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RECTANGULAR SANDWICH PANEL SUBJECTED TO 
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I. SUMMARY AND CONCLUSIONS

A theoretical analysis is made of the problem of the elastic

buckling of simply supported rectangular sandwich panels acted upon

by any combination of edgewise bending and compression on opposite
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edges. The solution is based on the assumption that the sandwich

panel is composed of isotropic plate facings of unequal thickness and

an orthotropic core subjected only to anti-plane stress. The mathe-

matical solution of the problem is based upon a Rayleigh-Ritz energy

method using a double Fourier series with configuration parameters

which are constants of integration obtained from solution of the core

equilibrium equations. The specific method of approach is thought

not to have been previously applied in sandwich analyses. The solu-

tion is in the form of a characteristic determinant of order infinity,

except in the special case of pure edgewise compression, in which

case the determinant is of order six. Evaluation of an order eighteen

principal minor from the determinant of order infinity is made to ob-

tain data for design curves.

Design curves based on the additional assumptions of mem-

brane facings and infinite transverse modulus of elasticity of the core

are compiled for the case of pure edgewise compression and for the

case of pure edgewise bending. These design curves are believed

sufficiently accurate for use in the design of a great many panels of

modern design.
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Equations are presented from which the critical load on sandwich

panels composed of plate facings and orthotropic cores with finite

transverse moduli of elasticity can be obtained. Unfortunately, however,

considerable computational labor will be involved in the determination

of critical load for this more general case. Design curves can be con-

structed from these more general equations, if the time and expense in-

volved in their preparation can be justified.

II. INTRODUCTION

An elastic sandwich is a structural component consisting of two

relatively thin external members called facings separated by and bonded

to a relatively thick internal member called the core. The facings are

commonly a material with comparatively high strength and stiffness,

whereas the core is commonly a material of lighter density and rela-

tively low strength and stiffness. The resulting layered-type structure

is characterized 1..,y an extremely high strength-weight ratio as compared

to that obtainable with the use of a single homogeneous material. For

this reason, its primary field of application has been in guided missile

and airframe assemblies, for example, wings, wall panels, webs of

beams, and so forth. The thin facings of the sandwich, if not bonded to

the core, are incapable of resisting reasonable design loads in their

own plane because of their inability to resist becoming elastically un-

stable. A primary function of the core is thus seen to be to maintain
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the stability of the sandwich. A typical elastic sandwich panel is com-

posed of aluminum facings and aluminum honeycomb core. The alum-

inum facings are commonly bonded to the core by epoxy or vinyl phenolic

resins. Recently improved methods of fabrication and the development

of improved bonding agents have made practical the use of sandwich con-

struction in an increasing number of different fields of application.

Continually increasing applications of the elastic sandwich as a

structural component have made necessary the analytical development

of equations defining the stability criteria for different geometrical con-

figurations of panels subjected to various combinations of loading. Be-

cause of the many variables which enter the problem, a study of exper-

imental data alone cannot be expected to yield all the information which

rational design procedures require. A panel of a committee composed

of representatives of the Department of the Air Force, Department of

the Navy, and Department of Commerce has been organized to unify,

interpret, and present known rational approaches and data for sandwich

structure design. It is known as the ANC-23 Panel. 1 The problem

chosen for analysis in this thesis is one that has been clearly indicated

by the ANC-23 Panel as being unsolved, and one which is encountered

in the design of structures using sandwich plates in their construction.

The purpose of this thesis is, therefore, to present a rigorous

derivation of the stability criteria for the simply supported rectangular

1
–See reference 1.
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sandwich panel when it is subjected to combinations of edgewise bending

and compression loadings.

Anti-plane stress?—may be defined as that state of stress that ex-

hibits stress components which are zero in a state of plane stress. Con-

versely, a state of plane stress exhibits stress components which are

zero for anti-plane stress. Because sandwich cores have such low load

carrying capacities in the direction of the plane of the panel as compared

to the relatively stiff facings, the normal stresses and shear stresses in

the core in the direction of the plane of the panel are assumed to be

negligible. Thus, the sandwich core in this analysis is assumed to be

subjected to a state of anti-plane stress. This assumption has been

used in many previous analyses and is known to represent actual sand-

wich construction very well. The facings are treated by isotropic thin

plate theory, that is, plane sections initially perpendicular to the

median plane of the plate remain plane during deformation in accordance

with the Bernoulli-Navier hypothesis.

The specific method of approach used in the solution of this prob-

lem is believed not to have been previously applied to sandwich analysis,

but an analogous method has been commonly applied to nonlayered

systems.

Equations for the three rectangular components of core displace-

ment are found which satisfy the core equilibrium equations and the

..,See reference 5 and figure 2.
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boundary conditions of the simply supported panel. By evaluating the

displacements of the core at the interfaces (the junctions of the core and

the facings) and equating these core displacements to displacements of

the facings at these interfaces, displacements at any point in the facings

may be found. From these displacement equations, strains and subse-

quently elastic energy of both the facings and the core may be expressed.

It is noteworthy that the displacement functions written from a solution

of the core equilibrium equations are, in this particular analysis, equal

to zero until the sandwich starts to buckle. The edge loads are applied

to the facings in the conventional manner as in the related ordinary

plate problem presented by Timoshenko.-
3

Now, let the elastic energy of a general elastic system with re-

spect to an undeflected configuration of that system be V and the poten-

tial energy of the external loads with respect to their undeflected posi-

tions immediately prior to buckling be T. Then the total energy of the

system, U, with respect to the undeflected state may be expressed as

U = V - T.

For a condition of instability, U must have a stationary value with re -

spect to any arbitrary change in configuration of the system.

The configuration of the system is defined in this thesis by

parameters A
mn , Bmn , • which are actually constants of. , Gmn

—See reference 14, page 351.
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(1)

integration obtained from solutions of the core equilibrium equations.

Thus,

	 dA + aU  dB +	 + au  dG
mn

 = o,
a Arrin mn a Bnin mn	 8Grnn

from which it is clearly evident that the buckling criteria are:

au  _ av 	 8 T - 0
aAn,in a Arnn a Arrin

au  _ av 	 DT  =o

aBmn 
aBmn aBmn

au  _ av	 aT - o.
aGmn a Grnn a Grnn

This solution is seen to be a Rayleigh-Ritz method, but it differs from

the Rayleigh-Ritz procedure as applied to the conventional stability

analyses of ordinary plate problems in that certain of the differential

equations of equilibrium associated with the problem (the core equili-

brium equations) are herein satisfied exactly, while the facings are

mathematically attached to the core by requiring displacement conti-

nuity between core and facings at the interfaces. The facings are then

treated by the conventional energy method for plates.

This method of approach to sandwich stability analysis was

prompted by, and is believed to be complementary to, a sandwich
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stability analysis by Raville4 who solved all the differential equations of

equilibrium in the facings as well as in the core. It is believed that the

method of analysis presented in this thesis, together with the method

presented by Raville, exhibit fundamental methods of approach whereby

it may be expected that if a problem has been solved in the thin plate or

shell literature,its counterpart in the sandwich panel can be solved.

In this thesis, literal solutions are derived within the scope of

the aforementioned assumptions; however, the reduction of these equa-

tions for use in preparing usable design curves seemed prohibitive in

view of the many parameters involved. Therefore, in the preparation

of design curves, the additional assumptions of membrane facings 5—

and infinite transverse modulus of elasticity of the core are made. The

transverse modulus of elasticity of the core refers to the modulus of

elasticity of the core in a direction perpendicular to the facings. These

assumptions have been previously used-6- and are known to represent

actual sandwich construction very well. It is to be emphasized that

literal equations are presented from which the numerical calculation of

4
—See reference 12.
5
In using the design curves, the actual flexural rigidity of the spaced

facings, D, may be used as a good approximation. See Use of
Design Curves and Discussion of Results.

6
—See references 1, 2, 3, 8, 11, 13, and 16. It is shown in this thesis that

the "tilting" method involves this assumption. See Discussion of
Results.
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critical load for any one particular sandwich may be computed without

the latter two assumptions. It is believed that design curves can be

prepared from these more exact literal equations if the time and ex-

pense involved in their preparation can be justified. Such design curves

would be of limited usefulness, however, in view of the many complex

parameters that would of necessity be involved in this case.

III. NOTATION

x, y, z	 rectangular coordinates (fig. 1)

a	 length of sandwich in direction of loading

b	 width of sandwich in direction perpendicular to loading

c	 thickness of core

t	 thickness of upper facing

t'	 thickness of lower facing

E	 modulus of elasticity of facings

Poisson' s ratio of facings

modulus of elasticity of core in z direction -- transverseEc
modulus of elasticity of core

modulus of rigidity of core in xz plane
xz

G	 modulus of rigidity of core in yz planeyz

Nb
	maximum value of loading (load per unit width, b, of panel)

due to pure edgewise bending (fig. 4)

Nc
	value of loading (load per unit width, b, of panel) due to

pure edgewise compression (fig. 4)
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No	 Nb + Lc (fig. 4)

Nx	value of No at any location on loaded edge (fig. 4)

value of No at bucklingNor

2Nba	 N 	 4)0

E
ZC
	 normal strain in core in z direction

u' v'w'I

U , V , W
C	 C	 C

shear strains in core

normal and shear strains in upper facing

normal and shear strains in lower facing

membrane strains in upper facing

membrane strains in lower facing

bending strains in upper facing

bending strains in lower facing

displacements of upper facing in x , y , and z direc-
tions, respectively

displacement of lower facing in x , y , and z direc-
tions, respectively

displacements of core in x, y, and z directions,
respectively

Yxzc Yyzc

E x , E	 yx y xy

E' ,x y xy

EE	 yxM yM , xyM

E
t	 , E

i	
y

i
xM yM xyM

EExB yB xyB
E T 	 , E 1 	 yl
xB yB xyB

U, V, W

m, n, p, q,	 j	 integers

A , B , C
mn ,mn mn

Dmn , Emn , Fmn , Gmn	 configuration parameters

T
xzc, T 

yzc shear stresses in core in xz and yz planes,
respectively
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Omn

0 mn

kma

10.

normal stress in core in z direction
zc

0xM' °yM' TxyM	
membrane stresses in upper facing

a. '	 ,	 a-'	 ,
xM yM xyM	

membrane stresses in lower facing

°xB' °yB' TxyB	
bending stresses in upper facing

Cr ,	
Tx
	 bending stresses in lower facing

xB yB yB

z'	 distance from middle surface of upper facing

distance from middle surface of lower facing

V
c
	elastic energy of core

VmF , MF,

VBF' V BI F

elastic energy of upper and lower facing, respec-
tively, associated with membrane strains

elastic energy of upper and lower facing, respec-
tively, associated with bending strains

V	 total elastic energy of sandwich

E rr2

c(1 -	 )

1 
G
yz a n

2	 2

Gxz m
2 

b
2

m2 n2
+ —

a
2	 b 2

m2 + n2 a2

b 2

critical load factor corresponding to loading de-
fined by a



D

1 1.

I	 moment of inertia of spaced plate facings,

(c + 20 3 c3
	

for t = t'
12

IM	 moment of inertia of spaced membrane facings,

c 2 t
2

I
BM	

fictitious moment of inertia of spaced plate facings,

t(c + t)2 for t = t'
2

flexural rigidity of spaced plate facings, El
1- p.

2

DM 	flexural rigidity of spaced membrane facings,
EI

M

1- 112

D
BM	

fictitious flexural rigidity of spaced plate facings,
EI

BM 

1 -

S
IT

2 
Ect 

for t = t'
2Ga2 (1 - 11 2 ) 

Tr
2
 Ect  

for t = t' 
2Gb

2
 (1 - p.

2
)

Pmn

(1.2
mn   

1 + S1)
mn   

m2 a2 
1 

( 1 -
Tr 
2 D

M

x	 ocr

elements of determinantsH , J , K
13,(1	 P,q	 13,01
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IV. MATHEMATICAL ANALYSIS 

The sandwich panel and its relation to the coordinate system are

shown in figure 1. Figure 3 illustrates different combinations of loading

which are defined by different values of a. Specifically, as shown in

figure 4,

2

	

2Nb	 N,
a -	Nb + No No	(2)

where Nb is the maximum loading on the sandwich (pounds per inch) due

to pure edgewise bending and Nc is the loading on the sandwich (pounds

per inch) due to pure edgewise compression. This scheme makes pos-

sible a general solution for determination of the critical load of a simply

supported rectangular sandwich panel subjected to any combination of

edgewise bending and compression.

1. Determination of Displacement Functions
which Satisfy Equilibrium of the Core 

In accordance with the assumptions outlined in the Introduction,

	

o- , cr , and T	 are assumed equal to zero. The core is therefore
XC yC	 xyc 

in a state of anti-plane stress. ? A differential element of the core is

shown in figure 2. Summations of forces in the x , y , and z directions,

respectively, give the following equations:

7
—Anti-plane stress is defined in the Introduction.



(9)

(10)

1 3.

a T
xzc

az
	 =0	

(3)

a Tyzc
az

and

aT	 aT	 auxze	 yzc	
zc -0.

ax	 ay	 az

Relations between stress and strain are applicable, that is:

o-	 = E Ezc	 c zc

Txzc = G
xz Yxzc

and

	

= G	 yyzc	 yz yzc.

In addition, the strains and displacements are related by the following

equations:

aW
c

E zc	 az

au
c
 aw

c=
xzc -az	 ax

and
av

c awc

Yyzc	 az + ay

Equations (6) through (11) allow the equilibrium equations, (3), (4), and

(5), to be written as follows:

(4)

(5)

(6)

(7)

(8)



U C =

and

(15)

(16)

(17)

a 2u c a 2wc
o

az2	 axaz

-
az 2	 ayaz	 0

	

2	 2a 2u	 a 2w	 a 2wcc a vc a wc
G (- + 	 c) + G (	 + 	 ) + E 	  = 0.xz axaz	 ax2 Yz ayaz	 a	

(14)c	 2
y 2 az

In order to satisfy the boundary conditions of the simply supported panel,

as well as the core equilibrium equations, the core displacements are

assumed to be of the forms

co
\	 (1)fmn (z) cos m7TX sin nTrYa

>°° f.(2)	 irx

	

(z) sin m	 cos	  mn	 am=1 n=

00	 co

	

we 	 f(3)	 m rx sin(z) sin	 sin 

	

c 	  	  mn	 am=1 n=1

where f(1) (z), f(2) (z), and f(3iǹ 1n' (z) denote separate functions of z alone.

	

mn	 mn

These functions of z alone will be determined by the requirement that

equations (15), (16), and (17) satisfy the core equilibrium equations (12),

(13), and (14). It is to be noted that equations (15), (16), and (17) satisfy

the boundary conditions,

14.

(12)

(13)
a 2

v c a 2wC

m= n=1
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uc

M
x

Y=°
y=b

y=0
y=b

=

=

0,

0,

vc

and

=

x=0
x=a

M
y

0,

x=0
x=a

we

= 0,

x=0, y=0
x=a, y=b

= 0,

where Mx and M signify edge moments on the panel about axes parallel

to the x and y axes respectively. Substitution of equations (15), (16), and

(17) into equations (12), (13), and (14) and requiring that the resulting

equations be valid for all values of x and y as well as for all values of

m and n results in the equations

d
2

f
() 

(z)	 df
(3) 

(z)(1n 	 mTr mn

dz 2	 1- a	 dz _ 0	 (18)

	

d2f(2)	
(z)	 df(3)	

(z)	mn	 mn

	

2	 + b	 dz
dz

and

-GXZ
mTr mn

a	 dz a 2	 mn • •f	 (z)
df(1) (z)	

m 2 Tr 2 (3)
- Gyz

df(2) (z)nTr  mn
b	 dz

(19)

n 2 Tr 2 (3)

b2 fmn (z)

d2f(m3 ) (z)
+ E c 	 2	 - O.

dz
(20)

(1)	 (2) 
(z), and f

(3)
The functions f

n
 (z), f 

mn	
(z) will now be found which

m mn

satisfy equations (18), (19), and (20). Differentiation of equation (20)

with respect to z gives



2 2 cif 3) (z)

	

n Tr	 mn
d

	

b2	 dz

(3)d3 
fmn (z)

+ Ec - O.
dz

(21)

d 2f(1) (z)	 2 2 df(3) (z)

	

mir	 mn	 m Tr  mn

	

a	 dz 2	a2	 dz
4-.

16.

-Gxz

Ins d2f(2) (z)
G mn 

yz dz 2

Substitution of equations (18) and (19) into (21) yields

d3f(m3) (z)
	 n 3	 - 0

dz

which can be integrated directly to the form

2
fm(3n) (z) = A	 + Bmn z + Cmn'mn 2

Substitution of equation (23) into equation (19) with subsequent integration

results in

	

nTr	 z 3 z 2
fm(2n) (z) = b Amn -6-- + Brim	 + Dmn z + Emn '

Substitution of equation (23) into equation (18) gives an equation which is

integrable to

fm) (z) = a [Amn —6- + mn -T + Fmn z + Gmni.	 (25)(1)	 Mir	 z3	 z2

A	 ,B	 ,C	 ,D	 ,E	 ,F	 , and Gmn in equations (23), (24), andmn mn mn mn mn mn

(25) are constants of integration which are not all independent. To deter-

mine relations between these integration constants, equations (23), (24),

and (25) are substituted into equations (18), (19), and (20). Equations (18)

(22)

(23)

(24)
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and (19) are seen to be satisfied identically by this substitution, but equa-

tion (20) yields the relation

m 2 
Tr

2

2  Gxz (Fmn - Cmn ) + n2 2 Gyz (Dmn - Cmn)
a

+ Ec Amn = 0.	 (26)

By substituting equations (23), (24), and (25) into equations (15), (16),

and (17) there results the equations

oo 
U c = -

m=1

3
—mir A —z + Bmn z2 +

2
[	 Fmn za mn 6

+ Gmn m yrx	 nlrYcos _ sin —
a

(27)

[nir z3 z 2A
b mn

+ B
6 - mn 2

00	 00

and

Vc

W c =

-

sin miTx
a

2

cos nTrY

mn

+ Dmn z

s in mirx—
a

niry

(28)

(29)

m=1 n=1

+ Emni

oo
+ B	 z+ C

mn
A

m 
z

n 2
sin

m=1 n=1

The above equations for core displacements satisfy the equations of

equilibrium of the core if the constants A 	 C 	 Dmn' and F
mn aremn 



(30)

(31)

(32)

(33)

(34)

1

related by equation (26). Thus, it is seen that there are only six inde-

pendent constants of integration in the expressions for the core

displacements.

2. Core Strains

The core strains,E zc' yxzc andy Cyzare now obtained by substi-

tuting equations (27), (28), and (29) into equations (30), (31), and (32)

which follow directly.

awc
E

zC	 az

awc auc=
Yxzc	 ax	 az

and
awc
 

av c
y

= .••n••••	 —

yzc	 ay	 az

This substitution gives

co	 co

E z C =,	
A mn + Bmn ) sin rmrx sin "Yb

m=1 n=1	
a

00 00 mrx	 nry
=>	 (Cmn - Fmn ) "Mr cos -- sin 

xz C
m=1 n=1	 a	 a

18.

and

yzC
. /Y1 rx	 nry.

Gmn	 b- Dmn ) 	 sin	 c o s  	 .
a

(35)
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The core shear strains are thus seen to remain constant with variations

in z alone. This was evident, of course, from the original core equili-

brium equations (3) and (4). Again it is emphasized that A	 C	 ,=, mn 

D
mn

, and F
mn 

are not independent.

3 Facing Strains Associated with
Deformations of the Middle Surfaces
of the Facings (Membrane Strains) 

The expressions for the displacement components of points in

either facing may be obtained by requiring displacement continuity be -

tween the core and facings at their bonding surfaces (interfaces), that is,

the interface displacements of the facings must be equal to the interface

displacements of the core. The middle surface displacements of the fac -

ings may be expressed in terms of these interface displacements by

assuming:

1. w and w', the z -direction displacements of the upper and

lower facings respectively, are constant through the facing thicknesses.

In analyses, where displacements associated with incipient buckling are

under consideration (as in this paper), this assumption seems particularly

valid.

2. u and u', the x-direction displacements in the upper and lower

facings respectively, vary linearly through the facing thicknesses.

3. v and v' , the y-direction displacements in the upper and lower

facings respectively, vary linearly through the facing thicknesses.



t
—

ucl
z = 0

t	
aw

c

z = 0

(36)
2	 ax

2

t	
Ow c (37)+

2	 ay
z = 0—

V
c i z = 0

2

t
-  

w
c

z = 0

(38)

2

u
z = -

and

z =

z = -

au
z =

2
E xM ax

al 
z =

t
-

auc l

ax
z =0

av c
e	 -

YM aY - ay z =0

a zw
c 

I

2 
ax

2
z = 0

(3 9)

2w I
+ —

2 ay-
z = 0

(40)

20.

The facing strains are arbitrarily divided into two distinct parts.

One part is that associated with strains in the middle surfaces of the

facings, that is, the membrane strains. The other part is that associ-

ated with strains caused by bending of the facings about their own middle

surfaces.

a. Upper facing. --The displacements at the middle surface of

the upper facing may therefore be evaluated as follows:

The membrane strains in the upper facing may be written as follows:



M 11- nr
- t C_ )	 — cosb

mn a
M ?DC	 nary
	  cosa (44)

21.

and 

z = - —
2

av
z = - 

—2 YxyM ay   ax 

(41)

au
c 	a

2
wc	 av

c
ay	 t axay	

ax= 0z=0	 z = 0

By substituting equations (27), (28), and (29) into equations (39), (40),

and (41), the following relations are obtained for the membrane strains

in the upper facing:

E
x

2 2
n	 M TrX 

sin nny- — C )	 sin	 s —	 (42)
a

(Gmn 2 mn	 a2

E 

YM

2 2
m nx 4 nnyE - —t c ) n	 sm. — sm. —

mn 2 mn b2	 a
(43)

and

Y "'xyM G +Emn + Emn

b. Lower facing. --The displacements in the middle surface of the

lower facing may be evaluated as follows:

l	
ti =uc

z = c + — z = c
2

t' awe
2 ax

z = c
(45)



v'
z = c + 7 

=V
c

z =
t' 

aw
c

2 ay
Z = C

22.

(46)

and

w'l
z = c +

t'
—
2

= we
z = c •

(47)

The membrane strains in the lower facing may be written as follows:

8u'
t'

z = c + au
c

Z

Z

= C

= C

2
t'	 a wc

Z = C

( 48 )

( 49 )

e 
xM	 ax

av,
t'z = c +

ax

av
c

2
ax

2

a 
2

w
ct'

e 
'M 

= 
ay - ay ay2

Z = C

and

	

au , 	ay,
t'z = c + — i z = c + —

2	 2 

	xyM ay	 8x

au
c 

I	 a 2wc
- t 	

ay	 8x8y
z = c Z = C

av
c

ax
7 = C

(50)

By substituting equations (27), (28), and (29) into equations (48), (49), and

(50), the following relations are obtained for the membrane strains in the

lower facing:



+ Dmn c + Emni MITX	 nry
sin — sin

b 2	 a
n2

Tr
2

(52)

23.

xM
c 3	 t' c 2 c 2 t' c	 Cmnt

A (— +	 + B (-- +	 +mn 6	 4	 mn 2 2	 2

	

m	
ma22

y+ Fmn c + Gmn	 sin — in nr—aa 2

M	
A (— +	 + B (— + -- +c 3	t' c 2 c:	 t. c.

co	 2	 ,	 Cmnt'

YE	 = > 
m=1 n=1

(51)

and

xyM

co
= - Tc° 	  [Amnm=1 n=1

3 2t c	 t' c
3	 2 ) + Brain (c 2 + c) + Cmnt'

+(Dmn + Fmn)	 mr nr	 MTDCc + Emn+ Gmn	 — cos	 cos nry (53)

	

a b	 a	 b •

4. Facing Strains Associated with Bending of the
Facings About Their Own Middle Surfaces

mn 6	 4 mn 2 2

(a) Upper facing. --The facing strains due to bending of the facings

about their own middle surfaces may be determined from a knowledge of

the slopes and curvatures of each facing in the xz and yz planes. These

slopes and curvatures may be evaluated by differentiations of equation(38).



n2 Tr 2
• sin 

M 1TX
mn b2

sin lurY
b-	 z' a

a
2

 w
z = 2-

e 
yB 

= z' ay 2
 	

24.

Thus, it is seen that the facing strains due to bending of the upper facing

about its own middle surface may be derived from equation (38), and

hence from equation (29), as follows:

E xB = Z ' a2wiz = - 2 2 Trm 
1Tsin 

m x . nry
- - z'	 	 sin 	  mn 2	 a

ax
2 m= n=1	 a

(54)

(55)

and 

awiZ -
ax

t  
aw

Z =

ay

t
2 

I 

a 
2w

Z= -2 
aN

xyB ay  
4_a

ax
- 2z'   

I
axay 

co	 co 

= 2z' � >  Cmn

m71 n=

M Tr nil.
a

c os
M 1TX	 nirycos

a
(56)

where z' is measured from the center plane of the upper facing so that

t <	 < t- — = z = — .
2	 2

(b) Lower facing. --Similarly, the facing strains due to bending of

the lower facing about its own middle surface may be derived from equa-

tion (38), and hence from equation (29), as follows:
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5. Elastic Energy of the Core

The elastic energy of the core due to the anti-plane stress com-

ponents may be expressed as

a b c

Vc = —2 E
ZC ZC

+ Tyzc Yyzc + T
XZC YXZ C )

dx dy dz. (60)

0 0 0

An energy expression due to elastic energy of the core may be expressed

in terms of core strains by substituting equations (6), (7), and (8) into

equation (60). This substitution gives

a b c

V = 1c 2 ( Ec E2 c + G y
2

xz xz
+G

2
 y

2 
) dx dy dz.	 (61)

yz yz
0

If equations (9), (10), and (11) are substituted into equation (61), there

results

a b c
aw 2	 auc awCI 2

V c 21 55 [Ec	 Gxz az ax
0 0 0

+ G
yz

av
c

awc
2

dx dy dz (62)
oz + ay

From equations (27), (28), and (29) the following equations may be written:

auc

8 z
— + Ba mn 2 mn

Tr A z
2

z + Fmn cos -maxsi
a	

n nay
bm=1 n=

(63)
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avc

az
nTr 2

z
mn z + Dmn

TO.	 m mry
c os —

b illn — + B2
sin

a

awc	 co	 co

ax	 m=1 n=1

2
Amn

z
+ Bmn z + Cmn

2

M IT cos 1-r - Trx sin 11117.
a	 a

(65)

8wc

ay

2
Amn + Bmn z + Cmn

2
nom' r12Trx cos n

b	 a

(66)

(64)

and

awc

az
in mrrx ; mrys

a
(67)

It is convenient to write equation (62) as

V
c
 = V

c 1 
+ V

c2 + V
c3
	 (68)

where

a b
1
	 aw 2

vc
	 E c	dx dy dz

az
	 (69)

o o 0

a b c

„v 
0 0 0

au	 aw 2
Gxz	

c	 c
(	 +	 )	 (ix dy dz	 (70)

az	 ax
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which, upon integration8
—may be expressed respectively as

= 
E abc

c 1	 c 24 	  n=
(Am2 n c2 + 3Amn Bmn c + 3Bmn )	 (75)

2 2abc 	 	 rn TTV , -cL	 xz 8 	 	 2	 (Cmn - mn )
2

m= n=1 a
(76)

and

V
c3 

= G
yz

abc

8
(77)

A complete expression for the elastic energy of the core which is sub-

jected to anti-plane stress may now be written by substituting equations

(75), (76), and (77) into equation (68). Thus, it is seen that

vc	 8	 	
abc 	

3 
c	 2

=l n= 
— (A m.n c

2 
+ 3Amn Bmn c + 3Bmn )

m 

+ Gxz

2 2
m TT 

2 (Cmn Fmn) 
2 

+ Gyz n2 2 
(Cmn - Dmn)

]
.

a

(78)

6. Elastic Energy of the Facings
Associated with Membrane Strains 

(a) Upper facing. --The elastic energy of the upper facing associ-

ated with strains in its middle surface (membrane strains) may be written

as follows:

Bee Appendix C for further details.
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a b t

VMF 
2 	 f-	 ( cr

xM xM yM E yM + TxyM

0 0 0	
xy	

.m ) dx dy dz

(79)

This energy expression may be written in terms of strains by substituting

E ,
xm - 2 

xM
yM)

1-p,

E 

66 yM
1-p.

2

and

E 
T
xyM 2(1+p,) YxyM

into equation (79) to give

a b t
E	 1	 2

V
MF 2

(E

)0 0 50 1-1'12 xM

+ E 2
M 

+
Y

E	 )
xM yM

1
dx dy dz,

2(1+0 xyM

It is convenient to write equation (83) as

VMF VMF 1 VMF2 + VMF3 VMF4

where

V
MF1	

E 
xM 

dx dy dz2

2(1-p.
2

)
0 0 0

(80)

(81)

(82)

(83)

(84)

(85)
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and

2 2

	

111. Tr 	 t	 n2Tr	 2

	

2	 (Gmn - 2 Cmn) + 2 (Emn

co	 CO	 2 2 2 2abtp,E	 y m 	n 

	

(Ginn - — C )(E	 - Cmn)vMF 3	 2 /	 2 nin rnn 240-p. ) m=1 n=1 a 2	 b2

(95)

abtE  \--°° ) 00 m 2 Tr 2 n2
IT

2 	 2

	

VMF4 16(1+p,) /	 (Gmn+ Ernn - t Cmn ) . (96)
m=1 n=1	 a2	b2

A complete expression for the elastic energy of the upper facing due to

the membrane strains in the upper facing may now be written by substi-

tuting equations (93), (94), (95), and (96) into equation (84). Thus, it is

seen that

	

00 o0[

>	

4 4abtE	 M Tft	 2 n4 Tr4VMF - 2	 4 (Gmn 2 C mn )	 b4 (Emn8(1-p. ) m=1 n=1	 a

	

2	 2 2 2 2m n- —2 Cmn) + 2p,
a
2 b2 (Gmn 2 Cmn ) (Emn	 Cmn)

m2 Tr 2 n2 Tr2 21
2

a
	2 (G

inn 
+ Emn - t Cmn ) .2 b 

As shown in Appendix A, equation (97) may be algebraically simplified

to the form

abtE 
VMF 8(1 -µ2) n

(97)

1-p. m 2 Tr 2 n2 7r 2 2- — C ) 2 +
t
2 mn b2 Gmn Emna 2 (98)
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OD) Lower facing. --The elastic energy of the lower facing associ-

ated with strains in the middle surface of the lower facing (membrane

strains) may be written as follows:

a b c+t'

V'
MF	 2	 J	

(cr 	 El	 cr '	 El	 + T I 	 y'	 ) dx dy dz
xM xM yM yM xyM xyM

0 0 c
(99)

As was shown in the case of the upper facing, this energy expression

may be written in terms of membrane strains alone, as follows:

a b c+t'

V m' F E 12
1

1-p, 2	 xM
[E'	 )

2	

Y
+ (e'yM) 2 + 2p. e'xM ElyM]

0 0 c

1 
(y1

2(1 +p,) xy
2

dx dy dz	 (100)

It is convenient to write equation (100) as

V' 	 V'	 + V'	 + V'	 + V'MF MF 1 MF2 MF3 MF4
(101)

where

E
V'

MF 1 2(1 -p.
2

)

a b c+t'

0 0 c

(e'xm) 
2

dx dy dz	 (102)

 
E 

MF2 2(1-p.2

a b c+it'

5 ) ( ElYM ) 2 dx dy dz (103)

0 c



c +t'a b
1.J.E

MF3	 2
V'

1	 0 0

(104)x.
e'	 dx dy dz

YM

35.

and

E
MF4 4(1+4)

a b c+t'

0 0 c
2

dx dy dz
xyM

V' (105)
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7. Elastic Energy of the Facings 
Associated with Bending of the Facings
About Their Own Middle Surfaces

(a) Upper facing. --The elastic energy of the upper facing associ-

ated with strains caused by bending of the upper facing about its own

middle surface may be written as follows:

a b	 -2-

VBF = 1
2 55 5 (o-

xB 
E 
xB 

+ o- 
y B iB 

+ T
xyB NxyB ) dx dy dz'

0 0

(11 6 )

where z' is measured from the center plane of the upper facing. This

energy expression may be written in terms of strains by substituting

o- 
xB 

=	 ( E	 + p. E
yB

)
1-p, 2	 xB (117)

and

cryB  1-42 (EyB +
	

xB
)

— 	
E

T
xyB 2 (l+p,) NxyB

(118)

(119)

into equation (116) to give

+ t
a b	 2

E	 1
V

BF 
= 

2 11 5	 (e-p.
2

o o	 t

2	 2
+ E	 + 2µE	 E	 )

xB yB	 xB yB

1	 2
+dx dy dz'

2( 141 ) xyB (120)
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It is convenient to write equation (120) as

VBF V BF 1 + VBF2 + V
BF3 + VBF4

(121)

where
a b +2-

vBF1	
E s 5	 2e xB dx dy dz'	 (122)

2(1-p. 2 )

V	 - 
E 

BF2 2(1-p.

0 0	 t
2

t
a b +

5-1 5
o o	 t

-7

dx dy dz'	 (123)
yB

a b + 2
_ p.EvBF3--	 2	 je xB E yB dx dy dz'

1-1-1'	 0 0	 t_2
(124)

and
+ t

a b z
2YxyBVBF4 = 4(1+p.) 5 5

0 0	 t
2

dx dy dz' ,	 (125)
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45.

A complete expression for the elastic energy of the upper facing associ-

ated with strains caused by bending of the upper facing about its own

middle surface may now be written by substituting equations (130), (131),

(132), and (133) into equation (121). Thus, it is seen that

	  oo

96(	

4 4	 4 4	 2 2 2 2
VBF

abt
3
E	 m 7r n w	 m w n w -	 + 	 + 2p.

1 - [J. 
2

)	 n=	 a4 b 4 a 2 b2

m27r2 2+ 2(1-p.)	 n Tr C
2

a 2 b2 mn

and this equation can be algebraically simplified to the form

V
BF - 

abt 3E  >m 2 ir2 n2 7r2 \	 22

Cmn
co

96(1-11 2 ) m= n= \	 2a	 b 2

(134)

(135)

(b) Lower facing. --The elastic energy of the lower facing associ-

ated with strains caused by bending of the lower facing about its own

middle surface may be written as
t'

a b + 2
1

BF = 2
0 0	 t'

2

((T TxB E 	 + t	 El	 + T 1	 y'	 ) dx dy dz"xB yB yB xyB xyB

(136)

where z" is measured from the middle plane of the lower facing. As

was shown in the case of the upper facing, this energy expression, equa-

tion (136), may be written in terms of bending strains alone, as follows:
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t'
a b + 7

E
2

=
1

'15 5	 1-42 
[c' 

xB
) 2 + (el yB )2 + 2p.c' 

xB 
c' 

yB
0 0	 t

( 

	

V
BF4 4(1+p.)	 5'	 - 	

	0 0	 t'
2

t
a b 2

E
( .y'xyB

- —

dx dy dz"	 (142)

V '
BF

2(11 x
(N1	 )

2 
dx dy dz"	 (137)

+4)	 yB

It is convenient to write equation (137) as

V'	 = V'	 + V'	 + V'	 + V'
BF BF 1 BF2 BF3 BF4

(138)

where t'
a b + 2   

E

BF1 2(1-p. 2 ) 15
0 0 t'

- -2-

) 2 dx dy dz"
xB

(139)

- 
E 

BF2 2(1-11
2

)

(e ,	 )2
yB

dx dy dz"	 (140) 

V'
BF-3

t'
a b

I-LE2 j5
0 0	 t'

E'	 e'	 dx dy dz"	 (141)
xB yB

and 

2 
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Substitution of equations (57), (58), and (59) into equations (139), (140),

(141), and (142) yields, respectively,

4 4	 2	 2v,	
-
	 Eab(t 1 )3  > 	  m Tr (A	 cBF 1	 ---4— mn 7 + Brnn c + Cmn ) (143)

96(1-112 ) m= n=1	 a

	

oo	 00
V'	 - ab(t ' )3E >	 n4 Tr4

	

c 2	2
BF2

	

	 4 (Arnn 7 + Bmn c + Cmn ) (144)
96(1-p. 2

) m=1 n=1

00
v ,	 _ ab(t 1 ) 3 p.E	 m

2
Tr

2
 n

2
IT

2
c 2	2

BF3(A — + B c + Cmn )
48(1-11,2 ) m=1 n=1	 a 2 b

	 mn 2 mn

(145)

00
_ ab(t ' )3E 111

2
Tr

2 
n

2
Tr

2
 ,	 2	 2

BF4	 kArnn + Bmn c + Cmn ) .
48(1+11) m= n=1	 a 2	 b 2

(146)

A complete expression for the elastic energy of the lower facing associ-

ated with strains caused by bending of the lower facing about its own

middle surface may now be written by substituting equations (143), (144),

(145), and (146) into equation (138). Thus, it is seen that

v ,	 _ abt1)3
E	

00	 00

BF 96

(

(1-p. 2 ) m=	

(me2r2 n2_2)2

a 2	 b 2
	 + "	 (Amn + Bmn c + Cmn )

c 2	 2

00

and

00

(147)
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49.

It will be recalled that the parameters A n , Cmn , D , and F 
mn 

inm 

equation (149) are not all independent. The relation between these

parameters is given in equation (26), which when solved for Fmn yields

1 a
z E

c
Fmn Cmn Pmn G	 2( 2

xz m TT

Amn + G	 D
Yz b2 

mn ) (150)

where

0, 	 1 +
G

 Yz a
2 n2

—r1	 G
xz m

2 b
2 • (151) 

2	 2m n
0	 - 	 +mn 

a
2 

b 2 (152)

and

En
2

5 =
c(1-1.1.2)

(153)

and substitution of equation (150) into equation (149) permits the writing

of an expression for the total elastic energy of the simply supported sand-

wich in which all of the parameters, A
mn , Bmn , Cmn , D

mn , Emn, and

Gmn are now independent. Thus,
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9. Potential Energy of the Edge Loads

The potential energy of the edge loads with respect to the unde -

fleeted configuration of the panel, immediately prior to buckling, is de-

noted by T, and may be derived in exactly the same manner as in the

analogous plate analysis. —9 The edge loads are defined in terms of Nx

pounds per inch of sandwich acting on edges perpendicular to the

x axis as shown in figure 4. Since the core was assumed initially to be

incapable of carrying loads in directions parallel to the facings, all the

edge loads must be mathematically applied to the facings. It is of inter-

est to note that in actual sandwich applications, the edges must be de-

signed so that these same edge loads are actually applied to the facings.

It is recalled that the core displacement functions given in equations (27),

(28), and (29) are compatible with zero edge moments about the edges of

the sandwich panel. This necessitates that the strains in both facings

be the same in the direction of loading. This means that the stresses in

both facings will be the same for facings of like materials. Thus,

a b
T = j

0 0

Nx	 aw 2	 w'
t +	 [t. (—ax ) + t' (a )

ax
dx dy	 (155)

,awwhere —aw 
and — refer to the slopes in the xz plane of the upper and

ax	 ax	 —

lower facings, respectively. Because of the nature of the application of

the edge loads shown in figure 4,

-See reference 14, page 351.



and

aw
caw,

ax	 ax Z= C

c
2

- 2- Amn 2 + Bmn c
m=1 n=1

52.

ay
Nx = N o (1 - -fo-) .

Substitution of equation (156) into equation (155) gives

(156)

aw 2
t (—) + t . ( a

ax	 ax
dx dy (157)

which may be written as

a b
N

o	 a 2	 aw.
T 	 	 t	 + t' (—) dx dy

	

2(t + t') S1	 ax	 ax
0 0

a b
N o a	

aw 2	 awl 2
y t (—) + t' (—) dx dy.	 (158)

	

2(t + t' )b	 ax	 ax
0 0

Because of displacement continuity between the core and facings at the

interfaces and with reference to equation (65), it is seen that

aw
aw
ax ax

mur	 mTrx	 nTry
— cos — sin mn a	 a

(1 59)

&
mTrx	 nTry

+ cm	 cos — sin —
a	 a

(160)

It follows thatIl

10.-=See Appendix C for further details.
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55.

10. Equations Which Define 
Instability of the Sandwich

As indicated in the introduction of this paper, the total energy of

the system, (V - T), must possess a stationary value at instability, that

is,

av 	 aT - 0
aA	 aAmnrriri

(167)

av	 aT 	 = n
(168)as 	 aBmn

av 	 aT 	 - 0	 (169)ac	 acmn a
mn

av 	 aT 	 - 0	 (170)aD	 aD
mn	 mn

av 	 OT
(171)aEmnaEmn

avaT - o .	 (172)aGmn aGmn



56 .

	0 	 N

	

N	 en

	

0	 eq	 ca	 N

	

E	 E	
r--4

...../

NI I Ni

	

U1	 U	 7i1J	
....1

	

E

0	 e.) I r\I	 u	 '-,J

E 1 cd	 Z ° N.14.-1--'

	

+	 c)

	

..N.......• 	r"--7-1̀10	 1

	

M	 0 ii---.... U	 N

	

7-)	 41	
e------4,-----)

r	 ----	 1-- 

	

..-.,	 0	 0X
	

1	 N
O N'-'ci)	 7-4 f r\I

0	 ni	 0	 fxl	 ..1CD
'gip 	 E	 N4-1:I,	 1	 N 

obi)	 U	 0(.0
......,0	 +

E+
ed

1 t,	 N I d''

	

u 1 N	 00	 ...--..•,-4

	

+ 	 cn I-4,

O al	 u	 0#a	 0o +	 +03	 o	 TN

	

E	 u	
I CD

±	

U

	

E	
.1-14	 'c EU N I rq

	

N	 PC1Q41	
u 1

	

.......,	 U41cip	 -F	 o	 +...-1 N
> --'0	 cr)E	 MI 0 I N4	 N  rq	

r .7 u NI
...
'-ci 	 +	 +

g0
cd	 I

	

E	 E	 U 	 N	 't
WO *(	 0	 0l"--

	

----,	 N
g I") H

	

n	 Eht.......•

	

	 ,..-.-0vNI-71,
N	 U1	 ± 

oO NI	 E	 c' M
++

	 +

id	
NI	 A

	

0	
enVI .0	

E	 al	 ±
A

Cr'	 N	 d 1 NCll	 0	 NT N EO !	 ° 	 i

	

E	 ...	 X	 ,—s
'14	 N	 ICD_......1	 0 0	 0

	

.......	 ..--...
.---..	 cti N.0 N	 ,—I.......•,...c)	 a ,-1	 Lo	 0_.......	 w U 	 .+J	 NI	 +
0
O 0	 +	 NI 0 I N-0	 L--"1._i	 0
cd	 ,..0	 + +.....,

71..	 E	
0	 1NLn	 0 INPCI	 g. U.......	 0	 <4	 C.) 1	 N	 +	 -.14...ch	 E	 -F	 r>

O Clq	 U	 0 I rq	
41	

..d	 N	 • I-1 1N U
o "0.,--n 	 -I- 	 N	 0

1-71	 N Ion	 E	 filU I >IN	 N	 k E N1I1

	

u 	 0	
0 (NA	 <4	 -0cr'	 •-0U	 0	 +	 ,	 1.---L–__.--_____I

0

4-1	 E	 X

C13o

0Iu,-,	 -H

1-j,	

41
• r-1

• 1-1	 a)-1-.) ;..i
2	 a)
g 4

cr)



N

o o

NI

U

 \ Ira

U IN

UI
N

>4

U

U

N I NI

t

U
74--) N

N INU

Ncd

O

I I

o

1
U

U

..••••••n

71-1
Lr)

••••••••

ct)

0

4c.d4

cr'
a)

O

4-)

N
CID

.•••••n

()IN
0

CD

Nu

c0

'dI

cd

0

• H

Cr4

'ho

0

N E

N INU

1

d I NI
I rqrd	 co

57.



5 8 .

in
c)	 r-

U
	 n	 g	 ,ft-I

	

0	 0	 E	
H	 ......

ill	 0 q-0 rl	 N
.--...

	

rp 	 N± I

	

NI 0 IN	
(\14-' 1 't

0	 ••••n••

	

r-I	 • r-/
•H

	

.•-•.0	 ±

O 0 ni
0

	

+	 r-4
•H

	

E N I N	 0

tu)	 <4	 moo 1-7---1,

	

+	 0	 L__1_- _1

	

cd

0

	en 

+ 

t..]
U 

;-4 "--4-).......	
0E	 E	 (..)........

	

o	

NI t
rd	

0
+

4-)	 l______Ne---/

	

N	 U

Li-i
U E 
rd	 N0	 k	

U	
0- -4U	 N-1

	

E	 LC	 1.4	 N	 N	 0

	

...	 +	 Pa0	 7-)	 X-0	 1_:...71
on	 + 	 4...ft,..)	 ±

•,-1O
.	 -_____4_... ..1	 ---. 	 I	

rq0 I Ng	
U	 No IN0

u,	 o	 E	 E	
,-.) 1 ,,, r--_I

NE	 0	 E I d	 E•H	 U
-d	 ca	 •Ccv	 rN-I	 010	 ----0ti
O Lo

	

cDE 	 E	 2- I N	 E	 74-,cd41+

	

	 +	 +4-) I NI

U0--
.0	

0	 .	 1-----1	
. 0	 •r,

.........

	

E	 0	
N INS

d
<4	 E	 E	 0

O +	 0	 .,..	 ,
o u	 41	 c.)	 t	 -i.,-1	 W	 0

tdr \10 

INS
 	 E	

N (NI

N O I r‘14	 C.)	
E

I 
M	 E	 8"1 	 1

cr'	 +	 +<i)
O

N
cd I

N1

	

0	 "ft;-) 1 N	 U	
c0 I N

	

E	 0	 7.1 Ni
+

-1-o)
I	 0	 E	 0	 +

1 0	 N N	 m
E	 0

	

E	 d i N.0	 E	 ct	 +	 I.0
...._...

	

o	 I-7-1	 o	 .
—0	 0	 E

	

E	 E

	

E	 E
	 CA	 4.1

..--..
rd	 n	 N NN IN0

i LO	 t I r\1	 NI r,-0	 E	 O Iin	 N + 	+	 N	 0,--i........
tn.U	

NuIN	 0	
N cd NI	 ±	

.H I
O E	 E	 ur..--,....,--7,	 ti
O 0	 0 •HI	 0	 0	 N
d

a.

	

E	 (DE	 41
4-,	 0	 ca

	

N irq	 X	 E

	

(..)	 E I	 cd 	 PC)	 rd
' 0co

,-,--1
O N -0

I
.,--4r)

	

N N
	

±	 0O +	 +	 +

o0	 N	 0 I
-H•H	 0	 •'-1
(1)• H

co	 a)
..0	 4
ci)

I



U

U

C-

N

U)
a)

U

• H
b.0

rd

0

U

0
•H
U)

•H

•H
7:1

cd

O
N

0

a)

•H

ort

crl

0

,z)

cd

U)

ir)

0
•H

ca

a)

0

0
•HI

•H

U

0

NJ INJ

I
cd
	

Cd r•I

N

Nig U 

N E
C_

H
U

I r\14

I0	
r\IdNd

59 .



E
i 	 cc)	 E	

---.0

w E
N

	

	
NO r\l.0 0

Q I N.,	 Ito t._______Ne.-)

U	
N

(.,
xU N	 0

1 7t,
cti	

Lo	 W
A

E

7.4
;.,
O
u	 ---- 7

+ 0
4-)
cd	 0	 C.)	 a.

N
N

6 0 .

cno 1‘4)

N

0

c

+

U

+

o
E

I N 

E

I N

E

0

L___ u ..j

0

II

,...._"........._,

r-----g-1
E

e\10

N
E

21

No

r-0-1

INA
I N

vd

eq
+

E
w

1 N,0
+

E 0
E

W
PA

(.) +

.-4-' I N
Ni

l
I,,,

 cd E
+ 0

+

NU I eq
i

E
g n
Ea>

N.--.. N
u

+ d X
0 0

N
N

k
E

1 ct N
,....••

(...4-4-'	 1

NU

U
,t4

No 1 N.-0

u N
, ..,

o 0•r-I

Nal	 1 rs,
E IN

S

CU

	

	 –I–	 ±	 ±N I N

g N
O k

•1-1	 LO

•r-I
4-)
U)

ilk



6 1.

co
cn I.o	

U

U N
111

U

U
N NI

El cd

O

U
--+) IN

U r

NINU

+

0

U

U  

0

\I0  N4

0

NE I NI rd

O

N

0 0

U

r \I 0 I Nr0

CJ

0

U

N 

0

O

•

• H

O
to

(.1)



62.

Equations (173), (174), (175), (176), (177), and (178) constitute a linear,

homogeneous set which will be satisfied by a value of N o equal to Nocr

the buckling load. If all of the parameters, A	 , B	 , C	 , D	 ,
mn mn mn mn

Emn , and Gmn 
are identically equal to zero, this set of equations is

satisfied, but this is a trivial solution associated with the nonbuckled

state of the sandwich. The solution of interest is that which satisfies

the set of equations (173) through (178) when at least one of the parameters

Amn 
through Gmn 

assumes a value other than zero. Such a solution can

be obtained by equating to zero the determinant of the coefficients of the

parameters A, B , C, D 	 E 	 and G	 in the set of equa-
mn mn mn mn mn	 mn

tions (173), (174), (175), (176), (177), and (178). Since there is an infinite

number of these parameters in the infinite number of equations which

constitute this set, the resulting determinant is of order infinity unless

= 0, in which case the determinant is of order six. Fortunately, how-

ever, for a k 0 a relatively small part of the determinant of order infin-

ity will yield a satisfactory approximation to the critical load.

V. NUMERICAL COMPUTATIONS 

1. General Case 

A solution of equations (173) through (178) will provide the critical

load for the most general case of sandwich panel and loading. For a

specific panel, a numerical solution for critical load can be obtained.
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For further details of such a general case solution, see the section en-

titled Discussion of Results.

2. Case a = 0, E c Finite

The equation which defines the critical load for the case a = 0

(pure edgewise compression, see fig. 3), is found by equating to zero

the determinant of the coefficients of A , B
mn •,	 in equations

mn	
. , G

mn

(173) through (178). This equation is

	

H
1,1	

H
1, 2	

.	 H
1,6

H	 H	 . H

	

2,1	 2,2	 2,6

0	 (179)

.

	

H
6,1	

H
6,2	 H6,6

where the elements H p	 after some reduction, are given in Appendix D.

For the determination of the critical load of any specific panel loaded in

edgewise compression (a = 0), equation (179) may be solved numerically

for Nocr•

3. Case a = 0, E c = 00

The assumption of infinite transverse modulus of elasticity of the

core (Ec = co) introduces welcome simplifications into equation (179).

This assumption is believed valid in analyses relating to modern sandwich
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11
construction.— In this case, equation (179) can be written as

	

J
1,1	

J
1,2	

.	 J
1,6

	

J
2,1	

J
2,2	

...	 J
2,6

(180)

...	 J
6,6

	

'16,1	 j6,2

where the elements J 	 are given in Appendix E. For this case, when
ID,c1

G = G = G and t' = t , the determinant in equation (180) may be
yz xZ — —

simplified by judicious additions and subtractions of multiples of rows

and columns.

ocr

Thus, equation

2
2

(180)

1

reduces to

t (c + t)
2

(181)2
D t. rnn

m
2

a
2

- 1 +1
S I,rnn

•••• vmm.

where

3	 3
_ (c + -c (182)

12

2	 2 a2
1)

mn
 = m + n —2

b

(183)

11
—See Discussion of Results.



65.

EI
D (184)=

and

1-4
2

2
Tr Ect

(185)S =
2	 2

)2Ga(1-

Equation (181) can be written as

ir
2

D

where

N	 =	 k'ocr	 2	 m0

bk'	 -	
2	

2 cD 1

t (c + t)
2

(186)

(187)
2I

m0	 2	 2	 nm a	
m 1

+1
S rnn

Further simplifications result when the facings are sufficiently thin to

be considered membranes. In such cases t < c , so that terms involving

either the square or cube of t are small enough to be neglected. This

latter assumption is equivalent to the assumption of membrane facings,

and is known to represent many actual sandwich constructions very well.

This assumption of membrane facings permits equations (186) and (187)

to be written, respectively, as follows:

7r2DMN	 =ocr
b

2 km0 (188)

and



b 2
2
mn

(189)k
m0 

- 	
22 1 + S iDm a	 mn

b
2

k
m0 

m
2

a
2

b
2

1 + —2- W (D
mn

2
mn

(192)

66.

12
where —

El
D - 	

M
1- p. 2

and

I	 - 
tc2

M 2

(190)

(191)

Instead of the parameter, S, a related parameter, W, may be used in

equation (189). Thus, equation (189) may be expressed as

12
—The simplificatioi, from equation (187) to equations (189) and (192) re-

quires a modification (in equation (186)) of D, the flexural rigidity
of the spaced plate facings. The assumption of membrane facings,

El
for which D

M
 = — will effect this simplification. A more accu-

1-p.
2

rate assumption which will produce this same simplification is to
EI 

BM 
use D	 =	 This point is discussed further in Discussion

BM	 1-p.
2

of Results.



2Gb
2
 (1-p.

2
) '

Equation (192) is presented graphically in figure 5.

r 
2
EctW - (193)

6 7.

where

4. Case a = 2, E c = co

For the determination of critical load in all cases where a is

other than zero, a determinant of order eighteen is solved.-
12

 Thus, the

equation defining the critical load of the sandwich panel for the case

a = 2 (pure edgewiise bending) is found by equating to zero the determi-

nant of the coefficients of A
n
 , B 

mn 
, . . , G 

mn 
in equations (173)m 

through (178). This equation is

K
1,1	

K
l, 2	 K.,

K
2,1	

K
2,2	

. K
2,18

(194)

. K
K 18, 	 K 18, 2	 18, 18

where the elements K	 are given in Appendix F. For the case where
p, q

G	 = G	 = G and t = t' , the determinant in equation (194) may bexz	 yz

12
—See Discussion of Results for further details relating to choice of

order of the determinant used here.
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lm  
	 2	 \ ( 

m 3m2
1 + St

ml	
+ S 

m2-) 
1 + S m3

70.

Expansion of the determinant in equation (196) leads to the equation

Dmw
4

Nocr
2m

2
a

2

2	 2	 2
m 1	

t 
m2 m

	

t m3 

1 + S 
ml	

+ St	 1 + S m3 )

2
2	 16ml	 2

48
(-2 ) 1 + S 1) ml 

+( 9 ) 1 + S t m3

(197)

which may be expressed as

2
Tr D

Nocr	 b 2
	  k

m2

where

(198)

ir
2
 b

2
k = —

m2 2 2
m a

(199)2
2 t 

2
/96 \

2	 (D ml c.)‘,) 	 m3
‘251 1 +	 9	 1 + S m3
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or in terms of the parameter W as

2	 2
c.

m3

k	 =
m2

� 2
b

1 + W	 .I.
m27\	 a

2	 m li	 1 + 111/41.
a

2 '1' rn3
a

2
m

2 2	 .I.2
2

96	 ml
2	

m3
(32)	

,

(
25 )

b
2

1 + W 2 iI
ml

a

+ 9	
b

2
1 + W 2(m3

a	 m3

(200)

Equation (199) is presented graphically in figure 7. Equation (200) is

presented graphically in figure 6.

5. Case a General (See Figure 4), Ec = 00

A reduced form of the determinant in the equation which defines

the critical load for the case with membrane facings, E 	 00=	 ,c 

G	 = G	 = G, t = t' , anda is any value defined by equation (2), isyz	 xz 

7
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Noc	 2 2
r ma

2
48 2

( 2S ) (P m 1

a.)

DM 	 TT

4▪ 131112	 131113)

	
X

3
 - x)

X )

-	 )
2 

=

•

0 (202)

(203)

(204)

2
+ ( 1-

6
) ( Pm39

where

2
mn

-mn 1 + S
mn

m 2 a 2 1 (
 = N	 (1ocr

7-	 M
2 D

1

and

73.

Expansion of equation (201) yields the following equation:

13m2 Pm3 - (13
m1

 Pm2	 13m3 Pm2 13m3 ) + X2( (3rril

No design curves were made for values of a other than a = 0 and a = 2.

Equation (202) is presented with the thought that design curves for vari-

ous values of a can be prepared if desired. Until such curves are com-

piled, the designer can numerically solve equation (202) for the critical

load of any particular panel.
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VI. USE OF DESIGN CURVES

In using either figure 5, 6, or 7 to obtain the critical load of a

particular sandwich panel, select the correct member of the family of

curves-1-4 by calculating the value of the parameter S (or W if using

either figure 5 or 6) from the physical properties of the particular sand-

wich under consideration. Then, read the lowest value of k 	 corre-
ma

sponding to the ratio —a of the panel. The integer m associated with the

particular curve from which k 	 is selected, indicates the number of
ma

half sine waves into which the panel will buckle if its critical load is ap-

plied. The critical load of the panel, N	 , can now be computed by sub-
OC r

stituting this value of k _ into either equation (188) or equation ((198),mu

depending on whether the panel is to be subjected to pure edgewise com-

pression (a = 0) or pure edgewise bending (a = 2). It should be noted that

figure 5 applies for a = 0, whereas figures 6 and 7 are both applicable

for a = 2.

In the curves shown in figures 5 and 6, the parameter W is used

to separate each member of the family of curves, whereas in figure 7,

the parameter S is used for this purpose. Curves 6 and 7 use parameters

W and S respectively, to define the k m2 
for the same identical case of

loading (a = 2). It is believed that the designer will find the use of figures

14
—A family of curves is here defined as that set of curves corresponding

to a particular value of S (or W).
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6 and 7 together will aid in the interpolation to a correct value of km2

for any specific sandwich.

If the facings are very thin, then the assumption of membrane

facings is sufficiently accurate, and the designer may use a flexural

rigidity factor denoted by D M . For sandwich panels with facings of

thicknesses such that the assumption of membrane facings is deemed in-

accurate, the designer is advised to use the flexural rigidity denoted by

D. A further discussion of the different approximations for flexural ri-

gidity is contained in the section entitled Discussion of Results.

VII. DISCUSSION OF RESULTS

1. General Case 

The general case discussed here refers to a sandwich panel com-

posed of elements with the following properties:

1. The core is orthotropic and is capable of resisting only anti-

plane stress. The transverse modulus of elasticity of the core , Ec , is

finite.

2. The facings are isotropic and are of unequal thickness.

The loading on the panel for this general case is any combination of edge-

wise bending and compression on opposite edges of the panel (denoted by

a. from equation 2).

The solution for critical load in such a general case may be ef-

fected by equating to zero the determinant of the coefficients of A
mn

,
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Bmn
,	 , Gmn 

in equations (173) through (178). This characteristic

determinant is of order infinity, except in the special case of pure edge-

wise compression (a = 0), in which case the determinant is of order six.

A close approximation to the critical load may be obtained by replacing

this determinant of order infinity by its first principal minor of order

eighteen. Specifically, this first principal minor of order eighteen is

composed of the coefficients of the configuration parameters Aml' Amt'

, Gm 1' Gm2' Gm3 
in equations (173)Am3' Bm l' Bm2' B '3

through (178). The equation formed by setting this first principal minor

15
to zero is believed to yield a solution which is sufficiently accurate—

for design. For combinations of loading defined by values of a close to

zero, smaller principal minors will yield sufficient accuracy for de-

sign. 1-
6 It is to be emphasized that this method of solution will involve

15
—For the analogous homogeneous plate problem with a = 2 (see refer-

ence 14, page 355), Timoshenko asserts, "the difference between the
third and fourth approximation is only about one-third of one percent."
These third and fourth approximations to which Timoshenko refers
are analogous to the principal minors of order eighteen and twenty-
four, respectively, referred to in this thesis. Therefore, for a = 2,
it is believed that the principal minor of order eighteen will provide
accuracy within about one -third of one percent of that obtainable
from the principal minor of order twenty-four.

16
—The error in any given calculation for critical load may always be

estimated by again solving for critical load using the next larger
principal minor. However, the principal minors which must be con-
sidered are (in order of increasing accuracy) of order 6, 12, 18, 24,
30, ... , so that this error is not easily determined.
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a considerable expenditure of computational labor,- 1-"--
7
 and is not recom-

mended unless the designer believes the core-flattening effect which ac-

companies incipient buckling is appreciable. This flattening effect is

believed negligible for a majority of panels. Following this idea, equa-

tion (202) has been derived assuming that E 	 00= . Equation (202) isc 

applicable for any combination of edgewise bending and compression

(any value of a), for t' = t, and G	 =G. G .yz	 xz

2. Case a = 0, Otherwise General

For the case of pure edgewise compression (a = 0), equation (179)

can be solved numerically for the critical load of any particular panel.

This equation includes the effect of core-flattening on the critical load,

and is sufficiently general to accomodate sandwich panels with ortho-

tropic cores and plate facings of unequal thickness. This solution has

not been reduced to design curves.

3. Case a = 0, Ec = 00, G	 = G	 = G t' = tyz	 xz

The case discussed here refers to a sandwich panel composed of

elements with the following properties:

1. The core is isotropic and is capable of resisting only anti-

plane stress. The transverse modulus of elasticity of the core, E c , is

infinite.

7A numerical solution for the critical load of a particular panel involves
the solution of an order eighteen numerical determinant and is there-
fore possible. A general literal solution for Nocr seems impossible.

GPO 827391-B
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2. The facings are isotropic and are of equal thickness.

The loading on the panel for this case is pure edgewise compression.

The critical load for this case is defined by equation (186). Equa-

tion (186) may be reduced to equation (188) by a modification of the flex-

ural rigidity factor, D, of the spaced plate facings. The design curves

shown in figure 5 were constructed from equation (188) and are therefore

applicable to this case subject to the aforementioned modification. The

modification here referred to is that involved in assuming

,
t (c + t)

2

2I
(205)

For facings with negligible flexural rigidity, the assumption of mem-

brane facings is valid, that is, t < c, so that all terms involving squares

or cubes of the facing thickness, t, may be assumed negligible and

hence I = I (see equation (191)). 1)). Therefore, with the assumption ofM

membrane facings, equation (205) is seen to be identically satisfied. A

much closer approximation which will give this identical simplication

occurs if I in equation (205) is taken equal to a fictitious area moment

of inertia denoted by IBM' where

Z ,I	 = —	 + t) 2 .
BM 2

(206)

To further emphasize the fact that the use of I BM in place of I in equa-

tion (205) is a much better approximation than is the use of I in place
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of I, a comparison of these approximations to I follows:

,3	 3
+ 2t) - c 

I -
12

(207)

I	 + —
t

3 	
I	 (208)

BM 6

2 2 3
Im + ct + t =3 (209)

Associated with I, I, and I are the flexural rigidity factors D,
BM

D
BM

, and DM of the spaced facings. For example,

D =
2	 •

I is not significantly different from I
BM' 

therefore, the designer is ad--

vised to use the exact value of D with figures 5, 6, and 7 in cases where

the facings are believed too thick to be treated as membranes. For

many applications, however, the assumption of membrane facings and,

therefore, the use of IM will be sufficiently accurate.

Equation (186),which gives the critical load for this case when the

facings are considered as plates, reduces to

EI

TT
2 D 	 2lirn	 N	 -
2 2 tt

mnOC T
G-11.-00 	 m a

(210)
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when the modulus of rigidity of the core is infinite. Equation (210) is

identical to the result obtained from the analogous homogeneous plate

18
analysis, — where D is the flexural rigidity of the spaced plate facings.

When the facings are considered as membranes (see equation 188), this

critical load is again expressed by equation (210), except that D becomes

DM' the flexural rigidity of the spaced membrane facings.

Equation (186) reduces to

71.2 	 Et 3 	 2
lim	 N	 = 	 	 2 cl. mnocr

G--•-0	 m2
a

2	 )
(211)

when the modulus of rigidity of the core is zero. Equation (211) yields

18the critical load--- for two simply-supported rectangular homogeneous

plates of thickness t. When the facings are considered as membranes

(see equation (188), this critical load reduces to zero as would be

expected.

The critical load for a sandwich strip with plate facings in plane

strain may be obtained from equation (186). It is   

ir m 22
lim N rocb—..co	 a2

(c + t)2
2I 

1 -- 1	 +1
2m S

(212)   

—See reference 14, page 328.
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Where the facings are considered as membranes (see equation 188), the

critical load of a sandwich strip is again expressed by equation (212),

except that D becomes D , the flexural rigidity of the spaced membrane

facings.

For infinite modulus of rigidity of the core, equation (212) re-

duces to the Euler column equation for two homogeneous spaced strips

in plane strain, that is,

2 2_ w mlim N	 Docrb -n—•11110 00	 a 2

G---i►oo

(213)

With infinite modulus of rigidity of the core and with membrane facings,

the critical load of a sandwich strip may be expressed by equation (213),

wherein D is replaced by D

With G = 0, equation (212) yields the familiar Euler column

formula for two homogeneous strips in plane strain, that is,

N	
7r 

2
m

2 E t3
-

ocr	 2
a	 1-p,

2 6	 • (214)

An additional limiting case of interest is that which occurs when

either m is made infinite or a is made zero. In this case, the critical

load on a sandwich panel with plate facings (defined in equation (186)) is

infinite, that is,

M
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= oo,	 (215)
ocr

or

However, this critical load for a sandwich panel with membrane facings

(see equation 188) is finite, that is „

lim	 N	 = c G .
	 (2 16)

ocr
00

or

The finite limiting value of critical load given in equation (216) is char-

acteristic of sandwich analyses wherein the assumptions of Ec
 = 00 and

of membrane facings are made. This limiting value of the critical load

may be attributed to the shear instability of the core, 19—

a
The value of b

— corresponding to the minimum km0 
for each ofthe

individual curves in figure 5 is found by setting

8k
m0 = 0 .
aa —
b

(217)

Thus, 

11
1 - W

1 + W
(218) 

k
m0
min

19
—See reference 1.
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Therefore, the equation of the horizontal tangent to each family of

20
curves— is

4
m0 (W < 1)	 . (219)
min (1 + W)

2

Also, note that

1
k

m0 w (220)
a = 0
b

Equation (219) is of particular interest to the designer because it can be

used to compute the critical load factor, kof a particular panel
m0'

whenever —
a 

> 1, provided W< 1. For values of W = 1, equation (219) is

not valid. The designer may use the equation

1
k
m0 =

W (w 1) (221)

for the determination of critical load factor	
'	

a
, k	 for all 17). ratios whenm0

the parameter W = 1.

The result from this limiting case analysis, that is, equation

(181), is identical with the result obtained from the so-called 'tilting"

21
method of analysis. — This comparison seems to reveal the fullda -

mental nature of the assumptions involved in the "tilting" method,

20
—A family of curves is here defined as the set of curves corresponding

to a particular value of W (or 5).
21
—See references 2, 3, 16.
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that is, the core is in anti-plane stress and the transverse modulus of

elasticity of the core, E c , is infinite.

4. Case a = 2, Ec = co, Gyz Gxz G'	 =t

The case discussed here refers to a sandwich panel composed

of elements with the following properties:

1. The core is isotropic and is capable of resisting only anti-

plane stress. The transverse modulus of elasticity of the core, E c , is

infinite.

2. The facings are isotropic and are of equal thickness.

The loading on the panel for this case is pure edgewise bending.

The critical load for this case is defined by equation (195). Equa-

tion (195) may be simplified to give equation (198) by a modification of

the flexural rigidity factor, D, of the spaced plate facings. This modi-

fication is based on the same assumption-given in the approximate equa-

tion(205). The design curves shown in figure 6 and in figure 7 give km2

versus —a for the same case of sandwich panel and loading; however, the

parameter W is used to distinguish between families of curves in figure

6, whereas, the parameter S is used to distinguish between families of

curves in figure 7.

Equation (195), which gives the critical load for this case when

the facings are considered as plates, reduces to



lim N	 - 
DTI-

4

ocr 2m 2 a 2

2	 2	 2(1.
m1

 cD
m2 .4 m3

2	 216	 248
) 13

2
 + (—)

25	 m 1 9	 m3

(222)

2
48 )	+ (16) 

2 
.1.2

25	 ml	 9	 m3

lim N

6(1-il
2
) 2m

2
a

2ocr

2	 2	 2
Et 3 Tr	 d)

ml (Dm2m3
4

(223)

85.

when the modulus of rigidity of the core is infinite. Equation (222) is

22identical to the result obtained from the homogeneous plate analysis,—

where D, is the flexural rigidity of the spaced plate facings. When the

facings are considered as membranes (see equation (198)), this critical

load is again expressed by equation (222), except that D becomes D
M

,

the flexural rigidity of the spaced membrane facings.

Equation (195) reduces to

when the modulus of rigidity of the core is zero. Equation (223) yields

22
the critical load— for two simply supported rectangular homogeneous

plates of thickness t subjected to pure edgewise bending. When the fac-

ings are considered as membranes (see equation (198)), this critical

load reduces to zero as would be expected.

22
—See reference 14, page 355.

GPO E127391-7
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When either m is taken equal to infinity or a is taken equal to

zero, the critical load on a sandwich panel with plate facings (see equa-

tion (195)) is infinite, that is,

lira	 N	 = Do.	 (224)
0 cr

or

However, this critical load for a sandwich panel with membrane facings

(see equation (198)) is finite, that is,

lim	 N	 = 1.886 c G.
0 C T

m—+00

or

(225)

The finite limiting value of critical load given in equation (225) is char-

acteristic of sandwich analyses in which the assumptions of E c
 = 00 and

of membrane facings are made, As stated previously, this limiting

value of the critical load may be attributed to the shear instability of the

core.

A form of equation (225) which is useful for design is

ir
2

D
M 1.886	

2

lim	 N 
r	

(S a-=2- = 0.215) .	 (226)
Oc

b
2

a
2

S —b2
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Equation (226) can be used to compute the critical load for sandwich
2

a >panels subjected to pure edgewise bending when S — = 0.215 . That
b

2

this is so is evident from a study of figure 7. In a like manner, study of

equation (225) together with figure 6 reveals that the critical load

ir
N	

2

m.	
D

M 1.886
(W	 0.215)	 (227)li	 = 	

is applicable for computing the critic \al load when W 0.215.
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IX. APPENDICES

1 . Appendix A -- Algebraic Details 

Equations (97) and (114) for the elastic energy due to the mem-

brane strains in the upper and lower facing, respectively, may be writ-

ten in the forms shown in equations (98) and (115) by identical algebraic

simplifications. Thus, for the upper facing, let

Rrnn = Grnn t mn	 (228)

t
Q

mn	 - = E
mn 2 mn (229)

so that equation (97) may be written as

m
2

Tr
2
 n

2
Tr

2
1-p, m 2

1T
2
 n

2
Tr

2
+ 2p,	 	  R Q +	 (Rmn + Qmn)2

a
2
 b

2 mn mn 2
a 2	b2

(230)

8(1-p, - ) rn7 n=1
2	

[ ( 

in Tr 2 Tr 2
2 2abtE 7c°

1-p, m
2 

Tr
2 

n
2

Tr
2
	2

b 2a 2
R

mn - Q
mn

)2 

a2 Rrnn + -2 Qmn

(231)
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and this latter equation may be seen to be identical with equation (98).

A parallel simplification may be effected for the elastic energy due to

the membrane strains in the lower facing if it is noted that for the lower

facing

c	 t
3	

c
2 	2

t'c	 t'—2R' = A (— +	 ) +	
2	 2Bmn 	 —) + Cmn + Fmn c + Gmnmn mn 6 4 

(232)
and

,c
3
	t'c

2
Q' = A k--+
mn mn 6 4

2	 t'c
+ B (c— + —) + Cmn L' +D c + E

mn 2 2	 2 mn	 mn

(233)

2. Appendix B	 Integration Formulas

Integration formulas used in this thesis include the following:

( i and j are integers)

b

0
TrYcos	 i dy =	 , for i = j (234)cos ---

b

cos my
	 j Try

dy = 0 for i	 j (235)— cos
b	 b

b
i y	 j Try

dy for i = j (236)sin	 sin



iTry	 jTry

0
= 0	 ,

b 2
dy = 7 ,

for i	 j

for i = j

(237)

(238)

sin — sinb	 b

sin 
iTry	 jTry

y	 sin

0

ilTY	 iTrY dy = 0	 , for i j and i t j even (239)y	 sin	 sin

b

91.

y sin
iTry
b sin

jTry
b dy = -

4b
2

ij 

Tr2	2	 2 2
( i	 -J )

for i j and i t j odd,	 (240)

3. Appendix C -- Examples of Integrations 

Included in this appendix are details of integration of equation

(72) and of equation (163). These integrations are typical of many others

in this thesis.

Equation (72) may be written as



00	 00

p=1 i=1

a b c
00	 00

V
c 1 2

c (Amn z + Bmn
) sin M

l
a

DC

=1 n=1	
sin

m 
0 0 0

7p rx
si	

Tr
.n	

y
(A	 +. z B	 sin	 dx dy dz.	 (241)

pi	 a

Equation (241) requires the integration of the product of a double infinite

series by itself. The integration formulas (236) and (237) show that Vci

in equation (241) is zero when m p and/or n	 . However, when

m = p and n = i , integration with respect to x and y in equation (241)

gives

E
c ab

c
 5

. 
V

c 1 
= 

2	 4
(242)(Amn z + Bmn)2 dz.

m=1 n=1
0

Integration of equation (242) gives

3	 3
ab >

co	 (Amn c + Bmn ) - Bmn
V = E

c 1	 c -24 	 	 Amn
m=1 n=

(243)

which is identical with the integrated form given in equation (75).

92.

nay
b
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Equation (163) may be written as (see equation (159))

a b	 a b
2	 00	 00

(T'a xw) dx dy =	 Y 	  	  C mn a
MTr 

cos
a

TrymTrx 
sin 

n

0 0	 0 0

7TX	 iTryC 122r- cos 
p	

sin —
b 

dx dy .
P I a	 a

(244)
p=1 i=1 

Integration of equation (244) gives values other than zero only when

m = p. Thus, the integration of equation (244) with respect to x gives— —

ab5	 (a--2-11) 2
ax

0 0

a
dx dy = —2 Y 	

2 2
m 7r

Cmn 	  sin 
na

m=1 n=1	 a
2

co
X z iC . sin -Yi

b 
dymi

i =1
(245)

Now, when i = n, equation (245 integrates to a value I
P where (see in-
-

tegration formula (238))

I 1 =

2 22 m 7r 
C

mn
a

2 (246)

When i n and i t n is even, equation (245) integrates to a value 1
2

where (see integration formula (239))

1
2
 = 0.	 (247)

GPO B27391-6
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4. Appendix D -- Determinant Elements
for Case a = 0, Ec Finite

The elements of the determinant in equation (179) are as follows:

O mnc
3

E cEc C 
2 E

c	
2

a c
H = -( + + (-11	

t ? Sir
2 12	 G

xz 
m2 

TT
2 )	 12

Gxz Tr
2

2
n2 E c	 a

2
 c2

b
2

Tr
2
 G

2	
2	

 111
2
 IT

2
xz

‘f 
0
mn

3

	

H1,2 = Omn (
c

2
 + ctl	c c

2	 A- 12c

	

E 2)
Gxz

O rrinc 3 E
c c

H 1,3 = °Ilan	 + c)(- 12 2)
G Trxz

H 1,4 	 2 G	
a

2
 n

2
 + n

2 
c 11 _ _o_y_L) t_ 	

	

E G	 O mnc	 E cc	 yz	 c

n2 E

	

C	 -II 2
C

b
2

tr
2 G

xz	
2	 pmn

E c c
H

1,5 G	 2 2
xz W

2

3

2 2	 2	 12
67.	xz m b	 b	 xzGxzir

2



O rrinc 
3

H1,6 = (	12

E c
c

2 )
G Trxz

96.

3
omnc

+ ct'
H	 = 0	 (	 2	 - 122 , 1	 mn

E
c c

_

2
Gxz

i2	 20 m cE c	c
2 0 2

 (t ' ) 2mn
(t + t') a

2 TH, 2 - 12	
[e	 (c 2 + ct, )

mn 2
e Er-

N
o  m

2c0 2	(t' )
2

2	 t'

	

mn	 c2 + ct'

,3 -	12H2	 + 0mn2 + c )(	 2	 ) (t + t' ) a2 8

c 2 + ct' n 2	 _ yz

	

H2, 4 = O rrin (	
) z c (1 -

2 xz

H2, 5 = 0

c
2 + ct'

H2, 6 = e mn	 2

	

2	 0 c3	 E c
cc „ mn

H3, 1 = 27( - 12
G	

2 )

xz



H -4, 1	 2 G
t I	xz m2 

b 2
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2

nb2 c (1 -G z
	

m12xz
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E
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m
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n
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H	 n
2 Gyz	 fc
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= 2 2 cp mn

a

n 2

H4,6 = —2 c (1 -
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c
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H5, 1 = t 2 G

XZ
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H5, 3 
= 0

H	 = tic°
5, 4

2	 2
H = b m

5, 5	 2 "7	 + t l )
n a

H5,6 = 0

c 3
H6,1 

_t O
rnn ( - 12 )
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H = O
mn6, 2

c 2 + ct'

2 	)

' )
2 

- t
2

H6,3 =
mn
((t 	) + t' c O

mn2

H6,46 = tic e
mn



1 00.

b
2 

m
2

146 , 5 =2n a

H6,6 = (t + ti)

5. Appendix E -- Determinant Elements
for Case a = 0 , E c = co

The elements of the determinant in equation (180) may be found by

taking the limit of the determinant in Appendix D as E 	 co . This is

1
done by multiplying row 1, row 2, and column 1 by the factor —E and

then taking the limit as E —;co. Thus, the elements of the determinant
c

in equation (180) are as follows:

J 1,1

J =1,2

J 1,3

-

-

1	 a
2	

t t Oc 2

Bm
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2
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2	

1-h

n 2 1-4 \
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2
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2 	 G 2	 ir2
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b2 m2	 2

(
m2 Gyz
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a 2	n2 t t 5c
G
xz m

2 b 2	 Gxz
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a b 2 2
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1, 4J 1, 4
G	 2	 2

=	 yz	 a	 n
2	 2

t, 6 n	 c yz(1
G	 2	 2 2	 G. - G2	 P mn )
xz m	 b

t'Oc	 n 2 	
1+11

b	 xz xz

1, 5 G	 2	 2
xz b

V 5c m
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J 3, 3
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3, 2 (that is, no change from element H 3, 2 in Appendix D)
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J
4,2 

= H
4,2 ,	 J

4,3 =H4,3 ,	 J
4,4 

= H4,4 ,

J4,5 = H4,5 ,	 J
4,6 = H

4,6

t t Sc n2 1+11 
J	 =

5, 1	 G	 .L2	 2
xz b

J5,2	 H5,2'
	 J

5,3 = H5, 3 ,	 J5,4 = H5,4 ,

J
5,5 

= H
5,5

,
	 J

5,6 
= H

5,6

t'Oc ,m
2 

n2 1-p,\
J6, 1 =	 a2 bZ 2
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6,4 ,
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6. Appendix F -- Determinant Elements
for Case a = 2, E c = co..._

The elements of the determinant in equation (194) may be found

by a scheme similar to that used in Appendix E, but it is more conveni-

ent to deduce these elements from a study of the determinant in Appen-

dix E together with equations (173) through (178). In any event, the ele-

ments of the determinant in equation (194) are listed in order as follows:

All unlisted elements, K	 , have a value of zero.
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Figure 1. --Isometric drawing of a sandwich panel.

Figure 2. --Differential element of the core.



Figure 3. --Top view of sandwich panel showing different combinations of
edgewise bending and compression as defined by a. N o is the load in
pounds per inch of sandwich.

Figure 4. --Pictorialized definition of a, N_, N,, N_, and
--11. —L1
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