
A Rotating Flighted Cylinder
for Solid-Liquid Separation an d

Biological Waste Treatmen t

by
J. Ronald Miner

Water Resources Research Institute
Oregon State University

Corvallis, Oregon

WRRI-48

	

September 1976



,, .

1

	

'

A ROTATING FLIGHTED CYLINDER FO R

SOLID-LIQUID SEPARATION AND BIOLOGICAL WASTE TREATMEN T

by J. Ronald Mine r
Agricultural Engineering Departmen t

Oregon State University

WRRI-4 6

August 197 6

Project Completion Repor t

OWRT Project No . A-031-ORE

Project Period : July 1, 1974 to June 30, 197 6

The work upon which this publication is base d ' was supported in part

by funds provided by the United States Department of the Interid'r ,

Office of Water Research and Technology, as authorized under th e

Water Resourc

	

search Act of 1964, Public Law $8-379 .

4, .



ABSTRAC T

A single device for solid-liquid separation and biologica l

waste treatment was designed, built, and evaluated . The device ,

a rotating flighted cylinder, consists of a cylindrical tube whic h

has a helically wound fin mounted perpendicular to the interio r

surface . When mounted at a slight incline (7 to 15 degrees) and

slowly rotated (1 to 3 rpm), the device provides a mechanism t o

accomplish sedimentation between wraps of the fin . The settle d

solids are augered toward the upper end and discharged as a

solids-rich stream . The fin surfaces, alternately exposed to the

waste and the atmosphere, perform conversion of soluble organi c

matter to bacterial cells in a manner similar to rotating dis k

processes .

The solid-liquid separation aspect of the device was evaluate d

with respect to dilute dairy and swine manure slurries . The uni t

was demonstrated to be a non-plugging, low cost device for remova l

of settleable particles . It did not remove floating solids . Th e

24-inch unit was tested at flow rates of 1 to 10 gpm .

As a biological waste treatment device, the unit was evaluate d

for the treatment of dilute animal manure slurries and domesti c

sewage . The constituent removal efficiencies were similar t o

those achieved in conventional secondary sewage treatment plants .

When analyzed, the rotating flighted cylinder performance wa s

consistent with data previously generated for rotating disk pro-

cesses . The fact that the rotating flighted cylinder eliminate d

the need for a subsequent sedimentation tank gave it a specifi c

advantage .

Overall, the rotating flighted cylinder was demonstrated t o

be a simple, low cost, low energy-consumptive device for the treat -



ment of small domestic and agricultural waste flows . Where a tem-

porary or seasonal treatment unit is needed, it has some particula r

advantages over conventional package plants .

o:
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INTRODUCTION

Several alternative devices exist for the treatment o f

wastewater . These devices are to facilitate the release o f

water into the natural environment with a minimum of advers e

effects or to facilitate re-use of the water . Systems for th e

treatment of small waste sources present special problems .

Septic tanks and absorption fields are most commonly used ;

however, successful implementation is restricted to regions o f

suitable soil characteristics and to relatively dilute waste -

waters . Wastewater treatment and disposal alternatives to b e

used in lieu of septic tanks are generally expensive, requir e

considerable operator attention, and are highly energy-consumptive .

Waste treatment devices utilize two basic phenomena fo r

solids removal and organic matter concentration reduction . They

provide an opportunity for suspended solids to settle from th e

carriage water . An aerobic biological process is incorporate d

in which dissolved organics are used as an energy source b y

microorganisms . A further sedimentation process is used to re -

move the biological solids formed by metabolism of the dissolve d

organics .

This project was designed to evaluate an alternate schem e

to accomplish these transformations . The scheme proposes a singl e

device for both solid-liquid separation and aerobic biologica l

treatment . This device, a rotating flighted cylinder (RFC) ,

consists of a slowly rotated inclined cylinder with a helicall y

wound fin mounted perpendicular to the interior surfaces .

The specific objectives of the project were as follows :
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1. To evaluate the solid-liquid separation capabilities o f

various RFC sizes . Wastes of particular interest wer e

dairy manure slurry, liquid swine manure, and domesti c

sewage .

2. To evaluate the oxygen transfer capabilities of an RF C

at various hydraulic loading rates and rotational speeds .

3. To evaluate the overall waste treatment capabilities of a n

RFC-based system when treating domestic sewage an d

dilute dairy manure slurry .
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CONCEPT OF THE ROTATING FLIGHTED CYLINDE R

Several devices for solid-liquid separation have been devel-

oped. Glerum, Klomp and Poelma (1971) discussed such separatio n

devices applied to pig slurries . However, these systems have hig h

purchase and operation costs which make them impractical for smal l

livestock operations .

Because of the advantages of solid-liquid separation in liqui d

manure systems and the high cost of present separation devices ,

work has been done to develop a separator at Oregon State University .

PHYSICAL CONCEPT

The concept has evolved as a series of circular weirs over whic h

manure slurry flows . The weirs create a series of small settlin g

basins with the weirs themselves as basin outlets . Solids settling

from the flow are trapped in the basins . By moving the basins

slowly up an incline, solids are dumped at the upper end of the in -

cline along with whatever water has also been trapped .

The movement of the basin is physically accomplished in th e

design of the separator . The heart of the separator is a tube with

a helical fin attached to the inside surface . By mounting thi s

tube on an incline, the water encounters a physical structur e

similar to that shown in Figure 1 . When the tube is slowly

rotated, the basins are, in effect, moved up the incline .

The first experimental separator employing this concept use d

an 8-inch diameter, 57-inch long tube made of sheet metal whic h

had a 2-inch high sheet metal fin attached to the inside in a

helical configuration . There was a 2 1/4-inch spacing betwee n

successive wraps of the helix . This tube was mounted on a frame

built so the incline could be varied between 7 and 20 degrees .
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WATE R
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OF INCLINE

Figure 1 . Physical structure encountered by the liquid phas e
in the rotating flighted cylinder .

The tube was rotated by an electric motor and a wormgear spee d

reducer . Tube rotation speed was varied between 1 and 3 rpm

by the use of a series of different diameter pulleys . A sketch

of the separator is shown in Figure 2 and the actual device i n

Figure 3 .

THEORETICAL CONSIDERATION S

The device is based upon a concept of settling in small tanks .

Overall efficiency of the separator is controlled by the performanc e

of the individual basins . Suspended solids removal of individua l

settling basins is controlled by three parameters : (a) turbulence of

the fluid in the settling basin, (b) settling velocities of th e

solids being separated, and (c) detention time of the fluid in eac h

settling basin .

The turbulence parameter is a function of flow rate, flui d

viscosity, and incline of the basins . It is believed that th e

Reynold's Number for an open channel could be used as a measure o f

the turbulence of the parameter . It is not obvious whether the bes t

measure of the parameter can be obtained by the Reynold's Numbe r

calculated using the flow area over the weir crest or through th e

settling basin .



Figure 2 . Sketch of the rotating flighted cylinder in operatin g
position .

Information on the second parameter, settling velocities o f

manure particles, is not readily available . Due to the irregula r

shapes, variable sizes, and variable densities of the manure par-

ticles, settling velocities are impossible to predict . Thi s

parameter of the separation efficiency relationship, of necessity ,

will rely upon empirical data .

The third parameter, detention time of each individual settlin g

basin, is a straightforward calculation dependent upon volume of in-

dividual basins and flow rate . Detention time is calculated b y

dividing basin volume by flow rate through the basin . The incline

of the separation tube will slightly affect detention time but to a n

insignificant extent in the range of 7 to 20 degrees incline .

Development of the actual relationship between separatio n

efficiency and the three parameters of turbulence, settling velo-

cities, and detention time has not been completed . However, thi s

analysis has been helpful in realizing certain design principles :

(a) at the slopes being used (7 to 20 degrees), slope is of littl e

importance, (b) flow rate is the single most important variable, an d

(c) the device is relatively insensitive to rotational speed in th e

range tested (1 to 3 rpm) .
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PARTICLE MECHANIC S

Sedimentation in the RFC can be theoretically described b y

considering each basin as an ideal settling tank and all solid s

as ideal discrete particles . All particles with a settling velo-

city, Vt , or greater will be completely removed when V t enable s

the particle to fall a distance equal to the effective depth dur-

ing the detention period in the basin .

Vt = y/ T

	

( 1 )

where :

	

y = depth

T = detention tim e

Figure 4 shows the velocity analysis curve for discret e

particles (Weber, 1972) .

The function f(x) can be separated into the fraction o f

particles with vt
Ymax/T and the fraction with v t _ g(x)/T

but Ymax /T '

n = (1 - f t)VC

	

(2 )

where : f t = fraction of particles with V

	

V .

V = volume of the basin

C = concentration of particle s

The proportion of remaining particles removed by sedimenta-

tion will be o f/vt where vf < vt and the total number removed, n t ,

will be :
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1 . 0

w

	

0

Settling Velocity

Figure 4 . Settling velocity analysis curve for discrete particle s
(Weber, 1972) .

ft

n + VC

	

v£/vt df

	

. (3)

0

Since the depth of the RFC basin varies across its width, w ,

then vt becomes a function of width (Figure 5) .

vt - gTX) = vt (X)

	

(4)



Figure 5 . Cross section of RFC settling basin .

and ft , in turn, also becomes a function of width .

ft = f(x)

If n is the number of particles with V Vt , which are com-

pletely removed, then the number of particles, n, with v >_ vt (x)

is now expressed :

-xn = (1 - f(w/s)) VC + aC

	

1 - f(x) ) g(x) dx

	

(5 )

where :

	

a = basin length

The proportion of remaining particles removed is now :

v f/vt (x) df g (x) dx

	

(6)
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and the total number removed, n t , is :

n t = (a - f(w/s))VC + a - fex))g(x)dxCl

ft

+ aC/ / of/v t (x) dfdx

	

(7 )

0

Under the stated conditions, all particles accounted for b y

the first two terms of Equation 7 would be removed in the firs t

basin of the RFC and the remaining particles would be partiall y

removed by each of the series of basins as indicated by the fina l

term of the equation . This model is of use to give a qualitativ e

description of the ' sedimentation potential of the RFC rather tha n

any quantitative application . The successive removal of particle s

described by Equation 6 is a key parameter to solid-liquid separa-

tion in spite of the non-ideal conditions that actually exist .

Deviation from ideal conditions will create factors both .

enhancing and inhibiting to sedimentation of solids . Sinc e

ideal particles are discrete and non-flocculating, only the gri t

portion of municipal, sewage can be considered to have truly idea l

settling characteristics . The remaining solids can be classifie d

under type 2 settling because they have a tendency to coalesce, o r

flocculate, during sedimentation (Metcalf and Eddy, 1972) . As

agglomeration among these particles occurs, their settling velocit y

increases ; the larger particles create a reduced surface-area-to-

mass ratio and thus, the drag forces opposing subsidence are re-

duced (Weber, 1972) . This phenomenon expedites solids removal mor e

efficiently than the . model predicts ; however, type 2 particles are
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subject to other forces that oppose proper settling . Since thes e

particles have specific gravities much lower than grit, they ar e

easily sheared and resuspended by turbulent forces .

Ideal conditions also presuppose that particles are initiall y

equally distributed over the cross section of the tank . Although

this is not true of particles entering the basin because entr y

is over a weir, the sloughing biomass particles are more uniforml y

distributed and a portion is already on the basin bottom .

Two other significant factors are short-circuiting and tur-

bulence . The adverse effects of short-circuiting are reduce d

considerably by the numerous consecutive basins that must b e

passed through . It is apparent from observing the RFC in oper-

ation that a substantial portion of flow short-circuits acros s

the top of each basin ; however, there is a sufficient numbe r

of basins such that if a fraction of flow is dispersed in eac h

basin, then virtually all the wastewater entering the cylinde r

will have spent non-short-circuited time in several basins . In

addition, that portion of flow dispersed in each basin will ex-

perience a much longer detention time than the average detentio n

time . Since most of the flow spends time in a number of basins, the

chances of a particle experiencing an effective low overflow rat e

is increased .
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EVALUATION OF THE RFC FOR SOLID-LIQUID SEPARATIO N

Several problems were encountered in testing the first exper-

mental device . The first difficulty was development of representa-

tive sampling and analytical techniques . The sampling procedur e

was to catch all flow from the point being sampled (lower effluent ,

upper effluent, or influent) in a 265 ml plastic bottle . Solids

in the sample were then separated into suspended and solubl e

portions by centrifuging . Suspended and soluble concentration s

were obtained by drying and weighing the two portions and the n

dividing each weight by the volume, 0 .265 1 . This gave a solid s

concentration for the influent, lower effluent, and upper effluen t

in grams per liter . Since the separator can be expected to separat e

only suspended solids, the suspended solids separation efficiencie s

were calculated by dividing the lower effluent suspended solid s

concentration by the influent suspended solids concentration ,

subtracting from 1 .0, and multiplying by 100 .

The second problem encountered in evaluating the devic e

was in providing a constant flow rate of a high solids conten t

slurry at a flow rate compatible with the test unit . Th e

use of small capacity pumps was unsuccessful because of frequen t

plugging . The use of a constantly overflowing, well-agitate d

tank was somewhat better but still not fully satisfactory . How -

ever, a series of runs was made using this agitated tank technique ;

both manure solids and beet pulp were fed . The beet pulp slurry ,

used to simulate manure solids, avoided many of the pluggin g

problems .

The pumping problem was largely overcome by the use o f

a simple air-lift pump as shown in Figure 6 . Manure slurry

was pumped into a 55-gallon metal drum from the dairy manure

storage tank using an open impeller irrigation pump . By regulat-
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2IN. PLASTIC PIPE

OVERFLOW
WEI d TO SEPARATO R

55 GALLON DRUM

INLET FRO M
HIGH CAPACIT Y
MANUR E
PUMP

VARIABLE FLOW
(COMPRESSED AI R

Figure 6 . Air-lift pump used to feed slurry to the RF C
solid-liquid separator .

ing output from a portable air pump, a steady flow of slurr y

was obtained with a minimum of plugging .

EIGHT-INCH TUBE

Trial runs using beet pulp slurry were helpful in determinin g

operating characteristics of the separator . These data are

summarized in Table 1 . These runs established an optimum flow

rate between 0 .5 and 1 .0 gpm .

When a manure slurry of approximately 0 .4 percent settleabl e

solids was run through the device at 0 .5 gpm, settleable solid s

removals averaged 30 percent . This was considerably less tha n

had been achieved with beet pulp . The difficulty resulted from

the heavier particles remaining in the feed tank, never reachin g

the separator .

In evaluating these data, several observations were made :

(a} the separator was operating satisfactorily in that no plugging

or other mechanical problems were occurring, (b) the device was
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Table 1 . Percent suspended solids removal of the 8-inch
separaiof ieceiving beet pulp slurry at three flo w
rates . , o

Flow rate, gallons per minute

Time, minutes 0 .50 0 .75 1 .2 G

10 58 42 3 3
20 40 55 3 3
35 61 72 3 5
50 71 46 7 3
70 60 44 48
90 66 89 1 1

120 65 5 7
150 ` 78 65 - -
180 70 41 2 7
210 72 60 - -
Average 64 57 37

1 Average influent settleable solids for the three runs :
0 .5 gpm - 0 .22 percent ; 0 .75 gpm - 0 .18 percent ; 1 .2 gpm -
0 .19 percent .

2 Average upper effluent settleable solids concentration s
for two of the runs : 0 .5 gpm - 0 .67 percent, and 0 .75 gpm -
0 .20 percent .

3 Rotational speed : 2 rpm .
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not receiving a representative sample of manure solids, and (c )

the solids-rich fraction discharged at the upper end containe d

too much water, yielding a solids fraction with too low a concen-

tration .

MODIFICATION AND EVALUATIO N

To increase the solids concentration in the thickened uppe r

effluent, certain alterations of the fins were deemed necessary .

This change consisted of drilling a series of 1/4-inch hole s

at an angle of 6 degrees to the tube walls in the upper fou r

fins of the separator . The 6-degree angle was chosen becaus e

testing to that time had been done with the tube set at a

7-degree angle to the horizontal . Therefore, when the tub e

was in testing position, the angle of the holes through the up -

per four fins was one degree (down slope) from the horizontal .

These holes drained off part of the volume of water trapped b y

the upper four fins, making the concentration of solids highe r

in the upper effluent . A schematic diagram of the modifie d

tube is shown in Figure 7 .

Figure 7 . Schematic diagram of the 8-inch RFC tube modifie d
by drilling a series of 1/4-inch holes in the uppe r
wraps of the fin .
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Two additional tests were made with beet pulp to see wha t

effect this alteration might have on separation efficiency an d

upper effluent solids concentration . These runs were made

at 0 .5 gpm . Data for these two runs are shown in Table 2 . A

definite improvement in the upper effluent suspended concentratio n

was obtained by the modification without a sacrifice in solid s

removal efficiency .

REVISED DESIGN

After observing the initial separator performance, a secon d

generation device has been designed and fabricated . The majo r

changes have been an increase in shell diameter to 24 inches an d

an increase of basic flight depth to 6 inches . Flights are on a

4-inch spacing . To decrease the amount of water carried out th e

upper end with the solids, the upper six flights have been de -

creased in height in a stepwise fashion as shown in Figures 8 and 9 .

Physical characteristics of the first and second experimental tube s

are compared in Table 3 .

Figure 8 . Sketch of the 24-inch diameter RFC solid-liqui d
separator tube .
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Table 2 . Percent settleahle solids removal and upper effluent
settleahle solids concentration for the modifie d
separator receiving a beet pulp slurry .

Time,

	

Influent settleable

	

Settleable solids

	

Settleable solid s
min

	

solids, %

	

removal, %

	

concentration o f
upper effluent, o

Run A (average 62% )

10 0 .35 5 7
20 0 .34 5 4
35 0 .35 69 0 .15
50 0 .30 7 5
70 0 .30 6 5
90 0 .27 61 0 .1 3

120 0 .24 4 9
150 0 .24 54 0 .7 2
180 0 .25 72 1 .6 0

10 0 .39

Run B (average 59% )

5 9
20 0 .39 6 4
35 0 .37 65 0 .1 1
50 0 .36 6 0
70 0 .31 6 1
90 0 .29 63 0 .4 3

120 0 .26 5 5
150 0 .24 5 3
180 0 .21 46 0 .8 2
210 0 .21 59 1 .43
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Table 3 . Physical parameters of the 8-inch and 24-inch diamete r
tuhes for solid-liquid separation .

Parameters

	

8- inch

	

24-inch

Tube diameter, inches

	

8

	

2 4
Tube length, inches

	

57

	

6 0
Fin height, inches

	

2

	

6
Fin spacing, inches

	

2 .25

	

4
Mounting angle to horizontal,

	

7

	

17 . 5
degrees

Volume of water between fins :
cubic inches

	

22

	

35 5
gallons

	

0 .095

	

1 .5 4

Notes :
1. Upper five rounds of the fin in the 24-inch diameter tub e

have heights of 1, 2, 3, 4, and 5 inches, respectively .

2. The peripheral speeds are the same for both the 8-inch an d
24-inch diameter tubes .

r

TWENTY-FOUR INCH TUBE

Two needs encountered immediately in evaluating the devic e

for removing solids from dairy manure slurry were : (a) a slurry -

feeding system, and (b) a sampling technique which adequately re-

flected its performance . An air-lift pumping system was devise d

which had the capability of providing flow rates of 2 to 60 1/mi n

from a barrel continuously receiving and discharging a high flo w

rate of a well-agitated manure slurry . An alternative that als o

proved satisfactory was a gasoline engine driven variable spee d

diaphragm pump . The sampling problem was resolved by the fabri-

cation of a funnel strainer as shown in Figure 10, which wa s

used to collect the flow for a specified time . The volume collected
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4 LITER STAINLES S
,,,5 STEEL BEAKE R

Figure 10 . Cross section of the funnel-strainer used to evaluat e
the performance of the 24-inch diameter RFC used to
remove solids from dairy and swine manure slurries .

was measured, the solids retained on the screen (1 .19 mm openings )

weighed, and the moisture content determined . From these dat a

it was possible to calculate the retained solids content of th e

influent and two effluent streams .

When a dilute (0 .05 to 1 .2 percent retained solids) dairy manur e

slurry from flushing a free stall dairy barn was passed through th e

rotating cylinder, retained solids removals ranged from 20 to 8 0

percent, depending primarily upon the flow rate . These data ar e

summarized in Table 4 . Most of the discharged solids greater than

1 .19 mm were wood chips, plant stems, and other low density mate-

rials not subject to removal by sedimentation . During the test-

ing of this device, power consumption was measured and found to b e

0 .136 hp, independent of flow rate . This power consumptio n

does not include lifting the slurry from the storage reservoi r

to the separator .
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Table 4 . Summary of performance data from tests of the 24-inch
diameter rotating flighted cylinder with dilute dair y
manure slurries .

Flow rate range, Average retained 1 Average concentratio n
1/min solids removal,

	

% facto r

4 -

	

12 54 .1 11 . 7
12 -

	

16 46 .4 12 . 3
16 -

	

20 34 .6 13 . 9
20 -

	

24 28 .6 14 . 0
24 -

	

28 10 .5 7 . 5
28 -

	

36 14 .3 10 . 2
36 -

	

50 13 .1 12 .5

1 Retained solids are defined as those which will not pass throug h
a screen with 1 .19 mm openings .

2 Concentration factor is the upper retained solids concentratio n
divided by the influent retained solids concentration .

Utilizing the same separator and air-lift pump as previousl y

described, a series of trials were conducted to determine the per-

formance of the unit in removing solids from , a dilute swine manure

slurry . A gasoline-powered diaphragm pump lifted the slurry fro m

a pit beneath a partially-slatted feeding floor to the barre l

holding the air-lift pump . The swine were fed a finely groun d

complete ration pelleted for storage and handling ease . There

was no floating material present in the slurry . Flow rates t o

the separator ranged from 17 .8 to 26 .5 1/min . In every trial ,

the device removed all solids retained by a screen with 1 .19 mm

openings . Concentration, factors as defined in Table 4 range d

from 20 to 112, with a median of 62 . Solids-stream retaine d

solids were as high as 4 .3 percent when the feed slurry was 0 .0 4

percent retained solids .
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BIOLOGICAL WASTE TREATMENT CONSIDERATION S

Biological waste treatment systems in which a solid surfac e

is alternately exposed to the atmosphere and to a soluble BOD-lade n

water are commonplace in wastewater treatment technology . Trickling

filters, contact beds, and sand filters represent prime examples .

Rotating disk processes, which function similarly for the remova l

of soluble BOD, have been applied to municipal sewage (Autotro l

Corporation, 1971) and to partially treated livestock waste s

(Miner et al ., 1973) . In the rotating disk process, paralle l

circular disks mounted on a horizontal shaft are slowly rotated ,

one to five revolutions per minute . The shaft is mounted jus t

above the water surface of a tank so the disk surfaces are alter-

nately exposed to the atmosphere and submerged in the wastewater .

A biological growth, similar to that on trickling filter stones ,

develops on the disk and feeds upon the dissolved waste materials .

As the growth becomes sufficiently heavy, portions are shed, whic h

can be removed from the water by traditional sedimentation pro-

cesses . BOD removals of up to 90 percent were reported by Auto-

trol Corporation (1971) for a pilot plant treating municipal sew -

age . The major advantages of this process over activated sludg e

are lower power consumption and less complex mechanical equipment .

The rotating flighted cylinder is envisioned as having th e

potential to operate in a manner biologically similar to a

rotating disk system, with the additional advantage that a

separate sedimentation device would not be required . Solids

sloughed from the fin would be worked upward in the tube and re -

turned to the wet-well from which the waste was pumped . Sinc e

the device also has solid-liquid separation capabilities, th e

traditional functions of primary and secondary wastewater treat-

ment might be accomplished in a single unit . If successful ,

this device would have application in the treatment of domesti c

wastes from small systems as well as livestock wastes .
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OXYGEN TRANSFE R

Aeration theory suggests that the magnitude of oxygen transfe r

in an RFC unit is a result of the degree of surface renewal, o r

turbulence .' A rigorous quantitative model describing re-aeratio n

would be complex because of the hydraulic characteristics whic h

include, in effect, a stream flowing down the cylinder runnin g

transverse to the augered stream . It would appear more pro- ,

ductive to rely on empirical data . in developing a relationshi p

between measurable parameters ana aeration rates . Power con ;

sumption for various wastewater aerators reported by Hervol an d

Pyle (1973) is given in Table 5 .

Table 5 . Oxygen transferred per uni t . power consu%ed .
,

Aerator Kg 0 2 /kw - hr

Submerged turbine with sparger 1 . 6
Diffused aeration 2 . 7
Slow-speed turbines 3 . 7
High shear axial flow 2 .2

ORGANICS REMOVA L

A biological growth. medium intermittently exposing its micro -

bial population to a liquid and gas phase has been described as a

two-phase contact (TPC) system (Welch, 1968) . The predominan t

form of TPC treatment is the rotating biological disk (RBD) uni t

which has biological characteristics closely paralleling the RFC .

This type of operation incorporates characteristics of th e

trickling filter and activated sludge processes into one uni t

by providing a media for fixed growth and a mechanism for contin-

uous aeration .
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Two-phase contact was first investigated in the Unite d

States by Buswell in 1929 on a unit he referred to as a bio-

logical wheel . Buswell's report concluded that the actual area

occupied by the unit was about one-tenth of that required for a

trickling filter, power cost was low, and nitrification wa s

accomplished (Canale, 1971) . An experimental unit was late r

developed and A . T . Maltby secured a patent for it in 1931 .

TPC systems have been used for wastewater treatment for ove r

15 years in Europe (Antonie et al ., 1974) and by 1969, more tha n

400 such operations existed there .

Perhaps one of the most important characteristics of th e

TPC system is its ability to maintain a very high microbia l

population during operation . Joost (1969) found food-to-

microorganism ratios to be .02- .05 in an RBD system, wherea s

activated sludge values are typically .03 . Equivalent mixe d

liquor volatile suspended solids (MLVSS) concentrations have bee n

found at 17,000 mg/1 and 50,000 mg/1 as compared to activate d

sludge values of around 3,000 mg/1 (Welch, 1969) . The larg e

number of organisms expedites the stable treatment of concentrate d

waste and shock loadings . This attribute has made TPC system s

attractive to industrial, as well as municipal, waste treatment .

Movement of the supporting media provides turbulenc e

which enhances treatment efficiencies by increasing aeration o f

wastewater and promoting biological activity . The latte r

phenomenon was described by Hartmann(1967), who showed tha t

biological activity was increased by the transport of substrat e

and oxygen to a fixed biofilm by turbulence . Oxygen transfe r

is further expedited by exposure to the gas phase where th e

thin layer of waste covering the film is aerated under condi-

tions providing a constant and excess supply of oxygen . Whil e

the rate-limiting step in trickling filter biofilms is mos t

often oxygen transfer, two-phase contact provides a means fo r

minimizing this effect .
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In a rotating disk unit study, Pretorius (1971) note d

that the quantity of growth varied significantly throughou t

a series of disks with the growth thicker in the influen t

section . In addition, he observed a distinct difference i n

the nature of the microbial population on the different disks ,

evidently due to the plug-flow regime in the unit .

The amount of biomass supported by the medium is limite d

by shearing forces, inability of biomass to support its ow n

weight, possible anaerobic conditions at the surface of the

medium, and concentration of substrate (Welch, 1969) . Pre-

torius (1971) obtained a maximum biomass of 43 gm/m 2 dry

weight . Borchardt found biomass growth at approximatel y

200 gm/m 2 dry weight (Canale, 1971) .

Several investigators have demonstrated that RBD pro-

cesses are capable of achieving high degrees of nitrification .

Antonie et al . (1974) has shown that when the wastewater BOD concen-

tration approaches 30 mg/1, nitrifying organisms can compete wit h

the more rapidly growing carbon oxidizing organism . Nitrificatio n

then proceeds rapidly and is virtually complete when BOD concentra-

tion is approximately 10 mg/1 .

Actual operation of two-phase contact systems has yielde d

treatment efficiencies of 80 to 90 percent when combined wit h

primary and secondary clarification (Antonie et al ., 1974) .

The following observations have been made during operation o f

RBD systems and presumably resulted from characteristics also in-

herent in the rotating flighted cylinder .

1. Concentrated wastes can be effectively treated .

2. Shock load capabilities are excellent .

3. Bulking, foaming, or floating sludges are never a

problem .
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4. Washout potential is nonexistent .

5. No clogging prohlems are evidenced as in tricklin g

filters .

6, Volume of sludge produced is low and it dewaters mor e

readily than waste-activated sludge .

7. There is nitrification at low organic loadings .

8. Effluent has'a slightly brownish color, typical of bio -

' logical filters .

9. Operation is simple and maintenance low ,

10. Power requirements are low .

WASTEWATER TREATMENT COSTS

Marginal costs for increased capacity in wastewater treat-

ment are sufficiently small so as to create substantial de -

creases in cost per unit volume treated . Unfortunately treat-

ment plants the size common to package plants present uni t

costs quite in excess of larger facilities . Nicoll (1971 )

found costs for extended aeration package plants in Great Britai n

to be as shown in Figure 11 . The Federal Water Pollution Contro l

Administration (FWPCA, 1968) reported the cost indicated b y

Figure 12 for similar plants in the United States . In a

study of package treatment plant prices, Lamp (1974) tabulate d

the prices shown in Table 6 .
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Table 6 . Mean list price of package plants by plant size
(Lamp, 1974) .

Plant size, # of plants Mean list Standar d
gpd in samples price,

	

$ deviation

300 4 877 30 1
500 7 1,593 76 5
600 6 1,031 379
900 3 1,358 22 1

1,000 9 2,572 2,53 7
1,500 9 2,526 82 2
2,000 7 5,017 2,18 2
2,500 4 4,530 1,67 2
3,000 5 6,605 2,384
4,000 6 7,088 2,170
5,000 11 8,690 2,133
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EVALUATION OF THE RFC FOR BIOLOGICA L

WASTE TREATMENT

RFC units were set up and operated at the Water Researc h

Demonstration Laboratory of Oregon State University adjacent to

the Corvallis Wastewater Treatment Plant for domestic sewag e

studies . Two RFC units of 8- and 24-inch diameters were in-

vestigated . Table 3 gives the physical dimensions and Figure 13

shows the 8-inch unit .

Figure 13 . Eight-inch diameter RFC unit in operating position .

For sewage treatment, comminuted raw sewage was pumpe d

from the treatment plant to the laboratory where it was mad e

available for the RFC system . The 8-inch RFC was initiall y

set up with a 55-gallon metal barrel into which cylinder
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effluent emptied and from which cylinder influent was pumpe d

by an air-lift pump . This, system was fed by delivering

a slug load of the desired volume of waste to the barrel . For

the continuous flow regime of both RFC's and the batch treat-

ment of the 24-inch RFC, the system tested consisted of tw o

55-gallon metal barrels connected by a 2-inch steel pipe lo-

cated one inch from the bottom of each barrel (Figure .14) . A

submerged centrifugal pump at the bottom of the influent bar-

rel pumped sewage through a one-half inch tygon tube to the up -

per end of the cylinder . Flow rate was controlled by pinchin g

the tubing . Fluid flowed through the inclined cylinder a s

it rotated such that .a portion of the flow exitted through th e

lower end of the cylinder into the effluent barrel while th e

remaining flow was augered back to the upper end, where i t

was returned to the influent barrel . Because of the low flow

rates required for continuous flow treatment, influent sew -

age from the plant fine was run into an overflow reservoi r

from which a low flow rate pump delivered it to the RFC sys-

tem . An air-lift pump was employed to accomplish this durin g

operation of the 8-inch cylinder, but .due to difficulty i n

monitoring and regulating flow rates, a variable speed Master -

flex tubing pump was used during operation of the 24-inch cy-

linder . Effluent from the entire system left . the effluent

barrel at an opening cut 4 inches below the top 'of the barrel .

For oxygen transfer determinations, a plug was inserte d

in the 2-inch pipe connecting barrels so that only the ef-

fluent barrel was used. Thecentrifugal pump was placed a t

the bottom of this barrel and delivered water to the cylinder' s

upper end . Augered effluent was returned to the effluent

barrel . The sodium sulfite/cobaltous chloride method (Ecken-

felder and O'Connor, 1961) was used to deoxygenate tap water .

A Yellow Spring Instruments Dissolved Oxygen Meter/Model 5 4

was used to measure oxygen concentrations : For the 8-inch cy-
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Figure 14 . RFC system for batch and continuous flow treatment .

Linder, 14 grams of Na 2 SO 3 and a pinch of CoCl were added t o

the barrel of tap water, stirred, and allowed to stand severa l

minutes . Flow and rotation were then started and dissolve d

oxygen in the barrel was recorded at 5-minute intervals unti l

the dissolved oxygen concentration reached 7 mg/1 .

The 24-inch cylinder was deoxygenated somewhat different-

ly because the cylinder held a significant volume of water .

After filling the barrel with tap water, 14 grams of Na 2 SO 3

and a pinch of CoCl were added. One-hundred liters were then

pumped into the cylinder without rotation and an equal amoun t

of tap water was added to the barrel to fill it again . Mor e

Na 2 SO 3 (7 .5 grams) was added to the barrel, stirred, and al -

lowed to stand several minutes . Flow and rotation were the n

started and dissolved oxygen concentration was recorded a t

2-minute intervals . All dissolved oxygen tests were run a t

temperatures between 15 and 20 0 C .
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OPERATING EXPERIENCE

In principle, operational and maintenance care of a n

RFC unit is minimal and simple . However, during this investi-

gation, engineering problems arose requiring special attention .

Other than maintaining dependable flow rates with the air-lif t

pump, operation of the 8-inch RFC proceeded smoothly .

The 24-inch RFC presented unanticipated problems primaril y

due to its weight . Shortly after commencing operation, th e

belt from the drive shaft to the cylinder was unable to main-

tain sufficient friction and slipping became frequent . Thi s

situation was remedied by increasing tension on the belt . Al -

though this solved the immediate problem, it created excessiv e

wear on the shaft bearings and caused increased power consump-

tion . More sophisticated engineering of the mechanica l

aspects of the system could no doubt alleviate this problem .

A second unexpected difficulty arose when the 24-inch RF C

failed structurally . Abrasive wear and flexural stresses pro-

duced a crack where the lower rollers contacted the cylinder .

By doubling the number of lower rollers from two to four an d

thickening the contact area with a fiberglass band approximate-

ly one-quarter inch thick and 8 inches wide, the load wa s

sufficiently spread to relieve the problem . Shortly befor e

termination of data collection, the contact area of th e

upper rollers developed a similar failure which was temporaril y

repaired by a small epoxy-fiberglass band . Occasional pump

clogging plagued the system but better-adapted pumps coul d

eradicate such occurrences . No operational problems were en -

countered that appeared inherent in the RFC process . The en -

tire system could be designed so as to require practically n o

operational or maintenance attention .
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The time required to achieve a full microbial growth i n

the 8-inch RFC was one week . The 24-inch RFC was initiall y

operated for three weeks before it attained a full growth ;

this appeared to be due to the smooth, slick surface whic h

created problems of adherence . Once growth appeared Cafter th e

second week), it proceeded rapidly and later start-ups afte r

growth had dried out completely required about a week t o

reach full density . Growth was considered "full" when the in-

terior surface was completely covered with a thick bacteria l

slime .

Results of solid-liquid separation measurements in th e

. 8-inch cylinder indicates that suspended solids are remove d

in the unit but that the mechanism appears to be by dissolutio n

rather than by sedimentation . For a range of flow rates, bot h

the lower and augered effluents often had a lower suspende d

solids concentration than the cylinder influent (Table 7) .

Solid-liquid separation, as well as liquefaction, was ac-

complished by the 24-inch RFC as Table 8 illustrates . Th e

augered effluent was visually noted to contain large amount s

of sloughed biomass in every case whereas sloughed biomas s

was seen only at the highest cylinder flow rate in the lowe r

effluent . Solids removal increased with rotational speed .

Solids concentration in the augered effluent decreased with ro-

tational speed, as expected .

The effect of rotational speed on augered effluen t

concentration is influenced by two factors, turbulence an d

flow rate . As rotational speed increases, turbulence withi n

the helical channel creates conditions less conducive to ef-

ficient settling and more expeditious to the dissolution o f

soluble particles by physically breaking them up, thus expos-

ing more surface area, proving a greater rate of liqui d

turnover at the solid-liquid interface of the particles .
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Table 7 . Results of solid-liquid separation tests with th e
8-inch RFC treating domestic sewage .

Cylinder influent, Suspended solids, mg/ l
lpm Cylinde r

influent
Lowe r

effluent
Augere d
effluent

2 .3 161 167 16 2
2 .8 184 186 15 3
4 .1 195 186 18 1
4 .6 94 85 7 3
6 .9 211 164 17 4

10 .4 102 87

Table 8 . Results of solid-liquid separation tests with th e
24-inch RFC treating domestic sewage .

Cylinder Augered Rpm Suspended solids, mg/ 1
influent, effluent, Cylinder Lower Augere d

lpm lpm influent effluent effluen t

7 .5 4 .4 2 .00 176 133 20 4
6 .8 3 .0 1 .36 201 161 18 4
7 .7 1 .8 0 .82 99 92 9 8

21 .1 * 2 .9 1 .36 193 194 16 8
7 .8 * 5 .0 2 .31 141 72 15 7
8 .8 * 3 .1 1 .36 130 81 15 2
7 .6 2 .1 0 .94 104 75 17 9

Raw sewage introduced with recirculated flow directly into cylinder .
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Flow of augered effluent increases proportionally wit h

rotational speed ; therefore, the rate of solids accumulatio n

would have to increase with flow in order to maintain a con-

stant solids removal on concentration . But due to turbulence ,

solids accumulation is actually less and the dilution effec t

of the increased flow further limits solid-liquid separa-

tion. The sloughing of biomass might be increased by th e

higher shear of larger flows but the rate of sloughing i s

probably less than proportional to flow rate since the abilit y

of the biomass to support itself is a function of other thing s

in addition to shearing forces .

An important characteristic of the RFC, in contrast t o

trickling filter and RBD processes, is its ability to remov e

the solids it produces . While all three operations depen d

on the mechanism of converting substrate BOD to biomass fo r

a significant portion of their BOD removal capacity, the RF C

alone has the potential of eliminating secondary clarification .

OXYGEN TRANSFER STUDIE S

Data obtained from aeration tests indicate that oxyge n

transfer is enhanced by increasing flow rate and rotationa l

speed. It was also observed that the difference in oxygen con-

centration between lower effluent and augered effluent was a

function of flow rate and rotational speed . At high rotationa l

speeds (2 .5 rpm), lower effluent showed higher dissolved oxyge n

concentration than augered effluent, while at lower speed s

(0 .95 rpm), the reverse was true . As the flow rate increased ,

the difference became less (Figure 15) .

The re-aeration rate of the augered stream is thought t o

be influenced by turbulence and by the rate at which a thin liqui d

layer is exposed to the air phase, although the relative con-

tribution of each cannot be ascertained . Increasing rotational
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speed will cause both mechanisms to increase oxygen transfer .

If the rate of total oxygen transferred is less than propor-

tional to rotational speed, then augered effluent will have

lower dissolved oxygen concentrations at higher rpm's sinc e

augered flow is proportional to rotational speed . Also, residence

time in the cylinder contributes significantly to the rise i n

oxygen concentration . These effects probably account for the

positions of the dissolved oxygen lines in Figure 15 . Decrease s

in the differences between these lines are attributed to increase d

turbulence and corresponding mixing at higher flow rates . A

Reynold's Number based on the flow over a circular weir i s

shown in Figure 16 (Mavis, 1949) .
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' Figure 16 . Reynold's Number for flow over a circular wei r
in the 24-inch RFC .
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Efforts to develop a definite correlation between re -

aeration data and a turbulence parameter proved futile . Whil e

it appears obvious [Tables 9 and 10) that increased flow and

rotation (both of which caused increased re-aeration rates )

contribute to greater agitation and mixing, no adequate paramete r

based on flow, geometry and/or rotational speed was developed .

Figures 17 and 18 show empirical relationships for the 24-inch

RFC unit . Figure 18 indicates that there is a maximum flo w

corresponding to a given rotational speed where oxygen transfe r

is no longer enhanced by increasing flow rate . This leveling -

off effect is probably due to increased depth in the strea m

flow, which, according to stream aeration theories (Dobbins an d

O'Connor, 1958), would actually lower the rate of re-aeratio n

within the stream itself . Increased flow would tend to cance l

the decreased concentration rate, thus creating a more or les s

constant overall rate coefficient .

Table 9 . Re-aeration coefficients and oxygen transfer capacit y
for the 8-inch RFC .

Cylinder, kL a, Oxygen transfer ,

lpm hr-1 gm/day

2 .1 0 .483 20 . 9
2 .6 0 .566 24 . 5
2 .8 0 .508 21 . 9
3 .0 * 0 .565 24 . 4
3 .0 0 .583 25 . 2

4 .6 0 .593 25 . 6
12 .5 2 .120 91 .6

No rotation .
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Table 10 . . Re-aeration coefficients and oxygen transfer capacity
for the 24-inch RFC .

Cylinder Rpm kLa, Oxygen transfer ,

influent ,

lpm

hr -1 gm/day

4 .3 0 .00 0 .47 30 . 3
6 .0 0 .00 0 .74 47 . 9
8 .6 2 .40 1 .89 122 . 5

11 .7 0 .00 1 .89 122 . 5
11 .6 0 .72 1 .72 111 . 5

11 .6 0 .89 1 .84 119 . 2
11 .2 1 .76 2 .24 145 . 2
11 .3 2 .55 2 .32 150 . 3
11 .8 2 .50 * 2 .96 191 . 8
11 .8 2 .66 1 .92 124 . 4

15 .0 0 .00 1 .93 118 . 6
15 .2 0 .73 2 .57 166 . 5
15 .2 0 .94 2 .50 162 . 0
15 .6 0 .95 2 .38 154 . 2
14 .8 1 .36 2 .88 186 . 6

15 .3 2 .55 3 .06 198 . 3
14 .7 2 .61 3 .17 205 . 4
19 .7 0 .00 1 .86 120 . 5
21 .0 0 .97 2 .54 164 . 6
20 .8 2 .40 . 3 .95 256 .0

Opposite rotation .
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A comparison of BOD removal and re-aeration capacity in-

dicates that BOD is removed two to three times faster tha n

oxygen is being supplied when BODult = 1 .5 x BOD5 . Two reason s

for the existence of this situation are listed below :

1. Removal of BOD through sedimentation .

2. Aeration of the thin layer of waste on the biofil m

as it is exposed to the air phase contributes signifi-

cantly to re-aeration in a manner not fully reflecte d

by the re-aeration test .

Power consumption in the RFC system resulted from an in -

fluent pump, a recycle pump, and a motor rotating the cylinder .

Since the need for an influent pump will depend on whethe r

or not the treatment site allows for gravity flow, this sourc e

of power consumption is not included in the usage of the RF C

system.

Figure 19 shows power consumption for the recycle pum p

based on flow through a 10-foot, one half-inch steel pip e

and an elevation head of 2 .5 feet . Figure 20 shows power con-

sumption for a one-half horsepower motor rotating the cylinder .

The motor values were obtained from actual wattage reading s

during operation of the system and it is conceivable that mor e

refined engineering could reduce the amount of energy require d

here .

As an aerator the RFC unit tested is far less efficien t

than conventional aeration units CTable 5) . Using re-aeration

test data, the 24-inch RFC has an oxygen transfer efficienc y

of about 40 grams 0 2 /kw-hr . By calculating an efficiency

based on the soluhie BOD removed, the transfer becomes sig-

nificantly larger . Batch tests showed that as much as 150 mg/ i

of soluble BOD could he removed in a two-hour detention per-
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iod. By projecting BODult to be 1 .5 x BOD 5 , the oxygen trans-

fer efficiency is approximately 200 grams 0 2 /kw-hr. This value

is probably conservative because of the inaccuracies inheren t

in the soluble BOD 5 measurements .

WASTE TREATMENT STUDIE S

Evaluation of the biological treatment efficiency of th e

RFC was somewhat obscured by accumulation of solids in th e

influent and effluent barrels . By arranging the recirculating

flow so that liquid was pumped from the bottom of the barrels ,

it was hoped to keep solids sufficiently dispersed throughou t

the system so as to avoid their deposition (Figure 14) . I n

spite of this, sedimentation in the barrels appeared to accoun t

for removal of a portion of the waste load .

Two different feed systems were used to test the treat-

ment capabilities of the 8-inch RFC . A daily slug load o f

120 liters of raw sewage was added to the single barrel sys-

tem ; results are given in T4able 11 . The second system (Figur e

14) was a continuous flow regime with results given in Table s

12 and 13 .

Table 11 . Results of slug load fed system with 8-inch RFC .
(Flow rate = 120 1/day ; system volume = 200 1 )

Day

Inf .

Total BOD 5 , mg/ 1

Eff .

	

k(hr -1)

Total COD, mg/l

oInf . Eff .

1 200 15 .0648 415 74 8 2
2 200 18 .0602 404 80 8 0
3 280 28 .0576 559 116 7 9
4 220 24 .0554 466 86 8 2
5 210 15 .0660 300 100 6 7
6 210 14 .0677 310 76 7 5
7 180, 20 .0549 314 55 82
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By considering the rate of BO D 5 removal to approximat e

a first order reaction, one can determine the rate constan t

for each system :

dL/dt = -kL

1/T In (L inf/Leff = _
k

where T is the average detention time in the system and L i s

BOD 5 . For the seven runs of the slug load-fed system, an averag e

k value of .0609/hr was obtained with a standard deviation o f

.00486 .

The wide variation of influent concentrations presente d

difficulties in evaluating treatment efficiencies for the con-

tinuous flow system, and the unreliability of the influen t

air-lift pump accounted for a degree of inconsistency in th e

data, Nevertheless, average k values of .0674/hr for tota l

BOD 5 and .0629/hr for soluble BO D 5 were calculated with standar d

deviations of .0379 and .0336, respectively .

Batch treatments with the 24-inch RFC indicated that th e

system was capable of high organic matter removal efficiencie s

but it was unclear as to what portion of treatment could b e

attributed to sedimentation and decomposition in the barrels .

An attempt to ascertain the removal in the barrels was mad e

by filling the barrels with raw sewage and allowing the sew -

age to remain without recirculation . Two separate non-circu-

lating runs showed significantly different results but solubl e

BOD 5 and COD appeared to remain fairly constant . Since sedi-

mentation in the barrels is minimized by the recirculatio n

of the system, it is estimated that the cylinder is responsibl e

for as much as 80 to 90 percent of the system's treatmen t

efficiency .
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Tahles 14 and 15 show how treatment efficiency progresse d

with time . In determining rate coefficients, it was found tha t

k values decreased with length of treatment . For total BOD 5

it is suspected that agitation and turbulence of the syste m

enabled a greater BOD demand by the dissolution of particulate s

than was attained in the BOD bottle . This suggests that th e

system is actually removing more BOD than is reflected by the

initial measurements . Soluble BOD 5 is affected by this same

phenomenon but to an even greater extent . The differenc e

between initial soluble BOD5 and total particulate BOD 5 even-

tually solubilized in the system is greater than the differenc e

between the particulate BOD5 solubilized in the BOD bottle and

that solubilized in the system . Since these relative amount s

were unknown, the rate coefficients were calculated as a n

average of the measurements over a 12-hour period (Table 16) .

The rate constants increased with increasing flow rate s

through the cylinder, probably due to greater re-aeration capa-

city at higher flow rates . Rate also appeared to be more rapi d

at high rpm's, probably again due to re-aeration and increase d

exposure to the air phase of the rotating biofilm .

The continuous flow run with the 24-inch RFC yielde d

lower treatment efficiencies than equivalent batch treatments, -

except for removal of soluble BOD5 (Table 17) . When the average

continuous flow detention time is compared to a similar batc h

treatment detention time, it is seen that total COD remova l

is about 12 percent lower, soluble COD is about 6 percent lower ,

total BOD5 is 15 percent lower, and soluble BOD5 is approxi-

mately the same . The higher suspended solids concentration

in the effluent appeared responsible for the lower efficiencie s

of the "total" measurements . This was also reflected in the

rate constant for total BOD 5 removal . The soluhle BOD5 rat e

constant is ahout the same as the hatch treatments when varia-

tion with cylinder flow is considered .
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Table 16 . Average BOD rate coefficients for batch treatment s
with 24-inch RFC .

Cylinder

	

Rotational

	

Total BOD 5 ,

	

Soluble BOD 5 ,

flow rate,

	

speed,

	

k(hr -1 )

	

k(hr -1 )

lpm rp m

8 .0 1 .33 .235 .26 0
9 .4 0 .75 .222 .28 7
7 .5 2 .28 .353 .40 8

20 .8 0 .71 .273 .46 2
21 .4 2 .22 .325 .49 0
17 .5 2 .22 .340 .459

Table 17 . Efficiency and removal capacities for 24-inch RFC
batch treatment .

Parameter

	

Efficiency

	

Loading,

	

Total removal ,

removal

	

gm/m 2 -day

	

gm/day

Total BOD 95% 12 30 8
It

	

5
90% 23 55 9
80% 41 88 6
70% 60 1,134

Soluble BOD 95% 9 23 15
90% 16 38 9
80% 33 71 3
70% 48 90 7

Total COD 90% 20 48 6
„ 80% 70 1,51 2
„ 70% 110 2,07 9

Soluble COD 85% 9 20 7
TT 80% 21 45 4
„ 70% 42 79 4
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By expressing the RFC's organic loading and removal capa-

city in terms of organic load per area per time, the RFC sys-

tem can he compared with RBD systems (see Tahle 3 for RBD sur-

face areas) . Figures 21-25 show removal efficiency as a

function of daily loading per square meter of surface area .

A relationship developed by Popel (1964) for RBD systems i s

included in the figures illustrating BOD 5 removal efficiency .

Popel's curve resulted from data collected at numerous RB D

systems in Europe which included secondary clarification .

The soluble BOD 5 data (Figure 22) appears to correlate very

well with Popel's RBD observations . Soluble BOD5 offers th e

best comparison because secondary clarification has littl e

effect on its removal . The total BOD 5 data (Figure 21) shows

higher efficiency for the RFC than the RBD systems . Sinc e

the amount of BOD removal by sedimentation in the RFC syste m

is surely less than secondary clarification, Figure 21 indi-

cates that biological treatment in the RFC system is slightl y

more efficient than the RBD . Figure 23 compares data of RB D

and RFC continuous flow systems . None except Popel's include s

secondary clarification .

These comparisons show that the RFC is very similar t o

the RBD in its ability to biologically treat waste . Table 1 7

gives removal capacities for the 24-inch RFC .

Table 18 shows data for nitrogen removal . There are

instances where total and ammonia nitrogen removal excee d

50 percent, but it is nevertheless apparent that the RFC di d

not produce effective nitrification . In contrast to the ro-

tating biological disk which is operated essentially in a

plus flow regime, thus achieving nitrification in the latte r

stages, the entire RFC biomass is exposed to approximatel y

the same loading concentration at any one time . Visual ob-

servations revealed a uniform growth throughout the system .
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At long detention times when BOD concentration become s

low, favorable circumstances for nitrifiers exist . The

absence of nitrification during these times is perhaps du e

to insufficient time to establish a viable population . There

was some indication of nitrification, although by no mean s

conclusive, during operation of the 8-inch RFC . Because o f

storm water dilution, the raw sewage BOD concentration was i n

the range of 20 mg/1 . A continuous flow result showed th e

effluent BOD to exceed the influent BOD by a few mg/l, a sit-

uation simultaneously experienced by the trickling filter plan t

next door and attributed to nitrification .

Cost considerations for an RFC unit are only speculative ,

but appear to compare favorably to other package plant operations .

By estimating unit power cost at $ .01/kw-hr and power consump-

tion at .27 kw, a total annual power cost of $56 is computed .

Because of the low care required, any maintenance could b e

easily integrated into the existing establishment being served .

Capital costs are estimated to be below $2,500 based on ex-

perience with the 24-inch model . From examination of th e

costs, an RFC unit offers a competitive alternative to existin g

small treatment plants .
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CONCLUSION

The. rotating flighted cylinder was tested as both a .

solid-liquid separator and as a biological waste treatmen t

device . As a solid-liquid separator, it was demonstrated t o

be effective in removing settleable particles from a dilut e

slurry and concentrating them into a low volume concentrated .

stre•am, . As a biological waste treatment device, it effective-

ly combined primary and secondary waste treatment into a singl e

unit and produced an effluent comparable to that obtained fro m

conventional secondary•sewage'treatment devices . The main

advantages of this device are its mechanical simplicity ,

low power consumption, and trouble-free operation .
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APPENDIX A

SAMPLING AND ANALYTICAL PROCEDURES USE D

TO EVALUATE THE 8- AND 24-INCH RFC UNIT S

WHEN USED TO TREAT DOMESTIC SEWAG E

Sampling during batch treatment was done in one-liter pyre x

reagent bottles . Influent samples were collected from th e

line discharging raw sewage into the system . Treated sample s

were collected from the effluent barrel by submerging a sampl e

bottle sufficiently to allow wastewater to flow gently int o

the bottle .

Composite samples over an eight or nine hour period wer e

taken during continuous flow treatment after the system ha d

run approximately 16 hours . Influent was collected as i t

entered the influent barrel and effluent was collected as i t

left the effluent barrel . These samples were collected in a

250 ml graduated cylinder and immediately added to the com-

posite sample in a one-liter pyrex bottle at 3° C .

Sampling for solid-liquid separation was accomplished b y

collecting samples every ten minutes for one hour from the in -

fluent to the upper cylinder end, the lower cylinder en d

effluent, and the augered effluent . During operation of the

8-inch cylinder, 50 ml samples were taken and 150 m sample s

were used for the 24-inch cylinder . The samples collecte d

over the sampling period were composited separately for eac h

of the three collection points .

Dissolved oxygen samples during treatment were collecte d

from the barrels in 300 ml BOD bottles by submerging the hot-
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tle just enough to allow wastewater to flow gently into th e

bottle until completely full .

Five-day BOD and COD tests were run according to Standard

Methods CAPHA, 19.71), with the azide modification of the Winkler

method used to determine dissolved oxygen in the BOD test . Both

total and soluble samples were analyzed . Total samples were

well-mixed aliquots of the samples as they were collected, where -

as soluble samples consisted of the filtrate of a total sampl e

filtered through a GF/C 5 .5 cm Whatman glass fibre filter paper .

Kjeldahl nitrogen was determined according to Standard

Methods (APHA, 1971) except 100 ml . Micro-Kjeldahl flasks wer e

used instead of 800 ml Kjeldahl flasks . Digestion was accomplished

with 10 ml of sample and 10 ml of digestion reagent boile d

approximately 30 minutes beyond the cessation of visible whit e

SO 3 fumes . The sample was then diluted by adding approximatel y

30 ml of distilled water and 10 ml of hydroxide-thiosulfat e

to raise the pH. The digested samples were steam-distille d

until approximately 20 ml were collected in boric acid . Th e

boric acid and distillate were then measured and analyzed fo r

ammonia concentration by Nesslerization and colorimetric deter-

mination with a Coleman Junior II Spectrophotometer, Mode l

6-20 .

Ammonia nitrogen concentrations were measured by clar-

ifying a 100 ml sample with ZnSO 4 , raising the pH to ten with

a NaOH, and centrifuging at rpm for 15 minutes . The supernatan t

was then nesslerized and ammonia concentration determined wit h

the Coleman spectrophotometer .

Suspended solids determinations were made by filterin g

a measured volume of sample through a previously dried and
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weighed GF/C 5 .5 cm Whatman glass fihre filter paper and dry-

ing for a minimum of four hours at 100 0 C .

Total solids and total volatile solids were analyze d

according to Standard Methods CAFHA, 1971) .

The azide modification of the Winkler method was used t o

find dissolved oxygen concentration on samples immediatel y

after collection .

Analyses of BOD, COD, Kjeldahl, and ammonia nitrogen wer e

performed on samples that had been stored at 2 0 C for one t o

three days . All solids determinations were done within hours

after collection of the sample .

BOD samples were run in triplicate, and COD and suspende d

solids samples in duplicate . For ammonia and Kjeldahl nitrogen ,

one sample was prepared for colorimetry and three dilution s

were then measured spectrophotometrically . Values were averaged ,

except that any results of triplicate analyses deviating sig-

significantly (approximately 50 percent) from the accompanyin g

samples were discarded .
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APPENDIX B

DAIRY MANURE SLURRY TREATMENT

The 8-inch PVC tuhe previously used for oxygen transfe r

studies was used for treatment of liquid dairy manure at two

loading rates . This treatment is shown in Figure 13 . The barre l

was used as a storage tank . Effluent was removed from it onc e

a day; feed slurry was added to it after effluent removal . Th e

air lift pump continuously transferred barrel contents from

near the bottom of the barrel to the rotating flighted cylinde r

at a point about 30 cm from the upper end . Both upper and lowe r

effluent streams were discharged to the barrel . This arrangemen t

of equipment is similar to that which would result if a rotating

flighted cylinder were placed over or adjacent to an existin g

manure storage tank receiving flushes of liquid manure on a

daily basis .

Samples of these studies were obtained by collecting a

supply of fresh dairy manure from the OSU Dairy Barn in a larg e

metal container, mixing to assure homogeneity, and packagin g

in 100 and 200 g units in plastic freezer bags . The manure

samples were stored in a freezer until the day of use .

The treatment system was fed and sampled daily Monda y

through Friday . Samples of effluent and feed were analyze d

immediately using procedures from Standard Methods (APHA, 1971) ,

facilitated with supplies from Hach Chemical Company where ap-

propriate .
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FIVE HUNDRED GRAM PER DAY STUDIE S

In the first dairy manure study, 500 g of manure were fe d

and 20 1 of effluent removed daily . Immediately after removing

20 1 of effluent from the top of the barrel, four 100 g manur e

packets were added . A fifth manure packet was mixed with 4 1

of water to provide the feed sample for analyses . After the

necessary samples were obtained, the residual was added to th e

barrel and the liquid volume returned to 175 1 by the additio n

of water .

During this trial, it was evident that the system wa s

operating satisfactorily by the lack of odors and the generall y

desirable-appearing effluent . At the end of this three-week

trial, it was concluded that the full capability of the devic e

was not being utilized . A portion of the removal that wa s

being achieved was due to solids settling and accumulating i n

the barrel .

ONE THOUSAND GRAM STUDIES

This trial was conducted in a manner similar to the on e

above, except that 200 g packets were fed and 40 1 of effluen t

were removed daily . In order to prepare a feed sample, a 200 g

packet of manure was mixed with 8 1 of water . Thus, the system

was loaded at twice the previous rate .

Again, the device was able to accept the applied waste loa d

for a four-week period, maintain an aerobic environment, an d

yield an effluent showing 60 to 90 percent pollutant reductio n

depending upon the constituent of concern . In this trial ,

the loading rate was near the maximum acceptahle if maintainin g

aerobic conditions in the barrel is essential . Although dis-

solved oxygen was present in the barrel, concentrations were
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frequently less than , 1 .0 mg/l during this study . The thicknes s

of foam on the barrel increased to about 6 cm during this trial ,

hut no complications resulted . Heavier solids accumulated i n

the bottom of the barrel as before .
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