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PREFACE

The work reported herein was performed under the annual allotment fro m

the Office of Water Resources Research to the Oregon Water Resources Re -

search Institute . Funds were available over a three year period, but du e

to difficulty in acquiring graduate students, the total time spent on th e

project was only 21 months .

The second author on the report was supported in the Department o f

Agricultural Engineering as a research assistant and completed a Master' s

Degree in June of 1973 . All of the experimental work reported herein wa s

performed by him during his graduate study .

The project has truly been a cooperative effort from the very beginnin g

to its conclusion . The objectives of the project were formulated after a

series of meetings between the Northwest Watershed Research Center of th e

Agricultural Research Service in Boise, Idaho and the Department of Agri -

cultural Engineering at Oregon State University .

The development of the mathematical model and programming were per -

formed by a staff member from the Southern Utah State College in Cedar City ,

Utah during time spent at Oregon State University working toward a Ph .D .

in mathematics .

The work reported herein is preliminary and considerable additiona l

work is needed to bring the project to a firm conclusion . Some of the

results, therefore, are not conclusive and should be considered tentativ e

and should be used with discretion .

The project will be pursued on a much larger scale under a new gran t

from the Office of Water Resources Research .
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Hopefully,. tb&s :apart will lamed' 'eMgAheewig and sabishm. closer to ,

more accur'ete'pVVdIc%lVm ,tddbs contevnihv the management (A'• w#ter-shedis, the

engineering desl,gh af hydraml4c 00tucturem, and thle fohmea8ftdAw of water

supplies .
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Axisymmetri.c Infiltration

by

Royal H . Brooksl , Paul J . Leclercq2 , Richard R . Tebbs 3 , and Walter Rawls "

INTRODUCTION

Engineers concerned with watershed protection and flood control and

other engineering problems associated with watershed hydrology are often

confronted with predicting watershed characteristics . Watershed models o r

empirical equations are often used to make these predictions .

Almost all predictive schemes or models for determining runoff, the

development of stream hydrographs, and other watershed characteristics re-

quire some historical performance data for fitting to the model . Where thes e

data are available, these predictive models are useful for extrapolating

the watershed characteristics to future times and events .

However, the prediction of watershed characteristics for ungaged water-

sheds requires the use of empirical equations that are often not physically

meaningful or do not include meaningful physical data- .from the watershed .

Such data as area of watershed, type of vegetative cover, etc . are not very

meaningful when it comes to predicting infiltration and runoff . Recently

there have been some attempts to construct physically based watershed

models that include the various physical processes that take place on th e

watershed during a rainfall event . The infiltration process is one of th e

'-Associate Professor, Department of Agricultural Engineering, Oregon Stat e
University, Corvallis, Oregon .

2Hydrologist,Faculte des Sciences Agronomiques, Department de Genie Rural ,
Universito Catholique de Louvain, Belgium .

3Assistant Professor, Department of Mathematics, Southern . Utah State
College, Cedar City, Utah ;

"Hydrologist, Northwest Watershed Research Center, Western Region, Agri -
cultural Research Service, USDA, Boise, Idaho .



more important components of the rainfall-runoff process t'tiat has recently

received some attedtian by NT"ein and Larson (1'913), Jeppson (1972),, ar` d,'SY;ngh

(1972) .

These authors have constructed an infiltration model based upon the

partial differential equation describing the movement of water through soars .

The use of this model requires information concerning the relationship s

among permeability, capillary pressure, and soil-water content .

In all likelihood, these deterministic models will have limited use in

the solution of watershed syshems, particularly if the watersheds are large

and diverse . Capillary pre-ssure, permeability, and soil-water content re-

lationships are usually obtained for relatively small samples of soil that

only represent points in the total watershed . The relationship among thes e

variables may be greatly different with respect to depth in the profile an d

with respect to aerial distribution over the watershed . Nevertheless, thes e

models are very useful for learning how the properties of the soil affec t

the infiltration process .

Unless an effort is made to generalize the functional relationship in

the solution of the infiltration model, little may be gained by using

specific data of capillary pressure, permeability, and water content in

the model . One can only ascertain how a particular soil affects the pro-

cesses . It would be much more helpful to know how broad classes of soi l

texture and layering affect the infiltration process so that the watershed

may be broken down into characteristic units . The problem arises in

making broad classifications that are quantitative .

The work on similitude in porous media by Brooks and Corey (1964) may

be of some use in making broad descriptive classifications of soils tha t

are quantitative and at the same time useful in solutions of models .
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The purpose of this report is to show how the hydraulic properties o f

porous media affect infiltration where infiltration i s ' defined as the entr y

of water into the soil from a source at the soil surface and the subsequen t

movement of the water through the soil . Specifically, it includes infil-

tration rate and advance of the wetting front . The hydraulic propertie s

of porous media described by Brooks and Corey (1964, 1966) are used to dEes- •

tribe the infiltration process .

These hydraulic properties are obtained and defined from the capillary

pressure-saturation curves for drainage. Since the infiltration of water

into soil is an imbibition process, these hydraulic properties must be re-

lated to capillary pressure and saturation for imbibition . These capillary

pressure-saturation curves for imbibition and drainage are•different becaus e

of the entrapment of air . The phenomena is called hysteresis .

This report describes in detail a rapid method for measuring capillary

pressure saturation curves for both imbibition and drainage . A functional

relationship between capillary pressure and saturation for imbibition i s

proposed that includes the properties obtained from the drainage capillary

pressure-saturation curve .

Finally, the infiltration under a circular infiltrometer is computed

from a mathematical model and compared with experimental data . The solu-

tions were obtained using both imbibition and drainage functions . The

solutions are presented in terms of scaled variables to show the effect o f

hydraulic properties upon infiltration rate and advance of the wetting

front .
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SIMILITUd$','CRITERIA AND THE MODEL FOR FLUID FLOW IN POROUS MEDIA

Whenever a model Is constructed to, represent a flaw system, it is tg,

portant that the model behaves In a manner similar to the prototype . Thh

model presented herein is a mathematical model that describes the flow o f

a liquid in porous media . It doer not resemble the prototype in physica l

appearance as opposed to a physical model that would be a miniature of th e

prototype .

If one were its gonstruct physical model fer observing fluid flow in

porous media it wad beceme *violas tom$ the model must be constructed s o

that its d.imensiop mere similar or proportional to , the prototype , and

that it should h0hem4 in a 0*ti4r manner . Yet very often when mathematical

models are constructed for this purpose, little or no attention is give n

to similarity so that its performance can be extended to similar prototypes .

Obviously, the number of solutions from a mathematical model can be

infinite because there are an infinite set of boundary conditions that may

be imposed . Each set of conditions yields different sets of outputs or

solutions .

The literature is repleat with the solution of various boundary valu e

problems that have application only to one prototype situation . Some of

those solutions were obtained with mathematical models while others wer e

obtained using physical models . Extrapolation or the extension of result s

to other similar situations are virtually impossible because the solution s

have not been presented in terms of scaled variables or scaled boundarie s

that satisfy similarity criteria .

iy satisfying similarity criteria one not only may extend the result s

t a,s .milar ;pTot type., but generalizations can be made that pjmv4.de an



insight into the physical nature of how the system performs . Without

similarity criteria it becomes difficult to make generalized conclusions .

There are two generally accepted methods for establishing criteria o f

similitude . The first is usually called dimensional analysis that is com-

monly used by hydraulic engineers . The second method is called inspectional

analysis and requires that the differential equation describing the physi-

cal processes is known .

The purpose of this section is not to review or discuss the variou s

methods of establishing similitude requirements, but rather to appl y

criteria to the flow of fluids in porous media that has been formerl y

developed .

The similitude requirements proposed by Brooks and Corey (1964) wil l

be reviewed and applied to the mathematical model described herein . They

found that by applying the method of inspectional analysis to the genera l

flow equation of one fluid moving in a homogeneous media a set of require-

ments could be established . They discovered that if these requirement s

were satisfied, the solutions of the differential equations yielded iden-

tical particular solutions in terms of scaled variables .

The basic model used for the flow of fluids in porous media is obtaine d

by combining Darcy's Law with the continuity equation . The basic units in

this equation are force, length, and time . The properties of the fluid and

the media can be defined in terms of these three basic units . For example ,

permeability can be expressed in terms of length .

If the basic equation is written in terms of energy per unit volume ,

then the equation may be appropriately scaled by using a standard unit o f

energy that contains standard units of force and length . Since permeability

may be a variable, then a standard unit of permeability must be chosen also .
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The basic flow equation, Darcy ' s Law may be expressed a s

q

	

-K e V (-Pc/pg + Z )

	

(1 )

or in terms of energy per unit volume, it become s

k

	

_ - u 4 (-P c + pg Z)•

	

( 2 )

A standard unit of pressure and permeability are chosen, i .e ., Po and Ko

respectively . The physical significance of these terms will be pointe d

out later in the development . By dividing each pressure term by the stan-

dard pressure and permeability by the standard permeability, the standard

units for the other terms in the equation may be deduced . After following

this scaling procedure, equation (2) becomes

k P
q/K

	

=	 e° V (-P /P + pgZ/P ) .
o

	

K u

	

c o

	

0
0

Since k e = Ag then equation (3) may be expressed as '

K (P)

	

P c

	

Z

	

(4 )
q/Ko - Ko ( pg )

	

P O +
P.

The standard unit of length for the gradient, V, must be P o/pg and the

standard flux, q, must be K .
0

Using simplified notation and rewriting equation (4) the expressio n

= K .O . (-P . + Z .) (5 )

is obtained which is identical in form to equation (1) . The dot notation

is defined as

q

(3)
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q . = scaled flux, q/ko ,

V . = scaled gradient, L
0
V ,

P. = scaled pressure, Pc/Po ,

Z, = scaled elevation above an arbitrary datum, Z/ Lo , and
Lo is the standard length or Lo = Po/pg.

Obviously, if one chooses a standard pressure, the standard unit of energ y

and the characteristic length for similitude must be P
0
/pg or some particu -

lar characteristic pressure head ..

For saturated media, Ko is a constant and the standard pressure hea d

Po/pg may be any characteristic pressure head related to the flow geometr y

or any characteristic length . The properties of the medium do not become

part of the similitude criteria . As long as the medium is always saturated ,

the only similitude criteria that must be satisfied are those for geometri c

similarity, i .e . ,

1. The macroscopic boundaries of the model must have a shape and

orientation similar to the prototype .

2. The size of the model must be such that the ratio of all corre -

sponding lengths must be the same for model and prototype, i .e . ;

(6 )

If at any time in the flow system,the medium becomes partially saturate d

so that

K .

	

=

	

f(P .)

	

( 7 )

then a geometric characteristic length is not sufficient for use as a stan-

dard pressure head or as a standard length . In other words, for the general
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case, the standard pressure head and standard permeability cannot be arbi-

trarily chosen . If the relative flux, q ., in equation (5) must be the sam e

for both prototype and model, the functional relationship given by equation

(7) must be identical for both model and prototype .

Even though the relationship given by equation (7) is different for

wetting and drying of media, the standard units used in equation (7) shoul d

be intrinsic media properties and independent of the type of flow . If the

standard units for similarity are to be practical, they should be measurabl e

also .

In studies dealing with the drainage of liquids from porous media ,

Brooks and Corey (1964) found that effective saturation and capillary

pressure could be related by the power function

S .

	

=

	

(P .) 4 for P . > 1 .0 ,

and

	

(8 )

S . = 1 .0 for P . < 1 . 0

where P . = Pc/Pb and S . _ (S - Sr)/(l - Sr) . They showed that permeabilit y

as a function of capillary pressure and saturation may be deduced from

equation (8) through the Burdine Integral . The relationship is a powe r

function also and may be expressed a s

K .

	

= (p,)-(2 + 3a) for P . > 1 .0 ,

K .

	

= 1 .0 for P . < 1 .0, where K . = K e /K s ,

	

(9 )

K .

	

=

	

(Se) 2 / X + 3
and
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It should be obvious that if this functional form is valid for drainage ,

the bubbling pressure head Pb and the saturated permeability Ks reduce the

functional relationship among the variables to one that is the same for al l

soils having identical values of A . Therefore, these two hydraulic propertie s

of porous media logically become the standard pressure and permeability for

satisfying the general similitude requirements for flow in porous media .

The requirements necessary and sufficient for two systems to be similar in

addition to those already expressed for geometric similarity, is that the

pore size distribution index, A, must be the same and the characteristic or

standard length must be the bubbling pressure head . In other words, th e

size of the model must be such tha t

Lp

	

( P b/Pg ) p

Lm

	

(P b /pg) m

and

		

(10 )

X
m

where L is any characteristic length . Corey ; et .al, (1965) demonstrated

that if the above similitude requirements were satisfied for the drainage

cycle, the two systems would be similar on the imbibition cycle as well .

Their study, however was limited to sand separates and was by no means con-

clusive . In fact, their functional relationship for imbibition was the

same as that used for drainage . No imbibition experiments, however, wer e

run to test the similitude criteria for imbibition . It is more than likel y

that the above requirements for similitude are minimal and that for imbi-

bition additional criteria may be required .

9
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The general scaled differentiat equation for imbibition or drainage

is obtained by combining scale& Darcy ' s Law with the scaled o

	

►i W

equation .

The continuity equation is scaled in a manner similar to D's-La '

and in dimensional form it may be written a s

div

	

= -
e

where $e is effective porosity .

If q is scaled by Ks , t by to , and div . by Pb/pg, then equation (41)

becomes

t o Ks

	

Pb
div

ad = _ as .
$ eP b /Pg pg

	

~K

	

at t
s~

	

o

as .
at

(12 )

t K-
os

4)ePb/Pg (Div
.q .) (13 )

as .
at .

or

Since equation (13) must be identical in form to equation (11) and must

yield identical particular solutions, let

t 0 K s pg
= 1

P b b e
P gK s

1' e P b

or

t o

(14 )

(15 )
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Thus, for unsteady flow in porous media, the standard time is given by

equation (15) and the general scaled equation for flow of one fluid in

partially saturated media become s

DIV .{K .o .(-P . + Z .)} ;

	

aS ./at .

	

(16 )

where the dots designate scaled variables or operators with respect t o

scaled variables .

The scaled partial differential equation (16) may be rearranged in

terms of other dependent variables, eg ., scaled saturation, S ., or scaled

hydraulic head, H . When equation (16) Is written in terms of a particula r

set of coordinates for a given set of boundary and initial conditions, it

becomes a model for fluid movement in porous media .

Equation (16) may be solved using any suitable relationship among

saturation, capillary pressure, and permeability provided these variables

are scaled with the standard quantities previously mentioned . If the por e

size distribution index is known, then the results will have application to

other similar boundary conditions having the same pore size distribution

index . The relationships among the variables, saturation, capillary pressure ,

and permeability, need not be in functional form . They may be in terms o f

a set of correspgnding values (tabular) and they may be for either imbi-

bition, drainage, or for flow situations where hysteresis is present .

The standard units of permeability, capillary pressure, and saturation

are intrinsic properties of the media and one need not be concerned with

the type of function (or tabular, data) used to describe the flow Process s o

long as the media properties described by Brooks and Corey are definable .

If they cannot be defined, then the solutions are not transferable to othe r

similar conditions .



A summary of the standard units used in equation (16) and other hydrau-

lic properties of media, are given in Table 1 below . Other standard unit s

may be defined from those given in Table 1, eg ., diffusivity and hydraulic

head .

Table 1 . Standard Units and Hydraulic Properties of Media .

Length Lo

	

= Pb/Pg

Time t o

	

= Pb (pe/PgKs

Permeability K

	

= Ko s

Water content, volumetric
e o ~e

Effective saturation 0/0

	

=

	

S .0

Capillary pressure P Po b

Pore size distribution index A

Effective porosity = q) (1-Sr )

Residual saturation Sr

HYDRAULICPROPERTIES OF MEDIA AND IMBIBITION

True similitude requirements for flow of fluids in partially saturate d

media should be independent of the character of the flow, previous histor y

of the media, and type of boundary conditions . Since infiltration or im-

bibition is largely dependent upon the phenomena capillarity, a brief dis-

cussion of capillarity with emphasis on imbibition follows .

When water enters a soil, air must be replaced . The flow process ,

therefore, involves two immiscible fluids, air and water . When these two

immiscible fluids occupy the same pore volume of a porous medium, water i s

1 2



more strongly adsorbed than air, creating a curved interface between th e

two fluids . In other words, the cohesive forces in the water are weake r

than the adsorptive forces . This strong adsorption of the water to th e

solid creates a curved interface such that the pressure is decreased in th e

water or on the convex side of the interface relative to that on the concav e

side . The smaller the space for these two fluids to ccupy, the smalle r

the radius of curvature of the interface and the greater the pressure dif -

ference across the interface . This pressure difference is called capillar y

pressure and is defined by the equation

P

	

P

	

Pc

	

a

	

w

where the subscripts refer to air and water . Since capillary pressure ca n

be related also to the radius of curvature of the interface, the basic

equation of capillarity given in general terms i s

1

	

1
P

	

= Q 1 +c

	

r
r 2

where r 1 and r2 are the major and minor radii of curvature and a is the

surface tension of the wetting fluid .

In the work described herein, the air is assumed to be at atmospheric

pressure and further, no resistance is encountered in its flow . Therefore ,

the permeabilities discussed will be water permeabilities and saturation s

(fraction of pore volume occupied by a fluid) will refer to the water phase .

Large values of capillary pressure produce small radii of curvatur e

according to equation (2) and hence, low values of saturation . In other

words, saturation depends upon capillary pressure .

(17 )

(18 )
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The direction of saturation change is used to describe the characte r

of fluid flow in porous media . An increase in saturation is designated

"imbibition" while a decrease in saturation is called "drainage" .

The functional relationship between saturation and capillary pressur e

depends upon the character of flow and the initial and residual saturation

of the soil at the beginning or end of the imbibition or drainage cycle .

This phenomena is called hysteresis .

According to Colonna, et .al . (1972), during drainage, the air begin s

to penetrate progressively into pores having smaller and smaller sizes .

For each increment of capillary pressure increase, there is activated a ne w

family of pore networks consisting of interconnected pores of varying size s

that are equal or larger than the ones already penetrated by air .

The activation of each new network of pores is controlled by th e

capillary pressure necessary to allow air first to penetrate and then t o

flow through the channels that belong to the network . Colonna, et .al . ,

referred to this capillary pressure as the "opening pressure " .

For imbibition, the capillary pressure necessary to repenetrate eac h

of these networks to prevent air flow is called the " stoppage pressure . "

It could, in theory, be as high as the bubbling pressure of media havin g

completely uniform pore sizes .

During imbibition, part of the air is bypassed by the increasing wate r

saturation leaving a portion of the air trapped in the media . This air

trapped in the media at a particular capillary pressure prevents water fro m

filling the pores to the saturation obtainable under "drainage" . Therefore ,

if two identical media are at the same capillary pressure but one is o n

the imbibition cycle and the other on the drainage cycle, the saturatio n

14



and permeability will be smaller for the imbibing media . than for the one

draining .

It is well known that drainage and imbibition capillary pressure -

saturation curves can be perfectly reproduced provided the saturation i s

always reduced to a value near residual on the drainage cycle and to nea r

zero on the imbibition cycle . Therefore, under these specified end point s

each cycle has a unique functional relationship among capillary pressure ,

saturation, and permeability to both air and water .

Since the hydraulic behavior of fluids in porous media Is largely af-

fected by capillary pressure and its relation to saturation and permeability ,

it would be useful to characterize the infiltration process with capillar y

properties of the soil .

The hydraulic properties of porous media defined by Brooks and Core y

(1964) from drainage curves for describing similitude requirements will -be

employed here to study infiltration . This will be accomplished by defining

the capillary pressure-saturation curves . for imbibition in terms of th e

hydraulic properties of the drainage curve .

In order to accomplish this, it is necessary to have capillary pressure -

saturation data for many soils for both imbibition and drainage . Since

there is not an abundance of data in the literature where both imbibitio n

and drainage are obtained on the same soils, one must resort to measurin g

capillary pressure as a function of saturation and permeability . The pro-

cess of acquiring data for a large number of soils by conventional tech-

niques is very time consuming . Therefore, .a considerable part of-th e

research effort was devoted to developing an experimental technique fo r

rapidly determining capillary pressure as a function of saturation fo r

both imbibition and drainage .

1
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mental Techniue for Determinin_ H draulic Pro p erties

Most experimental procedures for determining capillary pressure as a

function of saturation impose a positive air pressure on a soil sample i n

contact with a fully saturated capillary barrier or a negative pressur e

is applied to the fluid on the opposite side of the fully saturated barrier .

In both cases, when the pressure changes, liquid either leaves or enter s

the soil through the capillary barrier .

The liquid content in the soil sample will change continuously unti l

the capillary forces in the soil come into equilibrium with the forces im-

posed on the sample or on the capillary barrier . The time required for

equilibrium is considerable .

In general, the method described herein for measuring imbibitio n

capillary pressure-saturation is one in which no liquid enters the soi l

through the capillary barrier . Liquid is applied to the soil sample in

equal increments through the use of a micrometer pipette . When liquid is

added, the capillary pressure in the soil sample is reduced and the equi-

librium pressure is measured on the opposite side of a fully saturated

capillary barrier . The details of the method are described in Appendix I .

x'er

Experimental Dat a

Some typical data obtained by the method described in Appendix I i s

shown in Figure 1 . The data is expressed in terms of scaled variables and

the hydraulic properties are shown in the figure . The imbibition curv e

is scaled using the bubbling pressure and residual saturation from th e

drainage curve . The solid lines passing through the drainage points mak e

up the curve computed from equation 8 .

16
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EFFECTIVE SATURATION -S .

Figure 1 . Relative capillary pressure as a function of ef-
fective saturation obtained from soil cores fo r
imbibition and drainage compared with theoretica l
equations .
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The •imbibition -data=for these media were fitted to the expression

a
(P + b lIX) l

where a and b are•=.arbitrary oonstants, P . is °scaled. eapillaty- pt"e'asure -aAd

A. is the pore size .distributio.n index from equation 8 for thee-drainage data .

The value of residual . satr._uati>on, Sr , contained in the definition-of S e is

the value obtained-from the- mainage--4ata .also . 3The ratio of a/b-is the

value of effective saturation when the capillary .pres'sure is'2-eto .

No physical significance is attached to the parameters .a"and b'at thi s

.stage of .development, for obtaining a general expression for effee tin e

saturation as a'function of capillary press re . Futthermore, their4alu.e

must be determined from experimental imbibition . data . It is highly 'de-

_sirable to !determine these-parameters (or any others used in an ' imbibition

expression) 'from the drainage data, thereby 'permitting the imbibition func-

tion to be calculated from drainage data .

The solid lines passing through the imbibition data .in'Ftgure 1 were

computed from•e-quation (19) . The fit of both theoretical curves°to the

.imbibition and ,'drainage data seems reasonable and sufficiently -accurate fo r

purposes ;of .studyixrg •infiltration .

Equation (19) ;becomes part df the infiltration -model Since a functional

,relationship aaioiig saturation,,cap'illary pressure, and permeability is re -

••quired 'for the s ution • of equation (16), which is the basic-form of the

'U7f:titr:ation model discussed herein .

A .AreLatsionship Abe-ween -s-a'turation and rpef-meability is ' t11e -o'lly re-

-.masini-ng =pa:rt of ;the model -that ,need-s t o - be constructed . Bro'dbs 'aiid tboTey

;18
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(1964) derived a relationship from equation (8) for the drainage case by

using the Burdine integral .

Some effort has been made during this study to deduce a permeability

relationship from equation (19) but without success . In the absence o f

this relationship, a form of the Brooks-Corey permeability equation given

by

K . = a(S )2/X + 3
b e

will be used in order to complete the infiltration model . One would not

expect the imbibition function of permeability-saturation to be greatly

different from the drainage function .

It has been observed experimentally that many sands when allowed to

imbibe water to reduce the capillary pressure to zero have permeabilitie s

near 50 percent of their saturated value . The corresponding saturation is

usually 0 .85 . Using a value of 2 .0 for X and 0 .85 for Se, the relativ e

permeability from equation 18 is 0 .52 . It will be necessary to obtain ad -

ditional experimental data on imbibition permeability before a more exac t

expression can be derived .

No physical interpretation is attached to the parameters a and b in

equation (19) and (20) . However, if two media are to be similar, thei r

functional relationships among capillary pressure, saturation, and perme-

ability must be the same for both and two additional similitude requirement s

are needed for infiltration .

The effect of the parameters a and b upon the capillary pressure -

saturation curve is shown in Figures 2 and 3 . Larger values of a and b

tend to steepen the curves for small values of X . For large values of A ,

(20 )
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R

Eiggre Z. Thesr?•t,ical curves of relative capillary pressure
as a function of effective saturation for variou s
valiiees cif ,,and for a - b - 1 .5 .
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Figure 3 . Theoretical curves of relative capillary pressure as
a function of effective saturation for various values
of A and for a

	

b = 0 .85 .

S . =
(P . + b l'~ ) X

a

20 3 4 5 6
S,

8 9 L O
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the value of-a •and b=bave little effect . The itbibitibn function, equation

( 1.9), is different from the drainage function of Broekks and '(t'ey in`iat

there is no range of capillary pressure .where satdrat-irn is invariant .

Laboratory :data have been oh't-hined . frOm'soil samples where'•saturation

has been invariant with capillary •pr.-eS'sure-on the' imbibition cycle . 'equa-

tions (19) and (.2'O) -will probably ;not-be-adequate for such .soils .

"THEORETICAL INFItTR'OMEl'E R

Infiltration,of .water-4dto%a :homogeneous layer of soil ffdm a circula r

source placed -.bat the . ..sail !-sorface will •be• examimed by construct•i g a • timathe-

'matical model from'egoation (16) . The .distribution of+wafer in tke`aoil ,

the shape of the-wetting-front and the infiltration capacity curve °m atey be

obtained from the model .

Consider a-soil profile-Of depth, D, at a uniform •initial`+saturation .

The lower boundary is impermeable . The upper boundary is defined'in two

parts ; (1) within the radius-of the infiltrotneter where the capillary pres -

sure equals zero'+atd (2) beyond the radius of infiltration where'the flow

-across the boundary 'is negligible . Because the infiltration source is

circular, >=wo dther biundarie-s'are created . The line perpeidiouiar to the

;sail -surtbace and through the eedter of the circle is a math'enatieel lin e

of symmetry, rhebu a :vNe flow across it is zero . The other is the 'axi+syn -

metry making ►tlre;prt,blem two-dimensional in -space . Figure'4 , showJs'the tw o
dimensional-+soil matrix .

When•etquatJ n •(16) 4s .applied to the boundary conditions dd4scritted i n

';aa l+!Figure :4 and Div .((K . V . Z .) -=

	

, then equation (16) may be -W160en ss

( K-.DaP .) .+ aK . = DS .
3Z .

	

at .
(21 )
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Figure 3 . Schematic sketch of the boundary conditions for axisymmetri c
infiltration into a soil mass from a circular source .
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or when the independent variable is written in terms of scaled saturation ,

equation (21) reduces t o

K . dP ' 7 .S .) +
dK . as .

	

=

	

as .
Div .(- ds .

	

dS . az .

	

at.

Since scaled diffusivity, D., is defined by

D .(S .)

	

=

	

-K .(S,)dP'(S' )
dS .

then equation (22) may be expanded t o

dD .n- (v .S .)• (v .s .) + D . (v .2 s .) + dK . as .

	

_

	

DS .
~S .

	

dS . az .

	

at .

or in cylindrical coordinate component form it become s

dD .

	

as . 2

	

1 aS . 2
(ar~

	

+ r a~ .)

	

(aS .) 2]
az

.1

	

a

	

DS .

	

1

	

-
a 2 s .

	

a 2 s .
+ D r . ar . (r .

ar .

	

+ r .~

	

a

	

+ a Z

+ dK . as .

	

=

	

as .
s-. az .

	

at . '

The asixymmetry of the problem reduces equation (24) to

(22 )

(23 )

(24 )

dD . r la .
dS .

	

Dr .
+

	

as . 2

	

+ D

	

1

	

a

	

(r .aS . ) a2s .
az .

+

	

+ dK . as .

	

=

	

aS .

	

aS . az .-

	

at . '

I az .)

	

r . ar .

	

ar .
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Because of the dependence of D . and K . on S ., equation (23) is nonlinear .

(25 )

The use of a mean diffusivity and permeability in equation (23) would reduce



it to a linear diffusion type parabolic equation . Therefore, any solution

of (23) in terms of finite differencing may be approached by stability an d

convergence criteria developed for linear parabolic equations as given by

Ames (1965) .

If an explicit scheme is used to solve a finite difference approxima-

tion to (25), a necessary and sufficient condition for stability of a dif-

fusion parabolic equation in two space variables having equal increment s

AX, is that the time step AT must obey the inequality .

AT < W

	

(26)

This illustrates the fact that the time step not only depends on the spac e

increment but on the solution being obtained (Saul'yev, 1964) . The inequality

will be obeyed if AT is given by

AT = (AX)Z.
4D.

max

where D .m is the maximum value of the diffusivity D.(S.) on the interval

of solution S.

Taking central differences for space derivatives for linear parabolic

equations produces second order discretization errors . For nonlinear equa-

tions the error may be determined by halving the step size until the func-

tional relation between step size and solution is obtained as shown by

Saul'yev (1964) . This type of error analysis was taken for the equatio n

in question and it was determined that the total error was of first order .

Therefore, the space increment was taken small to give balance between

discretization error and roundoff error . The discretization error decrease s

(27)
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with decreasing-step size while the roundbff''etrbr increases with,decreas ng

step size (Ames, 1965) .

Convergence-of-an exp1ieit'sch me is tnterrelated•with stability . Con-

vergence of an implicitescheme requires-an-error analysis On'th e - trime'eep

also (Saul'4 yev, 1964) .

Solutions of equation (25) 'depend on the functional relationship D. ( 'S. )

and K.(S .) . -Sweril• .differett'types were tried producing different~r-esuits .

The functional re],ati*b~►I s

D . (S .)

	

=

	

i-S .

K . (S .)

	

s . 2 '' + 3

1/A + 2

and

D . S .

	

= A1 /x b 2/a + 3S 1/a +
2

[ )

	

a

	

(a i

2/A + 3
K . (S . )f =

	

( .a)

	

. S . 2/a '+ 3

yield the best results . The nature of these functions and determination o f

the constants is-discussed in another section-of this report .

If Sn(i, j) is the scaled saturation for the next time-step at the 1, j t h

grid point Of the soil matrix (i = 1 + (depth - Z .)AX and j = 1 +"r,/AX )

and s (i, j) is 'the scaled -eatur-ation for the current time step, the equatio n

Sn ( i , j ) = S(.i.,•j) +
	 AT	 1 dD .{S . (i,j)} {S( i ,j +l-) - S ( i , j - 1 )} 2(Ax) z 4 dS .

	

+ {S(i+l, .jt) - 'S ( i -`1 , j ) } 2

	

+ D . { S ( i , j ) } ( 1 - Zr~)S'('i,j - 1 )

(29 )
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t Cl + 2xj ) S
n

i , j+l ) + S ( i - l , j ) + S ( i+l , j ) - 4S ( i , j )

+ ax dK .{S(i,j)} S(i-l,j) - S(i+l,j )2 dS .

may be used to determine the saturation matrix at the next time step .

The finite difference equation for the upper boundary beyond the radiu s

of infiltration'and for the lower impervious boundary is obtained from (30 )

by setting

S(i-1,j)

	

=

	

S(i+l,j) •

	

(31 )

", Within the radius of infiltration the upper boundary condition i s

S(i,j) = constant, which is given as S . = l or S . = a/b when P = O .

At the axis of symmetry where r . = 0, Sn(i,l) = Sn(i,2) . The outer

boundary is at r . = co .

The above difference equations provide a finite difference approxi-

mation to the solution of the boundary value problem given by equation (25 )

and the boundaries described in Figure 4 . The shape and advance of the

wetting front may be seen by observing the distribution of moisture in

the saturation matrix .

The scaled flux q . may also be obtained from the saturation matrix b y

noting that it may be defined by

q • _ ii (R) t~ ! d dSZ

	

(32)

where R . is the scaled radius of infiltration and Q . is the scaled volume

of the soil matrix .

(30 )
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r

The quality q . 'day be d termihed numerically from-the equm ion

2Tr

	

n {Sn ( i , j ) rj( 0X ) 2 	 - S ( i , j ) rj( AX )2 }
Tr(R .)

	

j = 1 .

	

DT

2(0X'2

	

m

	

n

	

m

	

n

(R .yAT

	

E Sn(i,j)rj - E

	

E S ( i , j ) r j
j = l i=l

	

j=l i= l

PROCEDURES

Experimental

Some axisymmetric experimental data were obtained on fragmented soil s

that were placed in a large diameter laboratory column . The data was ob-

tained for the purpose of observing, in qualitative terms, the wetting pat-

terns and infiltration capacity curves for the two media shown in Figure s

5 and 6 that have a wide range of characteristics . Since the imbibition

function of the model has not been perfected, a comparison between th e

mathematical model and the experimental results from the laboratory colum n

will not be given .

A column 28 cm square and 60 cm deep was . constructed of clear acryli c

plastic . Fragmented soil was packed into the column to within 5 cm of th e

top . A 1/4 circle infiltrometer was constructed so that it could be clampe d

into the corner of the soil column . This configuration represented th e

soil-infiltrometer section shown schematically in Figure 4 where the angl e

= Tr/2 radians ,

A sketch of the infiltrometer is shown in Figure 7 . Holes 0 .222 cm

in diameter were. drilled` on. a triangular spacing of 1 .38 cm . The'• holes

wetire counter.-suwk o thee . inside of the infiltrometer to a depths of 0 .3 cm .

q . _

(33 )
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Figure 5 . Scaled capillary pressure as a function of scaled saturatio n
for soil No . 1 used in the experimental infiltration model .
The open circles are drainage data, the closed circles are fo r
imbibition, and the curves represent the theoretical equations .
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Figure 6 . Scaled capillary pressure as a function of scaled saturation fo r

soil No . 2 used in the experimental infiltration model . The open
circles are drainage data, the closed circles are for imbibition ,
and the curves represent the theoretical equations .
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Figure 7 . Schematic of experimental infiltrometer .
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The entire infiltromster chamber was filled with c er and ec ranee $ to a

supply reservoir through a valv e. and flow meter . The pressure of the water

at the soil surface during infiltration wa s. adjusted by the control valv e

and maintained at zero by observing the contact zone between the infiltro-

neter and the soil . When the pressure exceeded zero, water was detecte d

moving from under the infiitrometer to an area larger than the infiltratio n

diameter . When the pressure became less than the bubbling pressure of th e

holes in the bottom of the infiltrometer, air was sucked into the chamber .

Both of these indicators were used to keep the pressure at zero . The flow

rate was recorded periodically during the experiment and the wetting front s

were traced on the sides on the column at specified time intervals .

Mathematical Mode l

The mathematical model was programmed for operation on a digital com-

puter, CD 3300 . The program reads in an initial soil moisture distribution

matrix which in this study was constant . Once the initial saturation

matrix is read in, the program calls for the minimum value of saturation ,

So, the emperical constants, a, b, and A, which are called AM by the program ,

and the scaled radius of infiltration, R .

The program produces the values of t . and q . and the saturation matrix

for twenty time steps . At,the end of the program the final saturatio n

matrix is stored in a file which may be used at a later time if the con -

tinuation of the solution is desired .

RESULTS AND DISCUSSIO N

The results of this project will be presented under two separat e

headings, one dealing with the mathematical model and the other with an
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experimental model . Even though a great emphasis will be placed on th e

results of the mathematical model, a large number of physical experiment s

were made that will not be presented . Two experiments have been selected

and will be presented to illustrate some of the problems associated with

verification of the theory . As indicated in the preface of this report ,

the theory presented is only tentative and will be subject to change a s

more experimental data are collected and the mathematical model is furthe r

refined .

MATHEMATICAL MODEL

The various solutions of the mathematical model that are subsequently

presented are based upon an a/b value of unity where a and. b in equation

(19) are 0 .85 . These results will show largely the effect of the por e

size distribution index A, the initial saturation, So, and the radius of

the infiltrometer upon the infiltration rate . These results are shown in

Figures 8-12 .

The curves shown in Figures 8-9 show the effect of initial and boundary

conditions upon the infiltration capacity curve . In Figure 8, the asymp -

totic infiltration capacity decreases as the diameter of the infiltrometer

increases . The curves seem to approach a single infiltration capacity

curve for large size infiltrometers or one-dimensional infiltration . In

other words, the larger the infiltrometer, the closer the infiltratio n

capacity curve approaches the one-dimensional rate . The size of the in -

• filtrometer needed .to measure the true infiltration capacity curves depend s

upon the magnitude of the bubbling pressure head of the media . If one wer e

to construct an infiltrometer for purposes of measuring one-dimensional

infiltration on a wide range of soil profiles, the radius would have t o
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Figure 8 . Scaled infiltration rate as a function of scaled time for variou s

sizes of infiltrometers of scaled radius, R ., obtained from the
mathematical model for specified soil properties .
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Figure 9 . Scaled infiltration rate as a function of scaled time for thre e
different initial saturations, So, obtained from the mathematica l
model for an infiltrometer of scaled radius equal to 0 . 5
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be at least two or three times the largest bubbling pr--essur-e hRa4: that one

expects to encounter .

In Figure 9, the infiltration capacity is related to the initial water

content of the soil . The greater the initial water content, the lower the

infiltration rate . At low values of initial water content, the infiltration

capacity curves s n to be only slightly affected by the initial water con-

tent, that is, the infiltration capacity curve for zero initial water con-

tent is probably not greatly different than that for curve So = 0 .3 . The

solution of the partial differential equation for initial water contents

below 0 .3 oscillate with time . They are not reliable and, therefore, ar e

not shown in Figure 9 .

The infiltration capacity curves shown in Figure 10 show the influenc e

of the pore size distribution index upon infiltration . The wider the dis-

tribution of pore sizes (small values of A), the higher the infiltratio n

rate and the greater the time required to reach the infiltration capacity .

For a given initial condition the infiltration capacity curves for variou s

values of A are mere widely separated when the radius of infiltration i s

small than when it is large . (Compare Figure 8 with Figure 9 for A = 1 .0 . )

Apparently the lateral spreading of the wetting front is closely re -

lated to the pore size distribution index . - If the infiltrometer is large ,

the effect of lateral spreading is insignificant when compared to the ver-

tical movement, and the effect of A upon the infiltration capacity is not

marked .

The distribution of water in the soil profile as a function of time

is shown for a particular set of boundary and initial conditions in Figure s

11 and 12 . In Figir.e 11„ the distribution of water with respect to profil e
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Figure 10 . Scaled infiltration rate as a function of scaled time for
various soils having different pore size distributions obtained
from the mathematical model for specified initial and boundar y
conditions .
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Figure 11 . Scaled saturations as a function of scaled depth below th e
soil surface at the center of the infiltrometer for variou s
times obtained from the mathematical model for the initia l
and boundary conditions specified in the figure .
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depth and time under the center of 'the ingil&rImeg-er is shown .. The dis=

tribution of water with respee.t- to pTofile depth and time. utadr• t he cente r

of the inf iltrometer• is also siewn in Figure 11 . The d-istraibotfi@. of wa_t.Rx

in the soil as . a f'nnvtian of radial ; distam e( from, the center oaf. th,~ . irn.£i1-

trometer and time is• shown ins Figure 12. for ar. small depth below hhee sail

surface .

Large values of R tend to flatter the time curves with respeFt to

depth. S all values o•f- 1 i e to . produce a three-dimensional a fect, i .e . ,

to make the wettiftfront- w

	

rspheroidal shape . Large values of Rend

to produce a h

	

Xipsoid tX shape .

A comparison of the draimage function in the infiltration model wit h

the imbibition function is shown in Figure 13 . Scaled infiltra :on,rate

is plotted as a function of sealed time for A = 1 .0 . Since the ratio

a/b is unity, tIm permeability at zero capillary pressure is the same a s

for a completely saturated media, i .e ., no air entrapment occurs . In other

words, when the capillary pressure is zer•oS, the permeability of the media '

is the same for troth functions . Only the effect of including the two

parameters a and b is shown in Figure 13 . The effect of the drainage func-

tion is to produce an infiltration capacity that is larger than given by

the imbibition function . However, the general conclusions that one woul d

deduce from an analysis of an axisymmetric infiltration model and the

drainage function would not be different from that arrived at by usin g

the imbibition function .

When the infiltration capacity is plotted as a function of radius o f

infiltration and pure size distribution index, A, at a low initfal saturation ,

As shown in Figures 14 and 15, the relationship among these variables may
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Figure 13 . A comparison of the infiltration capacity curve using th e
drainage function with the curve obtained using the imbibi-
tion function in the mathematical model .
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Figure 14 . Theoretical scaled infiltration capacity as a function of scaled
size of infiltrometer for A
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Figure 15 . Theoretical scaled infiltration capacity as a function of pore siz e

distribution index for a scaled infiltroaeter radius of 1 .0 and
initial scaled saturation of 0 .3 .



be established . To a first approximation, infiltration capacity may be

obtained from the equation

=

	

-	 i1 +
a .c

	

2R .A 31
4

At this stage of theoretical development of the theory, equation (34 )

is only appfomidate for reasons previously Mt-Atietied and because the initia l

saturation. h'as been exoltided iz the expr-essiod-. Since the mathematical

model is itot capa'la of producing sOlutioiia at low initial saturations, th e

approximate fort of how the iitial saturatio n. affects the infiltration

capacity is shown; it Figufg 16 . The verifieati.bft df t:he ltidfcl and theory

presented here is the subject of future reSea.rcfi funded udder a pant fram

the Depaftmsiit of Interior, Office of Water Readurces I eseare ,

Some experimental wofk Wag performed under this project a?nd ti t& rd.-

.1. .

	

(34 )

suits are pf eiltee it tht following section .

EXPERIMENTAL MODEL

Results from the axisymmet ric column experiment are ghdWd in Figures

17-21 . Two media having widely different charac d ist'i .a were seleeitd t o

qualitatively evaluate the results from the. makNeItStica" fbdel . The capil-

lary pressure-saturation curvet for these two media are $1fown in Figure s

5 and 6 . TAM data are shown as points, while the cuir0e .' o Obtained

„frbm equations (191 adfd (81 fat the imbibitidd anti drainage fddetions re -

spectively . The ratio of bubbling pressures for these media gre approxi-

mately 2 :1 . The size of the infiltrometer fot sail Nd . 1 wa=s 1 .8 cm and

for soil Ate . 2 it was 5 .5 cm or in the ratio of 3 :1 . Therefore, the laws

Ot simi1fe M►d were not exactly satisfied arm dtfMparisot 'iietween the Mt,
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.4 .8 1 .0

so

:Figure 16 . Proposed relationship of infiltration capacity as a function
of scaled initial saturation, So, for a range of soils wher e
the radius of infiltration is fixed .

45



media are not easily made, Nevertheless, the data are pre 'ited and a i,-

tional studies are planned for future research .

The wetting front patterns for these two soils are shown in lgUtt 1 1

in terms of scaled depth and radius for various times . Only the 1a'geet

time pattern for soil No . 2 (shown as a dashed curve) is given . All other

time curves for soil No . 2 are smaller than the one shown . The solid curves

are for soil No . 1 .

These wetting front patterns can be compared only for•the gable *calet

time . However, the physical size of the model did not permit the infil-

tration experiment for soil No . 2 to be continued for large values of scale d

time without the wetting front coming in-contact with the boundaries of th e

model . The ratio of scaled times for these two media .are 1600 :1 . The ab-

solute values of the wetting pattern distribution for soil No . 2 are shown

in Figures 18 for real time in seconds .

The advance of the wetting fronts under the center of the ' infiltro-

meter for these two soils are shown in Figure 19 . For soil No . 2, the

values of Z . and t . were multiplied by 10 before plotting so that the tw o

soils could be presented on'the same plot . Obviously, this procedure in

no way affects the slope of the Z . -

	

curve . The rate of advance o f

the wetting front for soil No . 2 Is considerably•greater than for soil No . 1 ,

which has a large value of A . The relative depth of wetting for the sam e

scaled time is greater for soils having structure than for sands that are

structureless .

Scaled infiltration rate as a function,of scaled time is shown in

Figure 20 for sail N o.' s 1 and 2 . The range of measured times for soi l

No . 2 is so small compared to soil No . 1 that the last three l*rges•t tim e

46



Figure 17 . Experimentally determined wetting front distribution pattern s
for soil No .'s 1 and 2, plotted in terms of scaled depth belo w
the soil surface and scaled horizontal distance from cente r
of infiltration . The dashed curve is for soil No . 2 .
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values are shown along the zero time line in Figure 20 . Obviously, soi l

No . 2 had not reached its infiltration capacity and cannot be compared wit h

soil No . 1 . Unless experimental results are compared in terms of scaled

variables the results may be completely misleading . For example, when

scaled infiltration rate is plotted as a function of scaled time on a much

smaller scale (without considering the time scale for soil No . 1), the in-

filtration capacity seems to be reached in a relativley short period o f

time as seen from Figure 21 . However, when this infiltration rate is com-

pared with soil No . 1, much larger values of time are required to reac h

the infiltration capacity . Other things being equal, the infiltratio n

capacity for soil No . 2 should be much larger than soil No . 1 since the X

values are 0 .2 and 1 .5 respectively .

The permeability value needed to compute scaled time was measured in -

dependently in small column experiments . All other hydraulic propertie s

for these two soils were obtained from the capillary pressure-saturation

curves shown in Figures 5 and 6 .

SUMMARY AND CONCLUSION S

The hydrologist or land manager is often faced with the problem of

selecting equipment and methods that can be used to gather data for pur-

poses of making wise decisions and accurate predictions of the watershed .

Watershed infiltration is one of the most important processes tha t

occur on the watershed, as it has a considerable effect on runoff from pre-

cipitation, yield of vegetation, erosion, etc . Usually field infiltratio n

data are obtained for determining infiltration rates that occur due t o

precipitation and other properties of the soil that effect water movement .

51



4-1

	

1 .

''w

44-4
4-1

-o
a,

o

4-4

N

	

0
4

p

-

• Ilia) w
4-1

w u

	

u)

	

i

	

-

	

o .a

	

~I
-H J

	

0

	

C

	

_

	

--a)
bo

b
a,4 baa

	

a

	

-

	

.

	

0

	

0
-oar
4

o.4-4

	 I	 r	 }~	 }	 }	 0

0



The selection of the hest possible techniques and equipment for collecting

infiltration data is of great concern .

The field investigator may choose on the one hand a large scale in-

filtrometer that approaches the conditions that may occur during precipita-

tion . Often these infiltrometers are cumbersome, awkward, and uneconomical

to use . However, they may provide excellent data for making accurate run-

off predictions . Also, they have the advantage that infiltration is measure d

on a relatively large surface area . On the other hand, small scale infil -

trometers using simple techniques and equipment (such as a simple ring for

creating a constant source of water) may be used to obtain infiltration

data . The data is easily obtained and the equipment is economical to use .

One major disadvantage is that the data are very difficult to interpret .

Axisymmetric infiltration using relatively small infiltrometers and

simple boundary conditions was studied through the use of general soil -

water relationships . These relationships provide a means for interpretin g

field infiltration data using small scale infiltrometers . These relation -

ships cover a wide range of soil properties and . permit a standard to b e

constructed for making comparisons and interpretations .

Infiltration of water into the soil from a circular source at the

soil surface was studied through the use of the diffusivity equation . The

soil surface in contact with the source was maintained at complete satura-

tion or zero capillary pressure . The effects of soil hydraulic properties ,

initial soil-water content, and size of igfiltrometer were studied using

the mathematical model .

The results shown and discussed are far from conclusive and the fina l

theory remains to be developed, but the study has produced results tha t
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grill be yery_ giekp. •ul 'in►''tl a interpretation of infiltra . tr--data in qua1 -

tative terms . Inds:ed., Chis ,Tstudy' ,htie opeM d'np a ni tuber of areas that a*e

presently being s.tutied-ill - An attempt to obtain a simple -field' t'easurement

technique that -will .be : .useetitl -t,n making runoff predictions ..

These results may be-used for dexe 'iuk ng t1- e hydraulic Propttties •b f

the soil which in turn can be aced to construe-t an infiltrat{i i col far

one-dimensional irtfi;L ti~~n during precipitation on the watershed . In '

other word's, once the hydraulic sbil prope t

	

are aeterdined tit tech-

niques for cans-r-ugting a one-di ns .on'al -waterghed infiltration cr' ve

during precipitat-isn can be used, e .g ., Mein and Larson (19735 . T'bieee

one-dimensional mod'e's lend theselves to easier handling of more complicate d

boundary and initial cbnditiotfs that may be considered on the atersd '

during the precipitation event .

The interp`ret'ation of aXieyrninetric infiltration cannot be akd~4trately

treated without consideration of similitude. criteria for flow of water i n

soils . All of the data are presented in terms of scaled variables . The

general relationship among infiltration capacity, pore size distribution ,

and size of infiltrometer given by egnation (34) is 'based upon selecting

the asymptotic infiltration rate . The scales that are chosen tb plat the

data are very import=ant and if not properly selected, may result in in-

correct conclusisn s

The experimeital infiltration data for two widely different soi l

materials wereneed fo illustrate this difficulty . Scaled infiltration

rate was pl©t:t l es a fulictiofis of scaled time from the experiieat . The

scaled variables were determid from actual measurement of the standar d

ueitt . What appeared to be an asymptotic infiltration rate an one soil

turned out not tb be the a' ymptotic rate when compared with the other .
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It may he possible that the time scale for the mathematical model wa s

not sufficiently long to obtain the actual asymptotic infiltration rates .

If so, equation (34) may be invalid in a quantitative sense . The general

qualitative deductions would probably remain unchanged .
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Appendix• T

Experimental Method of DetemAining Capillary•F ensur e
and Saturation for ]bkBi,tion and Drainage

The sail sample p+Jaced upon the capillary barrier may be, either disco

turbed or undlisturbeth After the sod]: sample has been; f irml►3;

	

±ked o r

brought in cor- ant with the capillary harries ; the apparatus (A) is vacuum

satunateri. (being careful to hold: the soil firmly iii pl.a:de during saturation) .

The fsurly s,atuxated soil, mple• haler (A) is connected to tip horizon al

burrette-capillary tines (B) and (C) with i

	

valves 1 and 3' closed;.. The

transducer (D) is likewise connected to the sample holder being we u]te .
emclude all air bubbles. W4th- valves 1, 2, and 4 opt and 3 closed, th e

vacuum-pressure regulator (Dt) is adjusted to produce a small vacuum on tho

manometer (F)- so that all excess liquid is removed from the sample . If the,

sample does not chain a sufficient excess, additional liquid is added to

the surface of the soil . Excess liquid is withdrawn from the sample into

the horizontal barrette until the air-liquid interface reaches a zer o

reading at which time valve 1 is closed . The vacuum-pressure regulator (E )

is then adjusted to zero, AP on the manometer (F) and valve 3 is opep d . A

small APis applied to the sample until the interface in the sn .all bore

capillary tube is near the middle of its length, at which time the vacuum -

pressure regulator (E). is adjusted to keep the interface stationary . With

valve. 3 and 4 closed and valves 1 and 2 open, a small AP is applied to

the burrette . Tim value of the negative pressure applied will depend upon

the magnitude of the babbling pressure of the sample . A negative pressur e

of 2 or 3 cm of H2 O may be required for undisturbed samples while 5 cm o r

mote may be used for f e textured disturbed samples . At this point, the
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movement of the interface ia' rte hdrizo tafi burvett'e is used as aa indical t

of equilibrium : E4uilibriem is. attained ve y quiekly when the s N is

near complete saturation . Fet each adriitioral negative pressure aippliud

to the sample, the equilibrium . barrette and manometer readings are r•ecsrdad:

When the bubbling pressure of the sample has been eMceeded as indicated

by a relatively large change in saturation for a small change in negative

pressure, valves 1 and 2 may be closed at any particular volume reading on

the burrette . At the same time valves 3 and 4 are opened acid vh vacuu m

pressure regulator (s) is adj'n•ated so that the interface in the small capil -

lary tube does not appreciably move . The pressure is continually adjuste d

until no move3nent in the interface is detected over a period of peehaps

five minutes .

At this time, the pressure of the liquid in the soil sample is nearly

in equilibrium with the pressure applied to the interface of the capillar y

tube . To determine if complete equilibrium has been attained, valves 3 and

4 are closed and since 1 and 2 are already closed, this connects the soil

sample to the differential pressure transducer . The transducer is sensitive

to small pressure differences and final pressure adjustments may be mad e

to obtain th- equilibrium pressure reading . The transducer is used only

to determine true equilibrium .

Additional desaturations are made by opening valves 1 and 2, closing

valve 3, and increasing the negative pressure on manometer (F) until a pre -

determined velume has been extracted from the sample . The equilibrium

pressure is ob-taid again by use of the small bore capillary tube and

the differential pressure transducer . This procedure is repeated until

sufficient data are obtained to define the curve or until the change in
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saturation is small compared to changes in.pressure . The final data point

of capillary pressure may be as high as 0 .4-0 .5 mb .

After the final equilibrium pressure measurement has been made the

imbibition curve is determined by keeping valves 1 and 2 permanantly,closed .

A small volume of liquid is applied to the soil surface of the .sample with

valve 3 closed . The negative pressure is reduced and valve 3 is opened .

The negative pressure is adjusted to maintain the interface in the small

bore capillary tube at its null position . Final equilibrium , pressure is

obtained through the use of the differential pressure transducer as described

above.

Additional increments of water are added and equilibrium pressure

measurements are determined until zero capillary pressure is reached . The

sum of the liquid increments added must equal the volume extracted on the

drainage cycler .
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