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ABSTRACT

Sediment supplies and stream discharge together_ determine the patterns ,

over time, of suspended sediment loads in small streams . Most of the

uncertainty in empirical streamflow-sediment relationships can be attributed

to changing supplies . Our transport model utilizes a power function of th e

form c = aQb , where C and Q are sediment concentration and stream discharge ,

respectively . This expression was augmented with a variable S representin g

sediment storage in the channel system . The resulting supply-based model was

calibrated to concentration and streamflow time series data from four stor m

events in a small, forested watershed in coastal Oregon . We also calibrated

the model to data from -a controlled reservoir release in Utah, during whic h

streamflow was held constant for an extended period . In all cases, th e

supply-based model followed observed concentration time series mor e

accurately than did a transport model based on Q alone . We further enhanced

performance of the supply-based model by distributing sediment supplies S

among several compartments which were accessed at different levels of stream

discharge . Both the single-compartment and distributed models demonstrat e

that a knowledge of sediment supplies can improve predictions of suspende d

sediment concentrations during storm runoff .



FOREWORD

The Water Resources Research Institute, located on the Oregon Stat e

University Campus, serves the State of Oregon . The Institute fosters ,

encourages and facilitates water resources research and education involvin g

all aspects of the quality and quantity of water available for beneficia l

use . The Institute administers and coordinates statewide and regiona l

programs of multidisciplinary research in water and related land resources .

The Institute provides a necessary communications and coordination lin k

between the agencies of local, state and federal government, as well as th e

private sector, and the broad research community at universities in the

state on matters of water-related research . The Institute also coordinate s

the inter-disciplinary program of graduate education in water resources a t

Oregon State University .

It is Institute policy to make available the results of significan t

water-related research conducted in Oregon's universities and colleges .

The Institute neither endorses nor rejects the findings of . the authors o f

such research . It does recommend careful consideration of the accumulate d

facts by those concerned with the solution of water-related problems .
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DYNAMIC MODELLING OF SUSPENDED SEDIMENT TRANSPORT IN STREAMS

AS A FUNCTION OF SEDIMENT SUPPL Y

I . INTRODUCTION

Sediment yields from small watersheds are difficult to model an d

predict . The sediment load of a small stream typically shows considerabl e

variability over time, as it responds in a highly sensitive, nonlinea r

fashion to changes in streamflow and sediment availability . Unfortunately ,

the set of processes in stream systems which link sediment sources an d

runoff to sediment transport have not yet been well identified, much les s

quantified [Wolman, 1977] . Much of the difficulty lies in merely observin g

sediment transport, since the majority of the sediment load is usuall y

carried during brief, infrequent periods of high runoff .

In view of these problems, it is not surprising that the most practica l

sediment transport models continue to be empirical relations betwee n

sediment load and streamflow . The simplest model of this type is the

familiar sediment transport curve or rating curv e

C = aQb

	

(1 )

in which Q is stream discharge and C is either suspended sediment concen-

tration or yield . Values of a and b for a particular stream are determined

from data via a linear regression between (logC) and (logQ) . Equation (1 )

is usually combined with a streamflow duration curve to estimate mean annua l

yield [Piest and Miller, 1975] .

The simple transport curve has been extended in several directions .

Guy [1964] and many others have studied multivariate forms of (1), wit h

factors such as rainfall and time of event occurrence as possibl e

independent variables . One stochastic extension of the transport curv e

views Q as a stochastic process in order to estimate the temporal variabilit y

of sediment yield [VanSickle, 1982] . Another stochastic approach involve s

Box-Jenkins type transfer-function models, in which the present value of C

depends on past values of C, as well as present and past values of Q

[Sharma, et al ., 1979] .

These extended models have all tried to improve the low accuracy seen i n

most applications of (1) . A stream in the Oregon Coast Range provides a



typical example (Figure 1) where observed suspended sediment concentration s

vary up to an order of magnitude at a given di~scha ge level . Most of the

scatter about the regression line in the figure i•s probably due to changin g

supplies of available-sediment . Although sediment supply is generall y

recognized as the single' most' important factor (other than streamflow) Whic h

determines watershed sediment yield' patterns over time, sediment storage o r

supply remains an elusive variable, difficult to measure or to mode l

[Wolman, 1977] . Studies of annual sediment budgets have recently begun t o

include direct, quantitative estimates of sediment sources [Dietrich and,

Dunne, 1978 ; Kelsey, 1980] . At present, however, estimates of every term i n

the budget equation are not yet possible within the time frame of individw l

runoff events .

The qualitative effects of sediment supply on sediment concentration s

and yields have often been described . During a single runoff event ,

concentrations C at a specific discharge level Q usually decrease wit h

time, due to supply depletion . When observed values of Q and C are plotte d

with time as a parameter, over the course of a single storm event, a

hysteresis loop often results . These hysteresis loops have been describe d

for streams of all sizes [Leopold, et al ., 1964 ; Shen, 1971 ; Wallin,. 1977 ;

Pausti-an•and Beschta, 1979 ; Whitfield and Schreier, 1981] . A similar effect

is seen on a seasonal time scale ; concentrations at a given discharge nearl y

always decrease as the runoff season progresses and sediments are flushe d

from the watershed and/or stream system [Leopold, et al ., 1964 ; Piest and.

Miller, 1975 ; Nanson, 1974 ; Beschta, 1978] .

The phenomena of seasonal decline and storm hysteresis are apparent i n

most sampled time series of C and Q . In this paper, we model those time

series by adding a new variable to (1) . The new variable S(t) represent s

sediment supply, and the modified form of (1) expresses the effects o f

supply depletion on sediment concentrations . We present model application s

for which we have no direct estimates of S(t) ; hopefully, estimates of S(t )

will soon be practical . Sediment inputs to streams and in-channel storag e

sites are just beginning to be identified and quantified as part of large r

sediment budget studies [Swanson, et al ., 1982] .

We applied the supply-based model to data from an undisturbed watershe d

in the Oregon Coast Range, and also to data from a controlled reservoi r

release in central Utah . Model analyses and simulations were performed ;

2
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Figure 1 . Sediment transport curve for Flynn Creek, based on instantaneou s
values from 24 storms having peak flows > 1 .1 m3s- 1 .
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with the goals of observing model supply dynamics and of comparing mode l

sediment concentrations with those predicted by (1) . Our approach is that

of " grey-box" modelling [Pickup, 1981] ; we try to represent the mai n

processes and feedbacks of the sediment delivery system, with only a fe w

variables, parameters, and equations . Recently, Dietrich, et al . [1982]

have proposed grey-box type models for routing sediment through entire '

basins, but the models have not yet been applied to real data . The strategy

of these basin models and of our supply-based model is simple frugality ;

models with few parameters can be reliably calibrated and validated b y

limited data sets . The simplicity of the model structure helps t o

compensate for our inability to measure a key model . variable, sediment

supply .



II . MODELLING SEDIMENT OUTPUTS FROM A SINGLE STORAGE COMPARTMEN T

We began by assuming that the total amount of sediment stored upstrea m

of a sampling location at time t can be lumped into a single storag e

variable S(t) . The supply S(t) is assumed to be suspendable materia l

stored within the stream channel . For the model applications discusse d

here, the largest storm events had peak flows with return periods of abou t

two years and they peaked at, or slightly above, bankful stage [Beschta ,

1981] .

In the model, S(t) and sediment transport dynamics follow a scenari o

(Figure 2) which is generally applicable to streams draining lower-elevatio n

(<1200 m), forested watersheds in the Pacific Northwest . At the start of

the autumn rainy season S(t) is assumed to be at an initial maximum, S 0 .

The supply is periodically depleted through the fall and winter by a

sequence of brief (generally < 72 hrs .), distinct runoff events due t o

rainstorms . Figure 2 illustrates changes in S(t), suspended sedimen t

concentration C(t) and discharge Q(t) during two events . Between storms ,

flow is greatly reduced, sediment concentration is very low, and ne t

transport is negligible [VanSickle, 1981] ; the model is not operated durin g

these intervals .

During a runoff event, sediment concentration is modeled with th e

sediment transport curve (1) modified to include a supply depletion o r

washout function :

C(t) = aQ(t)b .g(S(t))

	

( 2 )

The washout function g(S) expresses the relative change in concentration du e

to changes in available sediment .

As S decreases during a single event or seasonally, concentrations als o

decrease . Thus, g(S) should be positive-valued with da > O .

	

We will show

later that g(S) has an exponential, rather than a linear, nature . However ,

its exact form is probably not critical . We chose the washout function t o

be :

g ( S ) = p•exp[r

	

]

	

(3 )
0

Equation (3) does not satisfy the intuitive requirement that g(O) = 0, but ,

in practice, the parameter p is small, and g(S) can be artificially set t o

zero for S = 0 without disrupting the model dynamics of C(t) or S(t) . Bot h

5
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Figure 2 . Idealized variations of sediment supply (S), sediment concentra-

tion (C) and streamflow (Q) during storm events .
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E. and r are dimensionless, empirically determined parameters .

In order to use (2), we need to keep track of the supply, S(t) . Th e

only losses from the storage compartment are assumed to be due to sedimen t

transport ; the flux past the sampling point is simply Q-C . Hence, th e

complete model is :

dS(t)

	

= -Q(t)•C(t) (4 )

C(t) = aQ(t)b•p•exp[rs t ] (5 )
0

In the model, C(t) has units of mg v- 1 , equivalent to g m- 3 , and Q(t) is i n

m3 s-1 . S(t) then has units of grams, but we report both supply and sedimen t

yield in metric tons (tonnes) .

We do not have definitive physical interpretations for the parameters i n

(5), because they summarize the multitude of factors which determin e

sediment transport rates . Roughly speaking, however, the parameters a and b

may be associated with characteristics of the channel system, such a s

hydraulic geometry, channel morphology, gradient, etc ., which determine

transport rates at a given discharge and level of sediment availability .

The parameter r can be interpreted as an index of sediment availability .

For a large value of r, concentrations are sensitive to small decreases i n

S(t) ; the model sediment supply has relatively low availability . Thus r i s

likely to be a function of the bed composition and of the overal l

effectiveness of storage sites in retaining sediment .

Equations (4) and (5) apply over any time interval [t l ,t2] spanned by a

single runoff event . For their solution, an initial supply S(t i ) and a

storm hydrograph Q(t), for t i < t < t2, must be specified . If ti represent s

the start of the first fall storm, then S(t l ) = S0 . If Q(t) can be

integrated, then (4) can be solved analytically, via separation o f

variables (Appendix A) . Here we present numerical solutions, based o n

sampled time series for Q(t) .

Because of the non-point nature of sediment sources distribute d

throughout a channel system, discrete sediment storage locations are no t

easily identifiable . In-channel supplies during high flows might includ e

the release of suspended sediments from riffles undergoing scour, erosio n

and sloughing of bank sediments and the scouring of deposits in pools .

7



However, at least in the Pacific Northwest, mass soil erosion (landslides ,

soil creep and debris avalanches) represents the ultimate source o f

sediments for many mountain streams . Sediment inputs to storage are a s

complex in space and time as are the storages themselves, and just a s

difficult to quantify . For now, we are forced to model sediment inputs i n

the same, almost abstract, fashion as we define S(t) . We assume that a

sediment input I in the model occurs as a lump sum of material added betwee n

storms (Figure 2) . In practice, the input merely resets S(t) betwee n

events .

Model time series of C(t) can be compared directly with data, but w e

have no observations for S(t) . However, losses from supply, i .e. sediment

yields, can be directly calculated from C and Q data . Let Y(t, t i ) be th e

cumulative yield over the period [ti,t], where t > t i . During the course o f

a single event, a useful auxiliary equation is :

t
Y(t,t 1 ) = S C•Q•dt = S(t 1 ) - S(t)

	

(6)

Several researchers have suggested that sediment transport be modelle d

as a function of sediment supplies . For example, Piest and Miller [1975 ]

suggest that the coefficient a in (1) can be viewed as an index of relativ e

erodibility . In addition, Nolan and Janda [1981] find evidence in thei r

data that increasing sediment availability tends to increase the intercept ,

but not the slope, of log-log regressions of C on Q . They suggest that a i n

(1) reflects sediment supplies, while the b exponent empirically summarize s

the sediment delivery mechanisms of a particular watershed . These

suggestions are similar to our tentative interpretations of the parameter s

in (5) . Negev carried this approach further in his 1967 model, as describe d

by Linsley, et al .[1975] . The core of the larger Negev model is a sedimen t

transport expression like (2) with g(S) = K i + K2S . The process model of

Li, et al . [1976] also contains a compartment for sediment supply . Possibl y

because of their complexity, the models of Negev and of Li, et al ., [1976] ,

have not, to our knowledge, been used to explore the supply-transpor t

coupling .

Different Concentrations, Same Streamflo w

The form of (2) and (5) is well suited to studying the variability amon g

sediment concentrations which are observed at the same streamflow levels .

t i

8



As shown in Figure 2 let tA and tB be two different times for which Q(tA) =

Q(t B ) . The concentration ratio Rc (tB,tA) can then be defined as :

Rc (tB ;tA) = C(tg)

	

(7 )
C(t A )

If C(t) is given by the model of (5), then Rc satisfies the expression :

Rc (tB, tA) = exp[SO ( S (t B) - S ( tA))]

	

(8)

Notice that Rc is independent of streamflow and depends only on the ne t

change in supply over the interval [tA,t B] . This same feature is still true

for the more general concentration model (2) . In Figure 2, tA and tg ar e

times on the rising limb and falling limb, respectively, of aj single event . .

In this case, R c expresses the magnitude of the storm hysteresis effect .

One could . al so i-denttfy 'a particular flow at time tA during the risin g

limb of the first fall storm hydrograph, and a correspoaading flow at tim e

t B during a storm hydrograph late in the runoff season . In this case ,

Rc would measure the seasonal flushing of sediment supplies . Informa l

estimates of Rc by Guy [1964] and Piest and Miller [1975] suggest values. o f

Rc as low as 0 .1 to 0 .05 for individual storms, while Nanson [1974], Piest

and-Miller [1975], and Loughran [1976] estimate an Rc value as low as 0 .0 2

to 0 .005 over the course of a single year .

The ratio Rc is useful in parameter estimation . Returning to th e

scenario of Figure 2, with tA and t8 on the rising and falling hydrograp h

limbs, we combined the definition of sediment yield (6) with (8) and ,

following logarithmic transformation, we obtained :

loge[ Rc ( tB , tA)] = -S Y(tB,tA )
0

This expression allows direct use of sample data to estimate washou t

parameters . If several pairs [C(t A ), C(tB)] at the same discharges can be

observed during a single event, then (9) gives a regression estimate o f

r/S0 .

( 9 )

9



III . FLYNN CREEK SIMULATION S

We applied (4) and (5) to sampled time series of Q(t) and C(t) for fou r

storm events from the Flynn Creek watershed in the Oregon Coast Range . Thi s

undisturbed 202 ha watershed has moderately steep (25-40 percent grade )

hillslopes which are forested with Douglas-fir (Pseudotsuga menziesii) and

red alder (Alnus rubra) . The sediment parent materials are uplifte d

sedimentary rocks . Soil is delivered to the channel primarily by mas s

erosion . Brown and Krygier [1971] describe the Flynn Creek watershed i n

more detail .

During rainfall periods, most water is routed as subsurface flow to th e

channel system . Upstream of the sampling station, the third-order Flyn n

Creek channel varies from 3 to 5 m in width ; bed material consist s

predominately of medium to coarse sand and fine gravel (0 .25-8 .0 mm) ,

armored with fine to coarse gravel (4-32 mm) . Channel geometry is largel y

influenced by large organic debris (fallen logs) and the root systems of th e

existing forest vegetation . The large organic debris affects local channe l

hydraulics and creates storage sites for suspended and bedload sediment .

During the winter, most precipitation results from long duration and lo w

intensity frontal storms that move inland from the Pacific Ocean . Withi n

these major frontal storms, periods of moderate to high rainfall intensitie s

generate runoff events in which most sediment is transported .

Streamflow and sediment concentrations in Flynn Creek were closel y

monitored between 1959 and 1973 as part of the Alsea Watershed study [Brown

and Krygier, 1971 ; Harris, 1977] . Based on this data, we have used

statistical analyses to describe long-term patterns of monthly and annua l

sediment yield from the watershed [Beschta, 1978 ; VanSickle, 1981, 1982] .

In addition, transport dynamics have been studied in Flynn Creek on th e

much shorter time scale of individual runoff events [Beschta, et al ., 1981a] .

Three of the four events modelled here occurred sequentially in November an d

December, 1977, with the initial event being the first sizable fall runoff .

The fourth event was the first fall storm of 1979 . Beschta [1981] describe s

the four events and their sediment yields in more detail .

During the runoff events, suspended sediment concentration and strea m

discharge were measured hourly . To estimate cumulative yield from the data ,

via (6), we filled gaps in the C(t) record using linear interpolation .

11



Simulations of (4) employed a Runge-Kutta method with a variable time ste p

< 1 hour. The forcing function Q(t) was calculated by linear interpolatio n

between hourly values of the observed Q time series .

Calibration Runs - Methods and Result s

A set of model simulations was used to calibrate the model to fi t

observed (Q,C) time series (Appendix B) . The calibration process als o

served as an informal sensitivity analysis . Model performance was measure d

by the time-averaged, absolute difference between model and data values o f

C(t) . For practical purposes, sediment yield errors may be more importan t

than concentration errors . However, it is not difficult to show that th e

supply-based model can be calibrated to give any desired sediment yield fo r

a single runoff event (Appendix A), so the yield performance was hardly a

fair measure . The supply model concentration errors ES were compared with

errors ET produced by the simple transport curve (1) . Transport curve

errors ET were calculated by fitting (1) to the data on a storm-by-stor m

basis ; different values of a and b were used for each event .

Calibration of the supply model was more involved . Equation (5) appear s

to have five free parameters : a, b, p, r and S0 . We reduced this number to

four by adjusting E. so that g(S 0 ) = 1, once SO and r had been chosen . Thi s

restriction also let us interpret the transport curve parameters (a,b) a s

reflecting conditions of full supply ; with g(SO ) = 1, the concentration i s

simply C = aQb . Ideally, then, a and b could be determined from (C,Q) dat a

taken during the rising limb of the first fall storm hydrograph of 1977 .

This procedure gave us initial estimates for a and b, of 1 .5 and 3 .2 ,

respectively .

We also used data from the same event to estimate r/S0 . Equation (9 )

was applied to seven different discharge levels on the rising and fallin g

hydrograph limbs from the first 1977 event, and the average value o f

r/S0 = .102 tonnes- 1 was used as an initial estimate . One parameter, S0 ,

was set somewhat arbitrarily . We reasoned that the initial supply shoul d

exceed a typical annual sediment yield by a considerable margin .

Consequently, we chose S O = 303 tonnes, which corresponded to an annua l

yield with an approximate 5-year return period, based on the 1959-197 3

record [VanSickle, 1981] . This amount of sediment represents approximatel y

23 kg of suspended sediment per meter of channel length if it wer e

12



distributed uniformily throughout the first-, second-, and third-orde r

channels on the Flynn Creek watershed . The corresponding initial value of r

was 30 .9 .

The next calibration step consisted of " fine tuning " the model for th e

first 1977 storm event . Holding SD fixed, we varied r, a and b by tria l

and error until the•fi,t sh'own•in . Figure 3 was achieved . The associated

model errors E S -for this and other .events are listed in Table 1 . Model

results, illustrated in Figure 3, used values of r = 26 .6, a = 0 .85, and

b• = 3 .75 . Thus, the final parameter values were close to their initia l

estimates .

Even though we do not yet have clear physical interpretations for a ,

b, and r, we expect the three parameters should remain fairly constant ove r

time for a given stream ; barring the occurrence of large-scale geomorphi c

events . Thus, a, b, and r were held fixed at the above values for mode l

calibration with the other three Flynn Creek storms .

For the two remaining 1977 events, only sediment inputs between store s

were adjusted to achieve the fits shown in Figure 4 . Between storms 1 and

2 ; we added I = 19 .5 tonnes to S(t), and between storms 2 and 3, I = 7 . 8

tonnes were added to S(t) . It is interesting that the input between storm s

1 and 2 was about 75% as large as the total observed sediment yield fro m

storm 1 . The value of I between events 2 and 3 was about equal to the yiel d

from storm 2 . The model reflects the fact that concentrations on th e

falling limb of a storm hydrograph were consistently lower tha n

concentrations at the same discharges on the rising limb of the next stor m

hydrograph . If these differences are indeed due only to changing supplies ,

then some new material must have become available between storm events .

For the 1979 event, we retained the 1977 parameter values and rese t

S(to ) = So, since the 1979 storm was the first of the season . The resul t

was a serious underprediction of observed concentration levels, over th e

course of the entire hydrograph . As before, we tried calibrating the mode l

through addition of inputs prior to the event simulation, with littl e

success .

The source of the poor model performance was discovered when we compare d

Rc and cumulative sediment yields from the data for the first storms o f

1977 and 1979 . During the course of the 1979 event, values of R c were

similar to those of storm 1, 1977, but the associated sediment yields wer e

13
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Figure 3 . Data vs . calibrated, single-supply model concentrations . Flyn n

Creek, first autumn storm, 1977 .
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TABLE I . Concentration errors for calibrated models .

Ci data - Cimodel I

Single Compartment Model ; Distributed Model ;
Equations (4) and (5) Equation (10 )

Storms

	

N ES(mgt-1)

	

ES/ET ES (mgz-1 ) ES/ET

1, 1977 34 35 .8 0 .46 43 .0 0 .55

2, 1977 15 39 .9 0 .95 21 .6 0 .5 1

3, 1977 21 24 .5 0 .52 17 .4 0 .3 7

1, 1979 52 98 .7 0 .78 88 .2 0 .70

The supply model error ES vs . the transport
curve error ET where :

E =
N
1

	

E

	

I

i=1

1 5
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Figure 4 . Data vs . calibrated, single-supply model concentrations . Flyn n
Creek, Storms 2 and 3, 1977 .
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about three times larger . In other words, the same relative decrease i n

concentration was accompanied by a much larger loss from storage in the 197 9

event, as compared with 1977 . This difference may have been due to a n

increased availability of the sediment supply in 1979 ; the supply appeared

to suffer a greater depletion before forcing concentrations to decrease .

Accordingly, we again set S(t o ) = So, and varied the availability paramete r

r to produce the fit seen in Figure 5 . That simulation used r = 9 .7, with

all other parameters taking their 1977 values .

To summarize, we note that model time series for C(t) agreed fairly wel l

with observed values over the course of four events (Figures 3-5) . From a

purely quantitative standpoint, the supply based model appeared to perfor m

slightly better than the conventional transport curve, as Table 1 shows .

Values of ES/ E T are less than 1 for all four events . In addition, th e

supply model's better fit was achieved with a total of 7 parameter estimate s

for the four events (a,b,SO, r, followed by two values of 1, for 1977, plu s

a value of r for 1979), compared with 8 estimates (new values of a and b fo r

each event) for the simple transport curve . However, these difference s

could probably not be supported statistically .
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IV . A DISTRIBUTED SUPPLY MODE L

The least realistic feature of (4) and (5) is the lumping of al l

sediment supplies into a single variable, S(t) . For this reason, we

explored a model in which the total supply of sediment is distributed amon g

several model storage compartments . In the distributed model, the magnitud e

of Q determines the set of storage compartments from which sediment may b e

removed . We assume that, as streamflow increases, sediment is removed from

an increasing number of storage sites, and each site is depleted at a rat e

dependent on supply and discharge .

The model structure is illustrated in Figure 6a . We assign a set of

fixed discharge levels, Q0, Q1, ••• QN . The level QO is set to b e

0 m3s- 1 and QN is taken to be a flow considerably larger than the peaks o f

the four Flynn Creek events . The levels Qi, in turn, define a set of N

storage compartments, with the i th compartment containing an amount Si(t) o f

sediment . The sediment in the i th compartment consists of all materia l

which will be transported only when stream discharge exceeds Q i _ i , for

i = 1,2, . . .N .

As Figure 6a suggests, Si(t) includes sediment which is stored in th e

bank between the stage heights which correspond to

	

and to Qi . However ,

other sources may also be represented by S i (t) . For example, S i (t) woul d

include material in the bed which was newly suspended by the increase i n

turbulence or shear stress at flows greater than Q i_i . Similarly, a

discharge greater than

	

might be required to release a log or othe r

obstruction in the bed . Sediment stored behind the obstruction would als o

be considered part of Si(t) . In addition, the headward expansion of th e

channel system (with a corresponding increase in the capability of the

stream to access additional sources of sediment) is also implied in ou r

conceptualization of the distributed supply model .

During a model storm event, the supply of the i th compartment decrease s

whenever Q(t)

	

If Q(t) < Qi_i, then the discharge is too low t o

access the i th compartment, and Si(t) stays constant . When a compartment

is accessed, the sediment removal rate is again the product of a transpor t

curve and a washout function . These assumptions lead to the mode l

equations for i = 1,2 . . . N :
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dSi(t )	 = -a •Q(t ) b .p .eXp[ Si ( t_ ) ] , if Q(t) > Qi-1

	

(10 )

0, if Q(t) < Qi-1

The parameters in (10) have the same roles as those in (4) and (5), but the y

are not mathematically equivalent . As with the previous model, inputs t o

the compartments (I i , where i = 1,2 . . . N), are added between storms an d

serve to reset the Si(t) values for a subsequent event .

Total sediment storage in the distributed model is represented by :

ST (t) = E Si (t)

	

('11 )

i= 1

The total transport flux is the sure of losses ftort all compartments :

T(t) = - E dSi( t )

i=1

	

dt

	

(12 )

Sediment concentration is then calculated as C(t) = T(t)/:Q(t) and yield i s

the time integral of transport, as in (6) . For a specified storm hydrograph .

Q(t) over [t0 , tl] and an initial supply distribution Si(t0), i = 1 . . .N, (10 )

can be solved numerically for model time series of sediment supply, yield ;

and concentration .

The distributed model represented by (101 is more speculative than th e

single-compartment model of (4) and (5) . For example, we have no compellin g

reason to write the transport curve term in ( ' 10) as aQb rather tha n

aQi b . In addition, the parameters of (10) are no longer easil y

interpreted or estimated . Here, for examples the concentration rati o

Rc does not have a direct relationship to (r/S0) ; as was the case in (4) and

(5) . In fact, each supply compartment real i

characteristics, that is, its own values a i , bi, pi, and ri . However, (10 )

was defined for lumped, rather than distributed, parameters in order to kee p

the number of parameters relatively small .

The distributed supply model was applied to the four Flynn Creek stor m

events, using the same calibration procedure and performance measure as wit h

the single-compartment model . The total initial supply was set a t

ST(to) = 303 tonnes, as in the single-supply model, amd this sediment wa s

distributed equally among all compartments at the start of storm 1 ; 1977.

All four model storm simulations used a = 1 .0, and b = 4 .0 . The

tically has its own depletio n
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availability parameter r took the value 26 .5 for the three 1977 model event s

and 9 .6 for the 1979 event .

Parameter values for the " best fit " distributed model simulations wer e

quite close to the single-supply model values . Nevertheless, we found th e

distributed model to be much more responsive to changes in streamflow and

sediment supply . For example, during storms 2 and 3 in 1977 (see Figures 4

and 7), the distributed model did a better job of reproducing the steepnes s

of observed concentration peaks . In the distributed model new suppl y

compartments were progressively accessed as streamflow increased an d

sediment transport increased more rapidly than could be simulated by (4) an d

(5) . On the falling limb of the hydrograph, the reverse process occur s

whereby fewer and fewer storage locations are accessed . The distributed

model fits also had smaller concentration errors than the single-suppl y

model, for three of the four storm events (Table 1) . Of course, we had

greater freedom in fitting the distributed model to storms 2 and 3, 1977 ,

through the use of the distributed inputs, Ii .

Figure 6b illustrates the distributed supplies at three different time s

in the modeled 1977 event sequence . At the beginning of storm 1, al l

compartments contained Si(to) = ST(to)/N tonnes . By the end of storm 1 ,

about 10% of the total supply was removed, all from the first fou r

compartments . For purposes of illustration, the volumes of sedimen t

depleted from and added to the total supply shown in Figure 6b have been

exaggerated slightly . In the model, Q 4 was chosen greater than 1 .5 m3s'1 ,

the peak flow of storm 1, so compartments 5 and 6 were not accessed by th e

event . Between storms 1 and 2, we adjusted values of I1, I2, I3, and

I 4 until the fit shown in Figure 7 was achieved . The total of the four

inputs was about half as large as the total yield from storm 1 . Calibration

of storm 3 followed the same procedure .

In short, the distributed model appeared to perform slightly better tha n

the single-supply model . The distributed model's most important advantage ,

however, is that it provides for the eventual use of direct storag e

estimates from several sites, each of which is accessible to a differen t

discharge level .
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Figure 7 . Data vs . calibrated, distributed model concentrations . Storms 2

and 3, 1977 .
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V . APPLICATION TO A CONTROLLED RESERVOIR RELEAS E

A unique set of suspended sediment data from Huntington Creek in centra l

Utah provided us with a valuable test of the single-supply model . The creek

is dammed . A controlled release of water from Electric Lake Reservoir i n

August of 1979 produced two extended periods of high, constant streamfl'aw ;

following a year of low flow conditions (Appendix C and D) .

During the flow release, bedload and suspended load transport wer e

monitored by taking hourly samples at two stations . The methods and result s

of the study are reported in Beschta, et al . [1981b] . Figure 8 presents the

time series of discharge and suspended sediment concentration at the two

stations . Station A was 1 .4 km downstream of the dam, while Station B wa s

6 .7 km from the dam . In this reach of Huntington Creek, the mean gradien t

is 0 .01 m/m, and the bankful width is about 6 m at Station A and 10 m a t

Station B 4 The channel bed-.material is mainly sand and fine gravel armore d

with material of median size = 20 mm . The armor ' layer was not disrupted by

the high flow of the controlled release . The reservoir release wa s

conducted during a period of clear weather, so suspended sediment sourc e

areas lay entirely within the channel .

We were especially interested in applying the model to the two time

intervals labeled Period 1 and Period 2 in Figure 8 . During Period 1 ,

stream discharge was constant at 4 .9 m3s -1 for 20 hours, and the second

period had a constant discharge of 4 .4 m3s -1 for 41 hours . Beschta, et al .

[1981b] suggested that the decreasing sediment concentrations during thes e

periods were the result of sediment supply depletion . In addition they

noted that Station B had about 5 times the length of upstream channel fo r

its sediment source area, compared with Station A ; this almost certainl y

accounted for the much higher concentrations seen at Station B .

These authors also examined linear regressions of (log C) vs . (time) fo r

the two periods at the two stations . They concluded that concencentrations

were decaying exponentially over time during these periods, but the rate o f

decay during Period 2 was considerably less than that during Period 1 a t

both stations . Their hypothesis was that the drop in discharge from 4 .9 t o

4 .4 m3 s -1 between the periods was responsible for the lower decay rate i n

the second period .

We could have applied the distributed model to this event . However, i f
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discharge remains constant, then the set of accessible supply compartment s

remains fixed over time . For analytical ease, we chose instead to view th e

Huntington Creek supply at each station as a single compartment containin g

all sediment available to flows of 4 .9 m3 s- 1 during Period 1 and

4 .4 m3s-1 during Period 2 .

The single-supply model of (4) and (5) can be solved analytically if Q

is constant . The solution leads to a formula for sediment concentration o f

the form C(t) = 1/(kl+k2t), where the constants k l and k2 are complicated

functions of model parameters and initial conditions (Appendix A) . Rather

than explore this analytical solution further, we instead used th e

Huntington Creek data to compare the supply-based model with an exponentia l

decay model for C(t) . The exponential decay model, which has the for m

C(t) = C(O) exp[-at], was used by Beschta et al . [1981b] to describe the

concentration decreases in Figure 8 . In addition, the exponential deca y

model would result if we had used a linear function for g(S) in the single -

supply model, rather than the exponential form (3) .

The relationship between the single-supply model and exponential deca y

is not hard to uncover . Differentiation of (2) results i n

dC = aQb.g.dS( t )

	

(13 )
dt

	

dS dt

Substitution of (4) yield s

dC = -aQb .d .C .Q

	

( 14 )

dS
If we now take (3) for g(S), then (14) can be written as :

dC = -K•S•C

	

(15 )at
where K = r•a•Qb+l is a constant, for constant Q .

So

Thus, the supply-based model implies that C(t) decays exponentially, fo r

constant Q, with a decay rate a = (K•S) which is time-varying . This resul t

agrees with Beschta, etal .'s [1981b] observation- that the rates of decay

were significantly reduced during Period 2 . Equation (15) shows that the

reduced discharge, Q, could have resulted in the lowered decay rates seen i n

Period 2 . However, it is clear that a decreasing sediment supply, S(t) ,

would also reduce the concentration decay rate . In any case, if the simpl e

exponential decay model requires a time-varying rate parameter s , a, then it

becomes less attractive as a predictive tool .
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For a quantitative test of the supply-based model, we used a mode l

equation which, like the case of simple exponential decay, has only on e

parameter to be estimated from the data . This simplification was possibl e

because Q was constant . Recall that (9) relates sediment concentration to

sediment yield for two instants in time having the same Q . Let is be the

start of a period of constant discharge . Then (7) and (9) can be combined

to give :

loge C(t) = loge C(ts) -

	

Y(t,ts)

	

(16 )

0

where t is any time after is for which Q remains constant .

In (16), the value of r/S0 can be estimated from a regression o f

loge C(t) on Y(t,ts) . Figure 9 shows three such regressions based on the

concentration data from Stations A and B during Period 1, and from Station B

during Period 2 . The concentrations from Station A during Period 2 were no t

included because they appeared to have dropped to a level at which furthe r

decreases were lost in the background noise level . Beschta, et al . [1981b]

found that the slope of the [loge C(t)] vs . (t) regression was virtuall y

zero during this period at Station A . To confirm this, we calculated a ran k

correlation coefficient between C(t) and t for the same data . The resulting

value of Spearman ' s rho was negative, but it was not different from zero a t

a 5% significance level [Snedecor and Cochran, 1967] . Since Y is a

cumulative variable, we could not use correlation coefficients from th e

regressions to test the validity of (16), but each data set appears to b e

scattered fairly evenly about its regression line .

The most interesting feature of the regressions in Figure 9 is thei r

slopes . According to (16), each slope is an estimate of (-r/S0 ) for that

particular data set . For Station B, Period 1, the estimate wa s

(r/S0) = 0 .007 tonnes- 1 , and for Period 2 at the same station, (r/S0) =

0 .006 tonnes- 1 . At Station A in Period 1, (r/S0) = 0.015 tonnes-1 . Since

Station A had a smaller sediment source area than Station B, it should als o

have a smaller value of S 0 . This hypothesis is supported by the relativ e

sizes of (r/S0 ) at the two stations ; the Station A estimate is about twic e

as large as the Station B estimates .

It is also useful to compare the results from Periods 1 and 2 at Statio n

B . It appears that (16) describes C(t) with a single parameter value ,

(r/S0 ), which is virtually unchanged over the two periods, in contrast t o
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the varying exponential decay parameter a . Beschta et al . [1981b] reported

that the value of a in Period 2 at Station B was about one-half its valu e

during Period 1 .

As a direct, quantitative comparison of the supply-based model and th e

exponential decay model, we performed the following test : both models were

used to predict C(t) during Period 2 at Station B, based on parameter value s

estimated during Period 1 . For the expenervti :al decay motel, C(t) =

C(0)exp[-at], a regression-of log e G(t) on t gave a value of a = 0 .083

hr- 1 during Period 1 . For-the supply-based model (16) we used the Period 1

estimate of r/SO = 0.007 tonnes: 1 .

Equation (16) relates yield and concentration, but we need an expression

for C as a function of time . Imagine (16) applied over the short time

interval (t, t+ At) . If At is small, then we can approximate Y(t +At ; t) by

C(t)•Q-At, as suggested by (6) . With this approximation, (16) takes th e

form of a difference equation :

logeC(t+ot) = logeC(t) - (r/SO)•Q•C(t)•et

	

(17 )

For a given value C(0), (17) can be solved iteratively to give C(At) ,

C(2At), C(3At) ; etc .

Both models require a specified value of C(0) as an initial condition .

Figure 8 shows that during the first few hours of Period 2, th e

concentration at Station B varied erraticaly, probably beeaase of the sudde n

increase in discharge . Accordingly, in both models we set C(0) = 156 mgt - 1 ,

which was the average of C(t) over the first 4 hours of Period 2 . We then

set the time origin at hour 2 of the period and produced hourly prediction s

from both models for hours 5 through 25 . Equation (17) used At = 1 hour an d

also included appropriate conversion factors (e .g ., At is 1 hour, but Q has

units of m3s-l ) .

Both predictions were compared with C(t) data during Period 2 by mean s

of the same error criterion as employed in the Flynn Creek example . Th e

average absolute concentration error, as defined in Table 1, was 59 .2 mgt - 1

for the simple exponential decay model, but only 18 .9 mgt 1 for (17), based

on 21 hours of data . The exponential model seriously underpredicted C(t )

throughout the second period and (17) overpredicted C(t), but with only 1/ 3

as large an error .

In summary ; we found that the supply-based model usefully described th e
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sediment concentrations which were observed following the controlle d

reservoir release. Estimated values of (r/Sp) were consistent with the

relative size of sediment source areas for the two sampling stations . I n

addition, for Period 2 at Station B, the supply-based model produced mor e

accurate concentration predictions than did a simple exponential deca y

model . The exponential decay model results if one uses a linear function

9(S) = PS in (14) . Thus, the Station B predictions supported our choice o f

(3), rather than the linear function, to relate sediment concentration an d

sediment supply .
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VI . DISCUSSION

Equations (4), (5), and (10) are useful models of sediment transport a s

a function of streamflow and sediment supplies . The models are mathemati-

cally simple, have few parameters, and can be calibrated to fit observe d

(C,Q) time series . Both models reproduce the sediment concentration

dynamics of storm hysteresis and of seasonal decline . As a result ; on a

storm-by-storm basis, they fit observed concentration levels more closel y

than a sediment transport curve .

We feel that the supply-based approach shows promise as a predictiv e

tool and as a conceptual tool in studying stream sediment yields . Of the

two models, the single-supply version has the greatest predictive potential .

We have not yet made a strong statistical case for the predictiv e

superiority of the single-supply model over the transport curve (1) . The

transport curve has a few less degrees of freedom than the supply-base d

model . However, in some basins it may be possible to independently estimat e

two of the supply-based parameters, r and SO, from channel surveys .

To make effective predictions with the single-supply model, we need t o

know the frequency and number of (C,Q) observations required fo r

calibration . The Flynn Creek simulations indicate that good paramete r

estimates can be made from (C,Q) regressions on the rising hydrograph lim b

of the first fall event, and from sample values of R c taken during the

event . Further, the simulations suggested that the initial paramete r

values were relatively stable over time . Detailed sampling of later storm s .

would not be necessary, but could improve subsequent predictions . When new

data becomes available, model parameters can be quickly updated ; although

our calibrations were done by trial-and-error, the model should lend itsel f

well to on=line, nonlinear programming methods for estimation of its fe w

parameters .

The distributed supply model on the other hand, can be a usefu l

conceptual aid to sediment budget analyses . It suggests that identifiabl e

sediment storage sites in a given channel and floodplain could b e

categorized by their accessibility to different discharge levels . If thi s

categorization can be made, then the model could be used to help follow ,

over time, the depletion and resupply of specific sites .

A more theoretical approach to the prc l erm of Adenti fyi ng storage
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locations could be taken by drawing on studies of the hydraulic geometry o f

river channels (e .g ., Leopold, et al ., 1964 ; Yang, et al ., 1981) . Much of

their work has yielded empirical expression of parameters such as channe l

width and depth as power functions of discharge . The distributed-suppl y

model could use hydraulic geometry relations to test various assumption s

about the relative availability of sediment at various flow regimes .

It should be clear that the supply-based approach need not apply only t o

streams with storm-event hydrographs . If model parameters can indeed b e

estimated from a single runoff event, then the models may also be valuabl e

for watersheds with snowmelt hydrographs . Regardless of the specifi c

application, however, the most uncertain model features will continue to b e

the specific locations, sizes, and relative accessibility of sedimen t

storage sites and their ultimate sources . We believe that a quantitative

knowledge of sediment supplies is the key to improved modeling of sedimen t

yield .
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Direct integration gives :
t 2

-SO[eXp[-rS(t2)] - exp[-'5(tl)]] = -ap

	

Qb+i dt

	

(A-3 )

r

	

SO

	

SO
t i

APPENDIX A. SOLUTION OF SINGLE-COMPARTMENT MODEL EQUATION S

Substitution of Equation 5 into Equation yields :

dS = -aQb+lp exp[r ]

dt

	

SO

Separating variables, we get :

exp[-SS]dS = _aQb+l p dt
0

If S(ti) and Q(t), ti < t < t2 are known, then S(t) can be calculated a t

any later time, t2 .

Equation (A-3) can also be written in terms of sediment yield . We

substitute [S(ti) - Y(t2, ti)] for S(t2) and rearrange to obtain :

(A-1 )

(A-2 )

Y(t2,ti)

	

SO
loge 1-lEn exp[ rS ( t l)]

	

Qb+l dt

r

	

SO

t2
(A-4 )

t i

Inspection of this equation shows that the model parameters a, SO, or r

could be adjusted to produce any desired value of Y(t2,ti) for a give n

hydrograph, Q(t), and initial supply, S(ti) .

To solve for C(t), we replace S(t) in Equation (A-3) with C(t), usin g

Equation 5 . In addition, let Q(t) = Q, a constant, over [ti,t2], as in the

controlled reservoir release example . The result is :

C ( t 2) = l/[ C 1t1 +
SO

Q( t 2 - t 1)]

	

(A-5 )

Thus, the concentration decay curve, for constant Q, is a hyperboli c

function of elapsed time, (t2 - t i ) .
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APPENDIX C . SEDIMENT CONCENTRATIONS AND STREAMFLOW FOR "PERIOD 1 " OF

CONTROLLED RESERVOIR RELEASE AT HUNTINGTON CREEK, UTA H

Time

	

Streamflow
Suspended Sediment

Concentration, mgL' 1
Date hours

	

m3s- 1 Station A Station B

August 7, 1979 17

	

4 .9 151 82 0

18 333 77 0

19 156 81 6

20 163 71 5
21 13 5

22 124 420
23 108 349

r~ 24 340
August 8, 1979 1 108 300

2 99 266
3 109 288
4 103 230
5 101 248
6 114 281
7 80 245
8 79 21 2

9 66 21 2

10 63 197

11 64 17 4

12 72 175
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APPENDIX D . SEDIMENT CONCENTRATIONS AND STREAMFLOW FOR " PERIOD 2" OF

CONTROLLED RESERVOIR RELEASE AT HUNTINGTON CREEK, UTA H

Suspended Sediment
Time

	

Streamflow	 	 Concentration, mgt' 1	

hours

	

m3s- 1

	

Station A

	

Station B

August 8, 1979 1 5
1 6
1 7
1 8
1 9
20

2 1
22

23
y

	

24
August 9, 1979 1

2
3
4
5
6
7

8
9

10

1 1

1 2
1 3
14
1 5
1 6
1 7

Date

134
116
200
17 5
141
230
151
137
120
124
118
122
11 0
122
11 0
10 5
112
103

120
92

94
99

103

92
79

4 . 4
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