When these yolk-sac larvae were transferred to clean water an d

survival monitored over the next several days, however, effects wer e

apparent, particularly for volcanic ash (Tables 7,8 ; Figures 4,5) .
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While the turbulence necessary to maintain the suspensions may itsel f

have resulted in mortalities, there was further damage noted to larvae i n

the suspensions . Qualitatively, the larval epidermis as observed at th e

finfold, was markedly damaged (Figure 12A) . This damage was observe d

histologically as well (Figures 12 D-F) . No published work show s

detrimental effects of sediment or volcanic ash upon histological feature s

of larval fishes . In juveniles and adults, however, damage has bee n

noted . Herbert and Merkens (1961) observed increased healing time fo r

wounds in fish exposed to sediment loads, resulting in higher probabilit y

of bacterial infection . Sherk et al .

	

(1975) noted a change in the gil l

structure of white perch exposed to sediments ; especially obvious was th e

increase in the abundance of mucous-producing goblet cells, whic h

presumably aid in removal and sloughing of sediment from the gills .

Larvae, however, may lack the ability to remove particles with mucou s

(Everhart and Duchrow 1976) ; indeed, goblet cells are not obvious feature s

of larval herring epidermis . Unpublished findings on the histologica l

changes in yearling chinook salmon exposed in	 situ to volcanic ash

suggest marked effects .

	

The epidermis

	

was

	

badly

	

abraded,

	

wit h

approximately one-eighth its normal thickness and loss of all epiderma l

mucous cells . Pathological conditions were also noted on the gills an d

pseudobranch, both of which are exposed directly to the ash (T . Yasutake ,

U .S . Fish and Wildlife Service, personal communication) . This suggest s

that the sharp, glass and crystalline structure of the volcanic as h

(Fruchter et al .

	

1980) may result in cellular and tissue damage greatl y

beyond that caused by sediment alone .

More recent studies on the histological effects, however, ar e

equivocal . Stober et al . (1982) and Redding and Schreck (1982) found n o

damage to the gill

	

tissue of sairnonids dosed with volcanic ash in th e
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laboratory, despite relatively high dosages . This also points out th e

differences between effects in the field and laboratory, since Stober e t

al . (1982) also noted significantly higher lethal levels of ash in th e

laboratory as compared to the live-box bioassays in the field shortl y

after the eruption .

	

Our histological work on the yolk-sac larvae o f

Pacific herring show that epidermis is in significantly poorer condition ,

apparently from abrasion, in both dorsal and ventral areas for volcani c

ash and in the dorsal area only for estuarine sediment . These effects ar e

apparent as the frayed finfolds in these experiments (Figure 12A) and th e

poor condition of the epidermis in higher levels of suspension . Th e

abrasive damage noted in these specimens under the light microscop e

(Figure 12E,F) correlate with the damage apparent under the scannin g

electron microscope, where the presence of puncture-type damage to th e

epidermis of larvae exposed to volcanic ash was apparent (Figure 13) .

Historically the term "critical period" arose to describe the hig h

mortalities apparent shortly after complete yolk absorption during earl y

efforts at fish culture ; Hjort (1914), however, applied a similar concep t

to describe the importance of this period in determining subsequen t

year-class strength in the cod and herring stocks of Norway . Hi s

interpretation and definition of the critical period have been used b y

Marr (1956) and May (1974) in reviews of evidence for a critical period i n

larval development . May (1974) concluded that presence of a critica l

period depends upon several ecological and species-specific factors ; th e

critical evidence, based upon survival rate shortly after absorption o f

the yolk and the resultant relationship to year-class strength, i s

unavailable .

Inferential evidence strongly favors existence of a critical period .
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First-feeding larvae are very small, have relatively small perceptiv e

fields, and possess only weak swimming abilities ; early larvae thus ar e

able to search only limited volumes for food . Past research has show n

search rates from 0 .1 to 1 .0 liters per hour in early larvae (Hunter 1972 ,

1981) . Compounding low search volume in first-feeding larvae is a low

feeding success rate . Estimated values range from 2-10'1. (Hunter 1981) .

Thus, based upon feeding success rate and volume searched it is obviou s

that first feeding larvae require relatively high densities of food

particles to survive . Laboratory studies of food density and its effec t

on feeding and survival confirm that very high densities are required .

Experimental food densities for 50f survival range from 199/liter for se a

bream (Houde 1978) to 4000/liter (Northern anchovy, O'Connell and Raymon d

1970) .

For larvae to locate these high densities of food, visual orientatio n

is critical ; increased turbidity or other factors affecting visual fiel d

and perception may reduce food consumption and increase the probability o f

starvation . The effects of turbidity on feeding in larval fishes has no t

been studied previously . Gardner (1981), however, noted reduced feedin g

rates in juvenile bluegill exposed to concentrations of bentonite cla y

from 400 to 1200 mg/1 ; he observed no change, however, in size selectivit y

of available prey .

	

Our results are thus unique and, in some respects ,

unexpected . In both semi-static and continual suspensions of bot h

estuarine sediment and volcanic ash, low suspension levels actuall y

increased feeding rates (Figures 7,8,10,11) and the percentage of larva e

feeding (Figures 6, 9) . We believe that this result is based upon th e

enhanced visual contrast allowing the larvae to better visualize th e

prey .

	

In the controls, feeding incidence and the numbers of particle s

consumed per feeding larva were low ;

	

in these black-walled containers ,
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however, feeding was nonetheless higher than in other control experiment s

with glass-walled containers . The values for the continual suspensions ,

which were held nearly constant during the 2 h experiments, wer e

significantly lower

	

than

	

those

	

of

	

the

	

periodically resuspende d

experiments . It is significant to note, however, that relatively hig h

levels of ash or sediment were necessary to reduce the feeding to level s

observed in the controls .

Another effect of turbidity-induced light reductions may be a chang e

in the vertical distribution of larvae . This may have a great effect o n

larvae

	

in estuaries, where vertical

	

distribution may have

	

importan t

effects upon horizontal distribution .

	

Swenson and Matson (1976), whil e

noting no effect of suspended sediment of 1-28 mg/l upon growth an d

survival of larval

	

lake herring, observed a change in the vertica l

distribution within the test containers . We noted similar effects in th e

semi-static

	

feeding

	

experiments

	

despite

	

increased

	

densities

	

o f

Brachionus in the bottom of the tanks .

	

Larval fishes generally us e

light intensity for depth regulation (Blaxter 1974) . Thus ligh t

attenuation from turbidity may result in larvae occupying shallowe r

depths . In estuarine fish larvae such as herring, depth regulation may b e

necessary to maintain populations within an estuary (Weinstein et al .

1980) . This has been observed in larvae of Atlantic herring (Graham 1972 )

and is probably true of Pacific herring as well . A distribution higher i n

the water column could therefore result in advection out of the estuar y

and probable increases in mortality .

A comparison of the relative effects of estuarine sediment, whic h

herring commonly encounter in nature, and volcanic ash shows selecte d

differences .

	

In the egg experiments, smothering effects were definitel y
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present in the static experiments ; the difference between ash an d

sediment, show greater mortalities present in the sediment trials (Figur e

2). Since the observed effects are the result of loss of respiratory ga s

exchange due to the layer of ash or sediment, it is probable that th e

smaller mean particle size of the sediment (Table 1), providing a dense r

barrier to oxygen diffusion, may have been the cause of the increase d

mortality in the sediment experiments .

In the dynamic experiments, the potential differential abrasio n

between ash and sediment was not apparent in the results . Mortality rate s

showed no trend with concentration of either ash or sediment, and th e

mortality rates were not significantly different among the trials (Figur e

3). With the ready supply of oxygen in the dynamic dosing device and onl y

a thin layer of ash or sediment on the vertically oriented slides, neithe r

abrasion nor gas exchange was a problem for the developing embryos . I n

the field, herring typically deposit eggs in tidal

	

areas where water i s

well oxygenated and characterized by tidal movements . In the Columbi a

River estuary, as elsewhere, it is therefore unlikely that significan t

smothering and resultant embryo mortality will occur with the exception o f

very localized dredging areas . Moreover, there are possible behaviora l

characteristics of the spawning adults which may prevent or inhibi t

spawning in highly turbid waters .

In the yolk-sac experiments, there was no difference between th e

mortality rates between ash and sediment at the end of the 24 h exposure ,

and no significant difference from the controls .

	

While there was n o

significant difference in subsequent survival, there was a trend o f

increased mortality in ash as compared to sediment (Figures 5,6) . Ou r

examination of the gross morphology of the yolk-sac larvae suggested a
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more marked effect in higher concentrations of ash (Figure 12 ), where th e

finfold was characterized by abrasion and erosion . This pattern was

corroborated in the histological analysis, where the abrasive effects o f

the volcanic ash on the epidermis were apparent at lower concentrations a s

compared with the estuarine sediment (Table 13) . Since it was no t

apparent after the 24 h experiment, we consider this to be a subletha l

dose in the sense of Rosenthal and Alderdice (1976), since the probabilit y

of subsequent mortality was increased .

No great differences were apparent between ash and sediment for th e

larval feeding experiments . It is interesting to note, however, that th e

lower concentrations of both ash and sediment resulted in enhanced feedin g

abilities . In the dynamic experiments (Figure 9), the feeding incidenc e

showed a peak at 500 mg/l for sediment and rapidly decreased thereafter ,

whereas the volcanic ash showed a peak at 1000 mg/l and decreased les s

markedly . Light transmission through equivalent suspensions of ash an d

sediment differ, with greater light transmission through the volcani c

ash . For visual feeders such as fish larvae, it

	

is this difference

	

i n

available light that may cause the difference in feeding abilities .
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