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ELASTIC BUCKLING OF A SIMPLY SUrPORTED

RECTANGULAR SANDWICH PANEL SUBJECTED TO

COMBINED EDGEWISE BENDING AND COMPRESSION*

By
W. R. KIMEL, Engineer

Forest Products Laboratory,** Forest Service
U. S. Department of Agriculture

I. SUMMARY AND CONCLUSIONS

A theoretical analysis is made of the problem of the elastic
buckling of simply supported rectangular sandwich panels acted upon

by any combination of edgewise bending and compression on opposite

"This report is one of a series (ANC-23, Item 56-5) prepared and dis -
tributed by the Forest Products Laboratory under U. S. Navy,
Bureau of Aeronautics Nos.NAer 01684 and NAer 01593 and U. S.
Air Force No. DO 33(616)-56-9. Results here reported are pre-
liminary and may be revised as additional data become available.
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Wisconsin.
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edges. The solution is based on the assumption that the sandwich
panel is composed of isotrppic plate facings of unequal thickness and
an orthotropic core subjected only to anti-plane stress. The mathe-
matical solution of the problem is based upon a Rayleigh-Ritz energy
method using a double Fourier series with configuration parameters
which are constants of integration obtained from solution of the core
equilibrium equations. The specific method of approach is thought
not to have been previously applied in sandwich analyses. The solu-
tion is in the form of a characteristic determinant of order infinity,
except in the special case of pure edgewise compression, in which
case the determinant is of order six. Evaluation of an order eighteen
principal minor from the determinant of order infinity is made to ob-
tain data for design curves.

Design curves based on the additional assumptions of mem-
brane facings and infinite transverse modulus of elasticity of the core
are compiled for the case of pure edgewise compression and for the
case of pure edgewise bending. These design curves are believed

sufficiently accurate for use in the design of a great many panels of

modern design.




Equations are presented from which the critical load on sandwich
panels composed of plate facings and orthotropic cores with finite
transverse moduli of elasticity can be obtained. Unfortunately, however,
considerable computational labor will be involved in the determination
of critical load for this more general case. Design curves can be con-
structed from these more general equations, if the time and expense in-

volved in their preparation can be justified.

II. INTRODUCTION

An elastic sandwich is a structural component consisting of two
relatively thin external members called facings separated by and bonded
to a relatively thick internal member called the core. The facings are
commonly a material with comparatively high strength and stiffness,
whereas the core is commonly a material of lighter density and rela-
tively low strength and stiffness. The resulting layered-type structure
is characterized Ly an extremely high strength-weight ratio as compared
to that obtainable with the use of a single homogeneous material. For
this reason, its primary field of application has. been in guided missile
and airframe assemblies, for. example, wings, wall panels, webs of
beams, and so forth. The thin facings of the sandwich, if not bonded to
the core, are incapable of resisting reasonable design loads in their
own plane because of their inability to resist becoming elastically un-

stable. A primary function of the core is thus seen to be to maintain




the stability of the sandwich. A typical elastic sandwich panel is com-
posed of aluminum facings and aluminum honeycomb core. The alum-
inum facings are commonly bonded to the core by epoxy or vinyl phenolic
resins. Recently improved methods of fabrication and the development
of improved bonding agents have made practical the use of sandwich con-
struction in an increasing number of different fields of application.
Continually increasing applications of the elastic sandwich as a
structural component have made necessary the analytical development
of equations defining the stability criteria for different geometrical con-
figurations of panels subjected to various combinations of loading. Be-
cause of the many variables which enter the problem, a study of exper-
imental data alone cannot be expected to yield all the information which
rational design procedures require. A panel of a committee composed
of representatives of the Department of the Air Force, Department of
the Navy, and Department of Commerce has been organized to unify,
interpret, and present known rational approaches and data for sandwich
structure design. It is known as the AﬁC-23 Panel.-l- The problem
chosen for analysis in this thesis is one that has been clearly indicated
by the ANC-23 Panel as being unsolved, and one which is encountered
in the design of structures using sandwich plates in their construction.
The purpose of this thesis is, therefore, to present a rigorous

derivation of the stability criteria for the simply supported rectangular

—See reference 1.
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sandwich panel when it is subjected to combinations.of edgewise bending
and compression loadings.

Anti-plane stressé- may be defined as that state of stress that ex-
hibits stress components which are zero in a state of plane stress. Con-
versely, a state of plane stress exhibits stress components which are
zero for anti-plane stress. Because sandwich cores have such low load
carrying capacities in the direction of the plane of the panel as compared

to the relatively stiff facings, the normal stresses and shear stresses in

the core in the direction of the plane of the panel are assumed to be
negligible. Thus, the sandwich core in this analysis is assumed to be
subjected to a state of anti-plane stress. This assumption has been
used in many previous analyses and is kpoWn to represent actual sand-
wich construction very well. The facings are treated by isotropic thin
plate theory, that is, plane sections initially perpendicular to the
median plane of the plate remain plane (ﬂuring deformation in accordance

with the Bernoulli-Navier hypothesis.

The specific method of approach used in the solution of this prob-
lem is believed not to have been previously applied to sandwich analysis,
but an analogous method has been commonly applied to nonlayered
systems.

Equations for the three rectangular components of core displace-

\ ment are found which satisfy the core equilibrium equations and the

2See reference 5 and figure 2.




boundary conditions of the simply supported panel. By evaluating the
displacements of the core at the interfaces (the junctions of the core and
the facings) and equating these core displacements to displacements of
the facings at these interfaces, displacements at any point in the facings
may be found. From these displacement equations, strains and subse-
quently elastic energy of both the facings and the core may be expressed.
It is noteworthy that the displacement functions written from a solution
of the core equilibrium equations are, in this particular analysis, equal
to zero until the sandwich starts to buckle. The edge loads are applied
to the facings in the conventional manner as in the related ordinary
plate problem presented by Timoshenko.é-

Now, let the elastic energy of a general elastic system with re-
spect to an undeflected configuration of that system be V and the poten-
tial energy of the external loads with respect to their undeflected posi-
tions immediately prior to buckling be T. Then the total energy of the

system, U, with respect to the undeflected state may be expressed as

U=V -T.

For a condition of instability, U must have a stationary value with re-
spect to any arbitrary change in coafiguration of the system.
The configuration of the system is defined in this thesis by

parameters A , B s .. 5 G which are actually constants of
mn mn

3
“See reference 14, page 351.




integration obtained from solutions of the core equilibrium equations.

Thus,

OU. _ ga vy

aAmn mn 9 an mn aGmn mn

from which it is clearly evident that the buckling criteria are:
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This solution is seen to be a Rayleigh-Ritz method, but it differs from
the Rayleigh-Ritz procedure as applied to the conventional stability
analyses of ordinary plate problems in that certain of the differential
equations of equilibrium associated with the problem (the core equili-
brium equations) are herein satisfied exactly, while the facings are
mathematically attached to the core by requiring displacement conti-
nuity between core and facings at the interfaces. The facings are then
treated by the conventional energy method for plates.

This method of approach to sandwich stability analysis was

prompted by, and is believed to be complementary to, a sandwich




stability analysis by Raville2 who solved all the differential equations of
equilibrium in the facings as well as in the core. It is believed that the
method of analysis presented in this thesis, together with the method
presented by Raville, exhibit fundamental methods of approach whereby
it may be expected that if a problem has been solved in the thin plate or
shell literature,its counterpart in the sandwich panel can be solved.

In this thesis, literal solutions are derived within the scope of
the aforementioned assumptions; however, the reduction of these equa-
tions for use in preparing usable design curves seemed prohibitive in
view of the many parameters involved. Therefore, in the preparation
of design curves, the additional as sumptioné of membrane facings-s-
and infinite transverse modulus of elasticity of the core are made. The
transverse modulus of elasticity of the core refers to the modulus of
elasticity of the core in a direction perpendicular to the facings. These
assumptions have been previously usedaé_ and are known to represent
actual sandwich construction very well. It is to be emphasized that

literal equations are presented from which the numerical calculation of

—See reference 12.

5 g

—In using the design curves, the actual flexural rigidity of the spaced
facings, D, may be used as a good approximation. See Use of
Design Curves and Discussion of Results.

6 . . .

—See references 1, 2, 3, 8, 11, 13, and 16. It is shown in this thesis that
the '"tilting'" method involves this assumption. See Discussion of
Results.




critical load for any one particular sandwich may be computed without
the latter two assumptions. It is believed that design curves can be
prepared from these more exact literal equations if the time and ex-
pense involved in their preparation can be justified. Such design curves
would be of limited usefulness, however, in view of the many complex

parameters that would of necessity be involved in this case.

III. NOTATION

X, YV, Z rectangular coordinates (fig. 1)
| a length of sandwich in direction of loading
i b width of sandwich in direction perpendicular to loading
i c thickness of core
{ t thickness of upper facing
I, it thickness of lower facing
E modulus of elasticity of facings
v Poisson's ratio of facings
E. modulus of elasticity of core in z direction -- transverse

modulus of elasticity of core

G, modulus of rigidity of core in xz plane
Gyz . modulus of rigidity of core in yz plane
| Ny maximum value of loading (load per unit width, b, of panel)
due to pure edgewise bending (fig. 4)
Nc value of loading (load per unit width, b, of panel) due to

pure edgewise compression (fig. 4)




b8
Ng N, + N_ (fig. 4)
N, value of N at any location on loaded edge (fig. 4)
Noor value of N at buckling
a ZNb (fig. 4)
ig.
Mg

e normal strain in core in z direction
Y s Y shear strains in core

xzc’ 'yzc
€0 Ey’ ny normal and shear strains in upper facing
e , e, v normal and shear strains in lower facing
SRR & Xy

membrane strains in upper facing
membrane strains in lower facing
bending strains in upper facing
e _, e,y bending strains in lower facing

u, v, w displacements of upper facing in %, y, and z direc-
tions, respectively

u', v', w' displacement of lower facing in %, y, and z direc-
tions, respectively

Uer Voo W, displacements of core in x, y, and z directions,
respectively
m, n, p, q, i, j integers

D , E , F e, configuration parameters

T s T shear stresses in core in xz and yz planes,
respectively
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normal stress in core in z direction
membrane stresses in upper facing
membrane stresses in lower facing

bending stresses in upper facing

bending stresses in lower facing

distance from middle surface of upper facing
distance from middle surface of lower facing
elastic energy of core

elastic energy of upper and lower facing, respec-
tively, associated with membrane strains

elastic energy of upper and lower facing, respec-
tively, associated with bending strains

total elastic energy of sandwich

E'rr2
—
c(l - )

G 2002
R L N T
G 2 .2

m2 n‘2
2 "7
a b
2
m2+n2-§-2—
b

critical load factor corresponding to loading de-
fined by a
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I moment of inertia of spaced plate facings,
3 3
(c +2t)” - ¢ fort =t
12
Iv moment of inertia of spaced membrane facings,
czt
2
IBM fictitious moment of inertia of spaced plate facings,
2
M fort =1t'
2
C . EI
D flexural rigidity of spaced plate facings, 5
l-p
Dy flexural rigidity of spaced membrane facings,
EI
M
1- p,z
DBM fictitious flexural rigidity of spaced plate facings,
EI
BM
1- p.z
2
E
s & c =~ fort=t
2Ga“™ (1 - p%)
2
Ect
w 11'2 £ > for t = t!
2Gb™ (1 - p)
&2
8 mn
mn 1+588 .
2 _2 !
i Nocr - Za Dl (1 '%) .
T M
H ] K elements of determinants

P.a’ P9’ T P.q




IV. MATHEMATICAL ANALYSIS

The sandwich panel and its relation to the coordinate system are
shown in figure 1. Figure 3 illustrates different combinations of loading
which are defined by different values of a. Specifically, as shown in

' figure 4,

ZNb ZNb

a = =]
N, + Ng - Ny (2)

where Ny is the maximum loading on the sandwich (pounds per inch) due

to pure edgewise bending and Nc is the loading on the sandwich (pounds
per inch) due to pure edgewise compression. This scheme makes pos-
sible a general solution for determination of the critical load of a simply
supported rectangular sandwich panel subjected to any combination of
edgewise bending and compression.

1. Determination of Displacement Functions
which Satisfy Equilibrium of the Core

In accordance with the assumptions outlined in the Introduction,

o ye’ and 71, are assumed equal to zero. The core is therefore

xc’ T yC

in a state of anti-plane stress.j— A differential element of the core is
shown in figure 2. Summations of forces in the x, y, and z directions,

respectively, give the following equations:

7
—Anti-plane stress is defined in the Introduction.
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aszc
= 3
== 0 (3)
aTyzc
. = 4
oz 0 ( )
and
oT : o1 oo
xze | yze . zZc _ 0. (5)
ox oy 0z a

Relations between stress and strain are applicable, that is:

T2e = Ec €zc (6)

Txze © ze szc (7)
and

Tyzc = Gyz szc. (8)

In addition, the strains and displacements are related by the following

equations:
BWC
T (9)
8uc awc
. + 10)
szc 0z o0x (
and
BVC awc -
szc © 9z * oy (11)

Equations (6) through (11) allow the equilibrium equations, (3), (4), and

(5), to be written as follows:
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Bzuc BZWC
+ _ .
> Bwdz - (12)
0z
2
82vc 9 W,
=20 (13)
8ZZ dyoz
azuc Bzwc 8%v.  8%w, azwc .
+ + G -+ + E = 0, 14
Xz (8xaz 2) iz (Byaz 2 ) c 2 S
ox oy oz

In order to satisfy the boundary conditions of the simply supported panel,
as well as the core equilibrium equations, the core displacements are

assumed to be of the forms

o0 o)
1 mmx !
oS St A (0 con B s
m=

B
8

v = . firzlzl (z) sin m;rx cos n_;ry (16)
m= n=
and
S (3] '
- . mmwx . Dnmy
W _m;;_”j - fn (z) sin S Sin— (17)

where f&)n (z), f£'1211)1 (z), and fgl),l (z) denote separate functions of z alone.
These functions of z alone will be determined by the requirement that
equations (15), (16), and (17) satisfy the core equilibrium equations (12),
(13), and (14). It is to be noted that equations (15), (16), and (17) satisfy

the boundary conditions,
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u =0, v =0, W =0,
C C C
y’ZO x=0 x=0, Y:O |
ly=b X=a x=a, y=b l,
MX =0, and M =0,
y:O Y X:O
y=b xX=a

where MX and MY signify edge moments on the panel about axes parallel

to the x and y axes respectively. Substitution of equations (15), (16), and
(17) into equations (12), (13), and (14) and requiring that the resulting

equations be valid for all values of x and y as well as for all values of

m and n results in the equations

dzfgl)n (2) df](ri)1 (2)

mm
2 T3 dz =0 (18)
dz
2 3
42,2 (2) e (2)
mn nm mn
2t dz  ~ 0 (19)
dz
and
al) () 2.2 ait?) ()
G mr mn N m f(3) ( ) .G nmT —mn
Xz | a dz 22 mn \* vz | b dz
i 24(3)
A (3) a™f 7 (z)
T3 fmn (z) +EC 2 =0 (20)
b B dz
1 2 3 .y
The functions f( ) (z), f( ) (z), and f( ) (z) will now be found which
mn mn mn

satisfy equations (18), (19), and (2¢). Differentiation of equation (20)

with respect to z gives
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;= + E, —————=0. (21)

Substitution of equations (18) and (19) into (21) yields

d3f£§1),1 (z)

- : 22
" 0 (22)

d

which can be integrated directly to the form
£3) (z) = A — +B z+C___. (23)

Substitution of equation (23) into equation (19) with subsequent integration
results in

3 2
nm Z z

(2) -
fmn(z)__—f)_ Amn T+an7+Dmnz+Emn i (24)

Substitution of equation (23) into equation (18) gives an equation which is

integrable to

2
(1) _ _mm 2> z
fn @) = - 120 5 * Ban 5 * Fron 2 + Gonn |- (25)
A ,B ,C ,D ,E ,F_ ,andG in equations (23), (24), and
mn’ “mn’ “mn’ “mn’ “mn’ ~ mn mn

(25) are constants of integration which are not all independent. To deter-
mine relations between these integration constants, equations (23), (24),

and (25) are substituted into equations (18), (19), and (20). Equations (18)
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and (19) are seen to be satisfied identically by this substitution, but equa-
tion (20) yields the relation

2_2 2 2

m nmw
—— Gy (Frnn = Conn) +
a

-C

GYZ (Dmn mn)

+E_A__=0. (26)

By substituting equations (23), (24), and (25) into equations (15), (16),

and (17) there results the equations

- m z z
e a mn ¢ +anT+anZ
m=l n=
+ G cos ™ gin 2TV (27)
mn 5 b
S ow z_ z_
M - Z b Amn 6 * Brn * Din 2
m=1l n=1

+ E sin X cos 2L (28)
mn b
and
Lo I ¢ 2
w_ = A Z_+B z + C sin X gin 2T (29)
o s = mn mn mn a b
m=1 n=1

The above equations for core displacements satisfy the equations of

equilibrium of the core if the constants A , C , D , and F are
mn mn mn mn
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related by equation (26). Thus,it is seen that there are only six inde-
pendent constants of integration in the expressions for the core

displacements.

2. Core Strains

The core strains,e_ , v andvy are now obtained by substi-
zc’ 'xzc yzc

tuting equations (27), (28), and (29) into equations (30), (31), and (32)

which follow directly.

8WC
e T 5o (30)
BWC du,
Yeze = 9x | 9z (31)
and
8WC 9V,
yzc oy o0z
This substitution gives
. X
_ ., mmx ., nmy
£ » (Amn z+ B )sin —— sin ¢ (33)
m=1l n=

and

a




19.

The core shear strains are thus seen to remain constant with variations
in z alone. This was evident, of course, from the original core equili-

brium equations (3) and (4). Again it is emphasized that A_»C_

D , and ¥ are not independent.
mn mn

3. Facing Strains Associated with
Deformations of the Middle Surfaces
of the Facings (Membrane Strains)

The expressions for the displacement components of points in
.either facing may be obtained by requiring displacement continuity be -
tween the core and facings at their bonding surfaces (interfaces), that is,
the interface displacements of the facings must be equal to the interface
displacements of the core. The middle surface displacements of the fac-
ings may be expressed in terms of these interface displacements by
assuming:

1. wand w', the z-direction displacements of the upper and
lower facings respectively, are constant through the facing thicknesses.

In analyses, where displacements associated with incipient buckling are

under consideration (as in this paper), this assumption seems particularly -

valid.
2. uandu', the x-direction displacements in the upper and lower
facings respectively, vary linearly through the facing thicknesses.

3. v andv', the y-direction displacements in the upper and lower

facings respectively, vary linearly through the facing thicknesses.
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The facing strains are arbitrarily divided into two distinct parts.
One part is that associated with strains in the middle surfaces of the
facings, that is, the membrane strains. The other part is that associ-
ated with strains cause-d by bending of the facings about their own middle

surfaces.

a. Upper facing. --The displacements at the middle surface of

the upper facing may therefore be evaluated as follows:

ow

t C
% =u 12 (36)
c
z = - 2 z =0 2 O =0
2
¢ ow
v = v e (37)
7z = - -t— ¢ z =0 ) z =0
7
and
wl N (38)
[z = - - z =20
2
The membrane strains in the upper facing may be written as follows:
ou S 5
z=-3 Buc . 9 W
€ XM - Bx " ox 2 2 (39)
7z =0 ox
z =0
ov
2
2=-2 By . 9w
€ = = + = (40)
M 0 0 2 2
y y Y L =0 By
z =0
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and

fu ov
t : t
Z = - = Z E e -
2
Y = + 2
xyM 9y ox
(41)
ou azw ov
= = +t - + ==
"9 9xd 0 .
L P Va0 =0

By substituting equations (27), (28), and (29) into equations (39), (40),

and (41), the following relations are obtained for the membrane strains

in the upper facing:

W m ¢ 2 2
m T . mwx . nmy
= G - = sin sin 42
€XM mZ:l; ( w2 mn) a’ & L )
o, oo 2 2
t nw ..ommx . nmy
= E -=C si (43
eyM < n§:1 { mn "3 rnn) 2 sin = n 5 (43)
and
) o
xyM _; ; Gonn * Fron
- L UM ) mmrx nmwy
-t Cinn) 2 1, COs ~, cos T (44)
b. Lower facing. --The displacements in the middle surface of the
lower facing may be evaluated as follows:
ow
t! c
1 — o=
v th = Ve 2 ox (45)
z =c¢C + E Z =c z = C
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ow
t! c
v! i T Ve "33 (46)
Z=C+ = z = 2 Z =C
and
w! L= WL (47)
Zz =C + — zZ =C
The membrane strains in the lower facing may be written as follows:
ou'
- t! 2
N ) z—c+7—8uC _ﬂawc (48)
xM ~ 9x CBx 2 2
z =C ox
zZ =cC
av‘ tl 5 2
N i z:c:+-7_8vC £ BWC o)
M9 "9 T2 2
y y Volaoe 2 ey
zZ =c
and
ou' : ov! |
z = cCc + t— z = C + t—
1 - 2
Y = +
xyM 09y ox
, (50)
ou 9w ov
= _C t| s + —_—
oy ox0y 9x

By substituting equations (27), (28), and (29) into equations (48), (49), and
(50), the following relations are obtained for the membrane strains in the

lower facing:
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0 2 C !
- c_ ,tec c  t'c mn
“xM = o Amn(f) 4)+an(2+2)+ 2
m= =
e mmx Ty
+F . °¢*+G, >~ sin —/— sin — (51)
a
= c t‘cz (2 t'c Cmntl
1 — —
a2 2 | Amn (5 ) B (S 5+
m= n=
nZ 2 -
™ .
D e —5— sin——= sin —= (52)
b
and
o0 Q0 C3 o 2 5
- C 1
Vaym ™7 Zm: Zn:l Amn (554 577) # Bran (e 4 £10) + Ot
mmT nw mx nmwy
+(Dmn+ FonplctE o+ Gmn—a-—b—cos — COs - (_53)

4. Facing Strains Associated with Bending of the
Facings About Their Own Middle Surfaces

(a) Upper facing. --The facing strains due to bending of the facings

about their own middle surfaces may be determined from a knowledge of

the slopes and curvatures of each facing in the xz and yz planes. These

slopes and curvatures may be evaluated by differentiations of equation (33).




B il

24.

Thus, it is seen that the facing strains due to bending of the upper facing
about its own middle surface may be derived from equation (38), and

hence from equation (29), as follows:

azw
t
z2="7 i m21r mmx nmwy
€ =z = - z! C sin sin
mn
= sz m=l n= a2 & Lo
(54)
2
0w
t
zZ= -3 so o 2 2
E—— - ' C nw mmwx nmwy
€,p = Z > = -z mn 251n a51nb
] oy m=l n=1 b
(55)
and >
ow 0 0
I \z = - .t_ \t v 7 = - t_ v 7 = = E-
= ..?_ A 2 + _.9_. z! —--2— =27l :
xyB 9y ox 9x oy 9x0y
o) 0
= 27! E E C mmT o os 2 cos oy (56)
e Y mi. o b a b

where z' is measured from the center plane of the upper facing so that

=

HA

t< , <t
-— =2z =~
2 o

(b) Lower facing. --Similarly, the facing strains due to bending of

the lower facing about its own middle surface may be derived from equa-

tion (38), and hence from equation (29), as follows:
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5. Elastic Energy of the Core

The elastic energy of the core due to the anti-plane stress com-

ponents may be expressed as

a

15
V. ==
c2

0

An energy expression due to elastic energy of the core may be expressed

) dx dy dz. (60)

ON——"\T"

c
5 (Gzc €zc t Tyzc szc * Txze Yxzc
0

in terms of core strains by substituting equations (6), (7), and (8) into

equation (60). This substitution gives
b ¢

a
_1 -2 2 2
v =2 5 (Ece” +G v, +G sz) dx dy dz. (61)
0

C ZC Xz X2z vz

If equations (9), (10), and (11) are substituted into equation (61), there

results
b
la F ow 2 ou ow 2
V == E(C)+G(C+ c)
c 2 c ' 0z xz ‘0 9x
0070
2
BVC BWC
ENC] 62
+Gyz(az +8y) dx dy dz (62)

From equations (27), (28), and (29) the following equations may be written:

ou I+ 2

o0
c T .
= - g -1 A E—+B z + F cos 2TX gin 2TY
9z — 5 @ mn

1 n

(63)




217.

ov o 5] 2
= JLUA N Z.+B z + D sin = cos —X
9z < S b| mn > mn mri A b
(64)
8WC < Eoo z2 mmx nwy
= E A Z_+B z + C MT cos sin
9x = mn mn mf . 2 b
(65)
8WC ] o 2
= E é A Z +B z + C DT sin 22X cos BTY
mn mn mn{ 7 b
oy m=l n=1 2 a
(66)
and
awc oy [¥al
-> z A __z+B sin MTX g, DAY (67)
95z m-;j_ o | mn mn a b
It is convenient to write equation (62) as
= 6
Vc Vcl+vc2+Vc3 (es)
where
a b c . >
1 { ( Ve
0 0 0
1 R Buc ch 2
Vc2='2—5§5 XZ(8z+ 8x) dx dy dz (70)
000
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which, upon integration—s— may be expressed respectively as

2 2 2

Y;cl =E_ - ~ o (Arnn c + 3Amn an c + 3an) (75)
m=1 n=
o0 o0 2 2
abc m w 2
VcZ T Txz g Z ) (Cmn - an) (76)
m=]l n=l a
and
00 o 2 2
= 2
Ve abec 2 R (C -D_ ) . (77)
c3 vz 8§ — - 2 mn mn
m=]l n=1 b

A complete expression for the elastic energy of the core which is sub-
jected to anti-plane stress may now be written by substituting equations

(75), (76), and (77) into equation (68). Thus, it is seen that

) o0 E
_ abc c, 2 2 2
ve=22 > > (A +3A B o+ 3B )
m=] n=]

Lo 2 nz'rr2 2

G 2 (Cmn - Fron) t C'yz . (Conn = Pmn) 7|
a

(78)

6. Elastic Energy of the Facings
éisociated with Membrane Strains

(a) Upper facing. --The elastic energy of the upper facing associ-

ated with strains in its middle surface (membrane strains) may be written

as follows:

%ee Appendix C for further details.
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a b t
J' 8’5 (O-XMGXMJr 0-yMeyM*——rxyM nyM)dXdY cz;
000

(79)

This energy expression may be written in terms of strains by substituting

oM S 2 (exM + p.eyM)
: -
E .
Tom T 2 Cgnr T e
l-p
and
E

TxyM B 2(1+ ) nyM

into equation (79) to give

Vur = Vmr1 Y Vvrz F Vvrs T Yvr4
where
a b -
___E 2
VMFl—__Z, gj edexdydz
Z(I-H ) 7/
0 0 O

(80)

(81)

(82)

(83)

(84)
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2
_ abtp,E - m 1r n ™ t t
VMFB N - > (Gmn - 2 CrnnEmn - > Crmn)
4(1-p )m I nl a? o b
(95)
and

v abtE Zoo m 'rrZ nzwz 2 o

MF4 ~ 16(1tp) : Z 2 (G ¥ Emn =t Con) - (96)

= n=1

A complete expression for the elastic energy of the upper facing due to
the membrane strains in the upper facing may now be written by substi-

tuting equations (93), (94), (95), and (96) into equation (84). Thus, it is

seen that
0 00
v __abtE m41‘r4 (G t c )2 N n4-n'4 (E
= § T4 mn - % “Ymn 4 mn
ME g 1-4%) &= 5| e _ g b

t 2 1’112'rr2 n2'1r2 t t

) Cmn) i ) ( mn = 2 Cran) (Emp - 2 Cmn!

a :

l-p mzwz nzrr‘2 2

+ = az 2 (Gmn +E -tC_.) |. (97)

As shown in Appendix A, equation (97) may be algebraically simplified

to the form

=]
abtE = mZTrZ nZ_n_Z
VMF - “_H“Z_ —_ 2 ( mn " 3 Cmn) T2 (Emn
8(1 -p ] m=l n= a b
t z l-p m -n-2 nZ“_Z 2 L

S e > Gn = Ern J (98)
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(b) Lower facing. --The elastic energy of the lower facing associ-

ated with strains in the middle surface of the lower facing (membrane
strains) may be written as follows:

c+t!

VI

1

[\SE RS

O\/\ o

1 I 1 + ! 1 d d d
5 e xM xM yM €yl\/I TxyM nyM) x @y @z
c

N __—T

(99)

As was shown in the case of the upper facing, this energy expression

may be written in terms of membrane strains alone, as follows:

a b c+t!
E 1 2 2
V! = ' + (¢! + 2 1 '
3 j 5 [l €0 2
0 0 c M
— (y dx dy d 100
+
2(1+w) nyM} * ay ¢z ( )
It is convenient to write equation (100) as
1 — t 1 1
Vimr T Vmrr Y Ve T VMEs T VMEe (101)
where
a b c+t!
V! = .
MF1 AL 5 5 5 dx dy dz (102)
0
a
1 - 1
VMFZ Q/ j‘ (e dx dy dz (103)

2(1-
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| 1 1
j ey EYM dx dy dz (104)
c

and

j {Y;;yM)Z & dy dz (105)
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7. Elastic Energy of the Facings
Associated with Bending of the Facings

About Their Own Middle Surfaces
(a) Upper facing. -~The elastic energy of the upper facing associ-

ated with strains caused by bending of the upper facing about its own

middle surface may be written as follows

a b +1:2_
1
VBF =3 jj j B xB T TyB B " TxyB Yxyp) &I 42
0 0 t
) (116)
This

where z' is measured from the center plane of the upper facing
i

energy expression may be written in terms of strains by substituting

E
e 117
0--XE) (exB+P’EyB) ( )
1-p?
E
= 118
"B 2 (EyB+“€xB) (118)
-
and
— (119)
TxyB T2 (14p) nyB
into equation (116) to give
s
ab 2
E 1 2 Z
V== " ¥ 2
BF = 2 Jj J l_z(exB *yB ”ExBeyB)
0o T |°H
"2
1
dx dy dz (120)
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It is convenient to write equation (120) as

=V + + 121
Br - 'sr1 ' VBr2 " VBr3 't VBr4 (121)
where +t
a b 2
. 2 |
VBFl = > < B dx dy dz (122)
2(1-p")
00 _t
2
U
a b 2
s e j j ¢2_ dx dy dz' (123)
BF2 2 B
2(1'P~} 0 0 t y‘
T2
t
a b +E
__BE
VBF3-_1_ > jj 5 € B EyB dx dy dz' (124)
o0 1t
2
and
+

t

2

J v& _ dx dy dz' (125)
xyB !

t

2
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and

which, upon integration may be expressed, respectively, as

(130)

(131)

(132)

and

(133)
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A complete expression for the elastic energy of the upper facing associ-
ated with strains caused by bending of the upper facing about its own
middle surface may now be written by substituting equations (130), (131),

(132), and (133) into equation (121). Thus, it is seen that

-

e = 4 22 22
abt 1r 1r m T nw
Ve = 1 s T T
96(1 m=l n=l| a b a b
mz'n'2 n21r2 2
+ 2(1-p) 3 bz Cmn (134)
a

and this equation can be algebraically simplified to the form

abt E m Tl' 1r

VBF = E_‘ E > 3 } Crn (135)
96(1- p m=l n:.i. b

(b) Lower facing. --The elastic energy of the lower facing associ-

ated with strains caused by bending of the lower facing about its own

middle surface may be written as

tl
a b * 2
V' = 2 o! _ € + o' ¢ + 7! v! ) dx dy dz"
BF 2 "xB €xB yB "yB xyB 'xyB
00 t!
2 (136)

where z'' is measured from the middle plane of the lower facing. As

was shown in the case of the upper facing, this energy expression, equa-

tion (136), may be written in terms of bending strains alone, as follows:




It is convenient to write equation (137) as
v . =V! + V! + V! + V!

BF BF1 BF2 BF3 BF4

where ¢

and

a b
E 2
v = ' dx dy dz"
BF4  4(1+p) jj j Vyn (s
00

vB

46.

(137)

(138)

(139)

(140)

(141)

(142)
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Substitution of equations (57), (58), and (59) into equations (139), (140),

(141), and (142) yields, respectively,

- 44 2 2
SEEs
1
Vi " tJE > - (Amn S+ B e+ Cp) (143)
96(1-pn”) m=I n= a
® X 44 2 2

I
_ab(t'yE nw c
LA —————HZ E__ E S (An o Bmn € * Conn)  (144)

©
— 2222 2
Vi _ ab(t')3I~LEI E e R Wl < . c+C )2
- mn mn
BHS 48(1-}1,2) ma nsl a2’ bl 2 mn
(145)

and

ab(t' E Eoo rn 1r n 2 CZ 2
V! - (A -—+ B c + Cmn) .
m=l n=1

BB R e a®

(146)

A complete expression for the elastic energy of the lower facing associ-
ated with strains caused by bending of the lower facing about its own
middle surface may now be written by substituting equations (143), (144),

(145), and (146) into equation (138). Thus, it is seen that

oo oo
3 (o7 2 2\2 2
1
Yo R D P ) S P 4 Oy
96(1-p%) m=1 n=l a b

(147)
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It will be recalled that the parameters Amn’ Cmn’ Dmn’ and an in

equation (149) are not all independent. The relation between these

parameters is given in equation (26), which when solved for Frn yields

1 a.2 EC 1’1Z
Fron = Cmn Pmn - G _2(_2 Apn t Gyz 2 Lo (150)
Xz m T b
where
Gyz aZ nZ
pmn:1+G 2 2 (151)
xz m b
Introduction of the additional notations
mZ nZ
e >t (152)
a b
and
2
6 = _—Ef—z— (153)
c(l-p7)

and substitution of equation (150) into equation (149) permits the writing
of an expression for the total elastic energy of the simply supported sand-

wich in which all of the parameters, A , B , C , D , E , and
mn mn mn mn mn

G are now independent. Thus,
mn
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9. Potential Energy of the Edge Loads

The potential energy of the edge loads with respect to the unde -
flected configuration of the panel, immediately prior to buckling, is de-
noted by T, and may be derived in exactly the same manner as in the
analogous plate an::xly'sis.2 The edge loads are defined in terms of N
pounds per inch of sandwich acting on edges perpendicular to the
x axis as shown in figure 4. Since the core was assumed initially to be
incapable of carrying loads in directions parallel to the facings, all the
edge loads must be mathematically applied to the facings. It is of inter-
est to note that in actual sandwich applications, the edges must be de-
signed so that these same edge loads are actually applied to the facings.
It is recalled that the core displacement functions given in equations (27),
(28), and (29) are compatible with zero edge moments about the edges of
the sandwich panel. This necessitates that the strains in both facings

be the same in the direction of loading. This means that the stresses in

both facings will be the same for facings of like materials. Thus,

=2l N 2 2

1 % ow ow'

T = — i e LI O

> JJ T t(ax) +t' ( 8x) dx dy (155)
0 0

1

W
where — and

- S refer to the slopes in the xz plane of the upper and
X x —

lower facings, respectively. Because of the nature of the application of

the edge loads shown in figure 4,

9
—See reference 14, page 351.
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N =NO(1-2§-). (156)

Substitution of equation (156) into equation (155) gives

i

a

b
2 2
T =4 ay, | 0w oW
2 j t+t| No (1 - -b) t(ax) +t (BX dx dY (157)

which may be written as

b
: 8W‘2 S
t A
T= 22t+t'i ( +t (8X) Y
0

ok_/—\m

N 2 b I 2 2-
g ow w!
O
. A t{(=—) +1t' (=— dx dy. 158
Z(Ht,)bjj e @ re B axay. (58
0

Because of displacement continuity between the core and facings at the

interfaces and with reference to equation (65), it is seen that

j i mm mmx nmy
Conn 3 Cos — sin — (159)

ow awc

9x T 9x

z= m=l n=1
and
2
ow! awc %> C
- = (A —+ B (
= 9% — mn mn
Z=C m=1l n=1
mm mwx . nmy
+ Coyp) — cos sin == (160)
10

It follows that=—

}-QSee Appendix C for further details.
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10. Equations Which Define
Instability of the Sandwich

As indicated in the introduction of this paper, the total energy of

the system, (V - T), must possess a stationary value at instability, that

is,

oV 9T

- =0 (167)
9A,_ BA___
vV 8T
9B )z =0 (168)
mn mn
o O T (169)
aC aC
mn mn |
vV 9T
- =0 170
8D 8D (170)
mn mn
ov.__ _ 8T _ _g (171)
8E,,, OE__
oV _ 8T =0, (172)
oG 8G
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Equations (173), (174), (175), (176), (177), and (178) constitute a linear,

homogeneous set which will be satisfied by a value of No equal to Nocr .

the buckling load. If all of the parameters, A _ , B, C__ , D _ ,
mn’ mn’ mn = mn

E , and G are identically equal to zero, this set of equations is
mn mn

satisfied, but this is a trivial solution associated with the nonbuckled
state of the sandwich. The solution of interest is that which satisfies
the set of equations (173) through (178) when at least one of the parameters

A through G assumes a value other than zero. Such a solution can
mn mn

be obtained by equating to zero the determinant of the coefficients of the

parameters A, B , C , D , E , and G in the set of equa~- ’
mn mn mn mn mn mn

tions (173), (174), (175), (176), (177), and (178). Since there is an infinite
number of these parameters in the infinite number of equations which
constitute this set, the resulting determinant is of order infinity unless
a =0, in which case the determinant is of order six. Fortunately, how-
ever, for a £ 0 a relatively small part of the determinant of order infin-

ity will yield a satisfactory approximation to the critical load.

V. NUMERICAL COMPUTATIONS

1. General Case

A solution of equations (173) through (178) will provide the critical

load for the most general case of sandwich panel and loading. For a

specific panel, a numerical solution for critical load can be obtained.




63.

For further details of such a general case solution, see the section en-

titled Discussion of Results. .

2. Case g = 0, E_ Finite

The equation which defines the critical load for the case a=0

(pure edgewise compression, see fig. 3), is found by equating to zero

the determinant of the coefficients of A , B N € in equations
n mn mn
Y173) through (178). This equation is
Hl,l Hl,Z H1,6
2,1 2,2 2,6
= 0 (179)
He,1 Hea2 o0 Hep
where the elements HP q’ after some reduction, are given in Appendix D.

For the determination of the critical load of any specific panel loaded in

edgewise compression (@ = 0), equation (179) may be solved numerically

for Nocr’

3. Caseg_zO, E, =

The assumption of infinite transverse modulus of elasticity of the

core (E; = ) introduces welcome simplifications into equation (179).

This assumption is believed valid in analyses relating to modern sandwich
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. 11 . . .
construction.— In this case, equation (179) can be written as

J J .. J
1,1 1,2 1,6|
J J RPN |
2,1 2,2 2,6
= 0 (180)
To1 Y2 0 e

1

where the elements J . are given in Appendix E. For this case, when

G =G =G and t' =t , the determinant in equation (180) may be
yz xz = = LR

simplified by judicious additions and subtr actions of multiples of rows

and columns. Thus, equation (180) reduces to

2 t_(_c_zi__lt)_
™ R
N = D <I>2 ]l o« —— (18 1)
ocr 2 2 mn 1 41
m a S
L_ mn
| where
|
| 3 3
| I = (c+2t) -c¢ (182)
12
2
a
R e (183)
mn 2
b
11

—See Discussion of Results.
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2
I-p
and
2E
g = _IL_- (185)

2Ga’ (l-p,z)

Equation (181) can be written as

7

7D
Nocr = 2 kl'rnO (186)
b
where
o =
> t(c +t)
b 2 21
k! = 5] ) s S (187)
mO 2 2 mn 1
m a + 1
S &
mn

Further simplifications result when the facings are sufficiently thin to
be considered membranes. In such cases t_é ¢, so that terms involving
either the square or cube of t are small enough to be neglected. This
latter assumption is equivalent to the assumption of membrane facings,
and is known to represent many actual sandwich constructions very well.
This assumption of membrane facings permits equations (186) and (187)

to be written, respectively, as follows:

N = - -k (188)

and
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k . = (189)

12
where —
EIM
D, = —% (190)
l1-p
and
th
v = - (191)

Instead of the parameter, §_, a related parameter, W, may be used in

equation (189). Thus, equation (189) may be expressed as

2 o
K i b mn
mo - 2 2 2 (192)
P 1+ we
a mn

EThe simplificaticu from equation (187) to equations (189) and (192) re-
quires a modification (in equation (186)) of D, the flexural rigidity
of the spaced plate facings. The assumptic-;x-l of membrane facings,

EIM

——— will effect this simplification. A more accu-

1-p

rate assumption which will produce this same simplification is to

1t

for which D

use D sabid . This point is discussed further in Discussion
BM 1—u2

of Results.
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where

2
w=__® FEct (193)

2 .
2Gb% (1-p%)
Equation (192) is presented graphically in figure 5.

4. CaseE:Z, Ec =

For the determination of critical lead in all cases where a is
: . . 12
other than zero, a determinant of order eighteen is solved.— Thus, the
equation defining the critical load of the sandwich panel for the case
a = 2 (pure edgewise bending) is found by equating to zero the determi-

nant of the coefficients of A , B , ... , G in equations (173)
mn’ Tmn mn

through (178). This equation is

Kl,l Kl,Z K1,18
2,1 KZ,Z KZ,IS
- 0 (194)
18,1 18,2 18, 18

3

where the elements Kp . are given in Appendix F. For the case where

G, = Gyz =G andt =t', the determinant in equation (194) may be

12
—See Discussion of Results for further details relating to choice of

order of the determinant used here.
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Expansion of the determinant in equation (196) leads to the equation

2 2 2
4 @ml @mZ ®m3
DM-n 1+S<I:'rn1 1+S@m2 1+StI>In3
Nocr - 2 2 ) 2 2
0]

(53) oy
25 1+s¢ml 9 l+S<I>m3

which may be expressed as

TTDM
N = k
ocr 2 m?2
b
where
\
[ 52 o2\ [ &2
ml m2 l m3
. _wzli 1+s5@ ., 1+S8® 2, 1+Se .,
m2 2 2 2 2
m- a 2 ® a2
(‘2_6_) ml (JZ) mJs
25 1+S@ 9 1+S%®
m1l m3

70.

(197)

(198)

(199)
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or in terms of the parameter W as

[ 2 2 | 2
3
@ml ¢’rnZ » m3
2 2 2
b
1+ wlo 1+ W2 o 1+ W—=2o
5 2 2 m-l/ 2 m2 2 “m3
Kk —LE_ a a a
m2 2 2 2 2 2 52
m a (23) (I)m‘l (3_.2.) m3
25 L2 M) 2
1+W=2a . 1+W—2<I>m3
a a
(200)

Equation (199) is presented graphically in figure 7. Equation (200) is

presented graphically in figure 6.

5. Case g General (See Figure 4), E_ =

A reduced form of the determinant in the equation which defines

the critical load for the case with membrane facings, Ec = 0o,
G ,=G,, =G, t=t',anda is any value defined by equation (2), is




|
'~
= (102)
W L cw ) W u )
2 : :
A.muﬁv.ﬂnm MEHUOZ: 0m+H. ||Hn.H. MEHUOZOMW- . 0
22 e 2 2 .
2
i ‘ i ’ wr ' i
o = "a % SR .Am-szo (4 Soz-m S+ 1 Na 0 L6
- '_w D b = - — 2o
1 P, 8% T ¢, Jeas (L 91
4
0 Na " 100 6 .AN-GWWQ z x00 IWeg+1
' W -\ ' W w
. U2z 91 LA Hme
R R R R S
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Expansion of equation (201) yields the following equation:

2
ﬁrnl BmZ F3rr13 - X(Bml BmZ N Bml ﬁm3 i BrnZ §m3) A (sml

aN 2 2 2
3 ocr m~a 48
PPt Ps) oM - 4 (z5) By =M
M T
2
16
() (BN =0 (202)
where
2
mn
ﬁmn = l——-———+ 5% (203)
mn
and
2 2
m-a 1 a
A\ = Nocr > D (1 - 2) , (204)
w M

No design curves were made for values of a other than a =0 anda = 2.

Equation (202) is presented with the thought that design curves for vari-

ous values of a can be prepared if desired. Until such curves are com-

piled, the designer can numerically solve equation (202) for the critical

load of any particular panel.
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VI. USE OF DESIGN CURVES

In using either figure 5, 6, or 7 to obtain the critical load of a
particular sandwich panel, select the correct member of the family of
curves—l—i by calculating the value of the parameter S (or W if using
either figure 5 or 6) from the physical properties of the particular sand-

wich under consideration. Then, read the lowest value of k corre-
ma

sponding to the ratio % of the panel. The integer m associated with the

particular curve from which km is selected, indicates the number of
a

half sine waves into which the panel will buckle if its critical load is ap-

plied. The critical load of the panel, Nocr’ can now be computed by sub-

stituting this value of k _ into either equation (188) or equation (198),

depending on whether the panel is to be subjected to pure edgewise com-
pression (a = 0) or pure edgewise bending (a = 2). It should be noted that
figure 5 applies for a = 0, whereas figures 6 and 7 are both applicable
for a = 2.

In the curves shown in figures 5 and 6, the parameter W is used
to separate each member of the family of curves, whereas in figure 7,
the parameter S is used for this purpose. Curves 6 and 7 use parameters

_W_ and § respectively, to define the ka for the same identical case of

loading (a = 2). It is believed that the designer will find the use of figures

—A family of curves is here defined as that set of curves corresponding
to a particular value of S (or W).
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6 and 7 together will aid in the interpolation to a correct value of krnZ
for any specific sandwich.
If the facings are very thin, then the assumption of membrane

facings is sufficiently accurate, and the designer may use a flexural

rigidity factor denated by DM. For sandwich panels with facings of

thicknesses such that the assumption of membrane facings is deemed in-
accurate, the designer is advised to use the flexural rigidity denoted by
D. A further discussion of the different approximations for flexural ri-

gidity is contained in the section entitled Discussion of Results.

VII. DISCUSSION OF RESULTS

1. General Case

The general case discussed here refers to a sandwich panel com-
posed of elements with the following properties:

1. The core is orthotropic and is capable of resisting only anti-
plane stress. The transverse modulus of elasticity of the core, Ec’ is
finite.

2. The facings are isotropic and are of unequal thickness.

The loading on the panel for this general case is any combination of edge -
wise bending and compression on opposite edges of the panel (denoted by

a from equation 2).

The solution for critical load in such a general case may be ef-

fected by equating to zero the determinant of the coefficients of Amn’
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B , ... ,G in equations (173) through (178). This characteristic
mn mn

determinant is of order infinity, except in the special case of pure edge-
wise compression (a = 0), in which case the determinant is of order. six.
A close approximation to the critical load may be obtained by replacing
this determinant of order infinity by its first principal minor of order
eighteen. Specifically, this first principal minor of order eighteen is

composed of the coefficients of the configuration parameters Aml; AmZ’

A B B in equations (173)

m3’ “ml “Tm2’ Bm3’ ? Grnl’ GrnZ’ Gm3

through (178). The equation formed by setting this first principal minor
to zero is believed to yield a solution which is sufficiently accuratel—i—:’-
for design. For combinations of loading defined by values of a close to
zero, smaller principal minors will yield sufficient accuracy for de-

sign.E It is to be emphasized that this method of solution will involve

}—For the analogous homogeneous plate problem with a = 2 (see refer-
ence 14, page 355), Timoshenko asserts, ''the difference between the
third and fourth approximation is only about one-third of one percent."
These third and fourth approximations to which Timoshenko refers
are analogous to the principal minors of order eighteen and twenty-
four, respectively, referred to in this thesis. Therefore, for a = 2,
it is believed that the principal minor of order eighteen will pro—vide
accuracy within about one-third of one percent of that obtainable
from the principal minor of order twenty-four.

16
—The error in any given calculation for critical load may always be

estimated by again solving for critical load using the next larger
principal minor. However, the principal minors which must be con-
sidered are (in order of increasing accuracy) of order 6, 12, 18, 24,
30, ... , so that this error is not easily determined.




e

a considerable expenditure of computational labor,E and is not recom-
mended unless the designer believes t.he core-flattening effect which ac-
companies incipient buckling is appreciable. This flattening effect is
believed negligible for a majority of panels. Following this idea, equa-
tion (202) has been derived assuming that E_ =« Equation (202) is

applicable for any combination of edgewise bending and compression

(any value of a), for t' = t, and Gyz =G,

2. Case a = 0, Otherwise General

For the case of pure edgewise compression (a = 0), equation (1;19)
can be solved numerically for the critical load of any particular panel.
This equation includes the effect of core ~-flattening on the critical load,
and is sufficiently general to accomodate sandwich panels with ortho-
tropic cores and plate facings of unequal thickness. This solution has

not been reduced to design curves.

3. Caseg=0, EC:OO, C’yz:ze:g’ﬂ:i

The case discussed here refers to a sandwich panel composed of
elements with the following properties:

1. The core is isotropic and is capable of resisting only anti-
plane stress. The transverse modulus of elasticity of the core, Ec’ is

infinite,

ﬁA numerical solution for the critical load of a particular panel involves

the solution of an order eighteen numerical determinant and is there -
fore possible. A general literal solution for Nocr seems impossible.

GPO B27391-8
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2. The facings are isotropic and are of equal thickness.
The loading on the panel for this case is pure edgewise compression.

The critical load for this case is defined by equation (186). Equa-
tion (186) may be reduced to equation (188) by a modification of the flex-
ural rigidity factor, D, of the spaced plate facings. The design curves
shown in figure 5 were constructed from equation (188) and are therefore
applicé.ble to this case subject to the aforementioned modification. The
modification here referred to is that involved in assuming

2
tlc+t) =g, (205)
21

For facings with negligible flexural rigidity, the assumption of mem-
brane facings is valid, that is, _t_é ¢, so that all terms involving squares
or cubes of the facing thickness, t, may be assumed negligible and
hence I =1,  (see equation (191)). Therefore, with the assumption of
membrane facings, equation (205) is seen to be identically satisfied. A
much closer approximation which will give this identical simplication

occurs if I in equation (205) is taken equal to a fictitious area moment

of inertia denoted by IBM’ where

I = &

.y (206)

(c +1)

[\ R

To further emphasize the fact that the use of IBM in place of I in equa-

tion (205) is a much better approximation than is the use of IM in place
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of I, a comparison of these approximations to I follows:

I_Q+ Z'c)3 -c3

(207)
12
.3
_— 208
i (208)
2 2 3
L,tct +3¢ =1 (209)

Associated with I, IBM' and IM are the flexural rigidity factors D,

DBM’ and M of the spaced facings. For example,

pisr=

2
l-p

I is not significantly different from IBM

vised to use the exact value of D with figures 5, 6, and 7 in cases where

, therefore, the designer is ad-

the facings are believed too thick to be treated as membranes. For
many applications, however, the assumption of membrane facings and,
therefore, the use of IM will be sufficiently accurate,

Equation (186),which gives the critical load for this case when the

facings are considered as plates, reduces to

lim N - ® (210)
G—»00 m a
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when the modulus of rigidity of the core is infinite. Equation (210) is
identical to the result obtained from the analogous homogeneous plate
analysis,—l-g— where D is the flexural rigidity of the spaced plate facings.
When the facings are considered as membranes (see equation 188), this
critical load is again expressed by equation (210), except that D becomes
DM’ the flexural rigidity of the spaced membrane facings.

Equation (186) reduces to

3
g Et
lim W = 8> (211)

G—=0 m a 6(1-—}1,2) ma

when the modulus of rigidity of the core is zero. Equation (211) yields
the critical 1oad.—1—8- for two simply-supported rectangular homogeneous
plates of thickness t. When the facings are considered as membranes
(see equation (188), this critical load reduces to zero as would be
expected.

The critical load for a sandwich strip with plate facings in plane

strain may be obtained from equation (186). It is

t (c + t)2
“ZmZ 21 .
lim N = D {1l -——— : (212)
ocr 2 1 +1
00 a
2
m- S

1
——§See reference 14, page 328.
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Where the facings are considered as membranes (see equation 188), the
critical load of a sandwich strip is again expressed by equation (212),
except that D becomes DM, the flexural rigidity of the spaced membrane
facings. o

For infinite modulus of rigidity of the core, equation (212) re-

duces to the Euler column equation for two homogeneous spaced strips

in plane strain, that is,

lim N = D . (2 13)
b o ocr aZ

G—ex0

With infinite modulus of rigidity of the core and with membrane facings,
the critical load of a sandwich strip may be expressed by equation (213),
wherein D is replaced by DM

With G = 0, equation (212) yields the familiar Euler column

formula for two homogeneous strips in plane strain, that is,

'n'zrn2 E t3

lim N =- = (214)

An additional limiting case of interest is that which occurs when
either m is made infinite or a is made zero. In this case, the critical

load on a sandwich panel with plate facings (defined in equation (186)) is

infinite, that is,
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lim N = o0, (215)
ocr _
MN—e=00

or

a—n=-(

However, this critical load for a sandwich panel with membrane facings

(see equation 188) is finite, that is,

lim N =cG. (216)
ocr
YY) i OO

or

a—=0
The finite limiting value of critical load given in equation (216) is char-
acteristic of sandwich analyses wherein the assumptions of EC = o and
of membrane facings are made. This limiting value of the critical load

. : s 19
may be attributed to the shear instability of the core.—
a
The value of 5 corresponding to the minimum kmO for each of the

e

individual curves in figure 5 is found by setting

ok

O o (217)
5 &
b
Thus,
a 1-W (218)
bl o
5] 1+ W
k
moO
min

19
—=SGee reference l.
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Therefore, the equation of the horizontal tangent to each family of

20
curves— is

4
k o ==, (W< . (219)
min (1 + W)

Also, note that

1
Ko =W (220)

o'l
I
O

Equation (219) is of particular interest to the designer because it can be

used to compute the critical load factor, k o’ of a particular panel
m

1Y

whenever — > 1, provided W< 1. For values of W =1, equation (219) is

b

not valid. The designer may use the equation

1 >
Kk o=w - (w2 - (221)

a
for the determination of critical load factor, kmO’ for all g ratios when
>
the parameter W =1
The result from this limiting case analysis, that is, equation
(181), is identical with the result obtained from the so-called 'tilting'"

method of analysis.— This comparison seems to reveal the funda -

mental nature of the assumptions involved in the ""tilting'' method,

—A family of curves is here defined as the set of curves corresponding
to a particular value of W (or S).

21
—See references 2, 3, 16.
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that is, the core is in anti-plane stress and the transverse modulus of

elasticity of the core, Ec’ is infinite.

4.Case&=2,EC=°0,G =QG ==9,_t_'_=£

vz XZ

The case discussed here refers to a sandwich panel composed
of elements with the following properties:

1. The core is isotropic and is capable of resisting only anti-
plane stre.ss. The transverse modulus of elasticity of the core, E_, is
infinite.

2. The facings are isotropic and are of equal thickness.

The loading on the panel for this case is pure edgewise bending.

The critical load for this case is defined by equation (195). Equa-
tion (195) may be simplified to give equation (198) by a modification of
the flexul;al rigidity factor, D, of the spaced plate facings. This modi-

fication is based on the same assumption-given in the approximate equa-

tion(205). The design curves shown in figure 6 and in figure 7 give k_ ,

versus % for the same case of sandwich panel and 1oading'; however, the
parameter W is used to distinguish between families of curves in figure
6, whereas, the parameter § is used to distinguish between families of
curves in figure 7.

Equation (195), which gives the critical load for this case when

the facings are considered as plates, reduces to
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2 2 2
4 o o) )
D 3
lim N___ =—— h e (222)
ocr 2 2 > 2
G a0 2m a 48 2 16 2
(=) @ () @
25 ml 9 m3

when the modulus of rigidity of the core is infinite. Equation (222) is
identical to the result obtained from the homogeneous plate analysis,—
where D, is the flexural rigidity of the spaced plate facings. When the
facings are considered as membranes (see equation (198)), this critical
load is again expressed by equation (222), except that D becomes DM,

the flexural rigidity of the spaced membrane facings.

Equation (195) reduces to

3 4 2 2 @2
. Et ™ @ml (me m3
SN 2 2 2 2 2 (223)
G—w0 6(1-p7) 2m~a 48 2 16 2
(z3) @ (T) @
25 ml 9 m3

when the modulus of rigidity of the core is zero. Equation (223) yields
oy 22 .

the critical load— for two simply supported rectangular homogeneous

plates of thicknessi subjected to pure edgewise bending. When the fac-

ings are considered as membranes (see equation (198)), this critical

load reduces to zero as would be expected.

22
—See reference 14, page 355,

GFD B27391-7
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When either m is taken equal to infinity or a is taken equal to

zero, the critical loaLd on a sandwich panel with plate facings (see equa-
tion (195)) is infinite, that is,
lim N = 00, (224)
TN~8-00

or

a——ue=()

However, this critical load for a sandwich panel with membrane facings

(see equation (198)) is finite, that is,

lim N___=1.886cG. (225)

ocC
1Y) =8 CO

or

a0

The finite limiting value of critical load given in equation (225) is char-
acteristic of sandwich analyses in which the assumptions of EC = o and
of membrane facings are made. As stated previously, this limiting
value of the critical load may be attributed to the shear instability of the

core.

A form of equation (225) which is useful for design is

T D 2 -
N oM 1886 (5t 20.215) . (226)

. 3
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Equation (226) can be used to compute the critical load for sandwich
2
>
panels subjected to pure edgewise bending when S a_z =0.215 . That
b

this is so is evident from a study of figure 7. In a like manner, study of

equation (225) together with figure 6 reveals that the critical load

lim N___ = . (W 2 0.215) (227)

is applicable for computing the critical load when W 20.215.
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1X, APPENDICES

1. Appendix A -- Algebraic Details

Equations (97) and (114) for the elastic energy due to the mem-
brane strains in the upper and lower facing, respectively, may be writ-
ten in the forms shown in equations (98) and (115) by identical algebraic

simplifications. Thus, for the upper facing, let

t
Roan = Gmn - Z “mn (228)
t
Q@ = -Lfg¢ (229)
mn mn 2 - mn |

abtE oI m41r4 > 4 4 >
VMF - 2 4 Rmn * 4 an
8(1-p } wm=l n=l a b
rnzrr2 n21'r2 l-p mzwz nz'rr2 2
o 2 2 Rn Qpn * 2 2 2 (Rmn+ an)
a a b
(230)
So_ B 2_2 2_2 2
_ _abtE - Z m-m R PR o
8(1-p%) =l o3 a2 TR 2 mn
l-p mz'rr nw Z—
- 231
2 2 2 |::ann an) ( )
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and this latter equation may be seen to be identical with equation (98).
A parallel simplification may be effected for the elastic energy due to

the membrane strains in the lower facing if it is noted that for the lower

facing
c3 t'c2 c2 t! it
- c_ I s <4
mn = Amn (G 4)+an(2 2)+Cng+anc+Gan
(232)
and
c3 'c'c2 CZ t'c i
! -—
(233)

£. Appendix B -- Integration Formulas

Integration formulas used in this thesis include the following:

(i and j are integers)

b
cos Y. cos 1ML dy:-b— 5 for i = j (234)
» b b 4
0
b
j cos-l—g-z cosJTTrY dy =0 , for i £ (235)
) .
b
in T iy S for i = j 236
sin o= sin =5 ol =N ( )
O
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b
5 sin T- sin 22X dy =0 ,  for i# ] (237)
0
b
imy jmy b’
y sin—-b— sinb— dy bt for-i = j (238)
0
b
j y sin =~ sint dy =0 , fori#jandizjeven (239)
0
b
. 2
L AN L) AP .. 1)
y sin = sin - dy= - >
T 2 2
0 G ~q )
for i # jand i £ j odd, (240)

3. Appendix C -- Examples of Integrations

Included in this appendix are details of integration of equation
(72) and of equation (163). These integrations are typical of many others
in this thesis.

Equation (72) may be written as



9.

o0
E (A z+B__) sin 2% sin oY
. mn mn a b

p—

n=1

o\ _—0
3

0 oo :
. pmx . imy
X E E (Api z + Bpi) sin — sin —— dx dy dz. (241)

Equation (241) requires the integration of the product of a double infinite

series by itself. The integration formulas (236) and (237) show that N

in equation (241) is zero when m # P and/or n ;‘:_i. However, when
m =pandn = i, integration with respect to x and y in equation (241)

gives

c
Ll s z
cC a
VCl = T —4— y (Amn‘z + an) dZ. (242)
0

Integration of equation (242) gives

3 B3
0 (Amnc +an) =B

ab -
VCl = EC s g Y (243)

m=1 n=1 mn

NN

- which is identical with the integrated form given in equation (75).
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Equation (163) may be written as (see equation (159))

a b a b RS

BW - mr mmx . nmy
jj' y(— dxdy:jj y E E Con —— €0s —— sin —

m=l n=l
070 070
o0 oo
X E Z C . BT cos 2™ oin '™ 4x d (244)
: pi g a b v

Integration of equation (244) gives values other than zero only when

m =p. Thus, the integration of equation (244) with respect to x gives

a b b
2 0o _© 2 2
oOw v a Z m w . nwy
y (—) dx dy = — v C - sin
ox 2 m=1- n=1 ma aZ 2
0 0
w .
. imy
X E Cni snl-—-b—.dy . (245)

Now, when i =n, equation (245) integrates to a value Il’ where (see in-

tegration formula (238))

2

b < mz'rrz |
TZ i > - (246)
n=

When i # nand i+ n is even, equation (245) integrates to a value L

H
v
r—lr

where (see integration formula (239))

(247)

GFO B27391-6
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4. Appendix D -- Determinant Elements
for Case a =0, E_. Finite

The elements of the determinant in eqliation (179) are as follows:

E 2 E 2 0 > E ¢ 2
H - C (E_+ C a )+(_ mn _ C )
1,1 . 212 G 2 2 12 >
t 6w XZ m T G, .w
XZ
2
2 E 2 2
: n C 1l-p 2 c
b2 G2 2 202
™ <z m o™
2 . 0 c3 E ¢
-9 (c + ct ) mn _ \
Hy 2 *%mn 2 12 2/
ze'n'
3
0 c E c¢
t! n C
Hy 3= 0mn G tel-—3 2)
G =
XZ
3
E 2 2 2 G 8 ¢ E c
C Yz a n n VZ mn C
Hy 4 = S+ =c(l-g) (- )
’ , 2 .2 2 G 12 2
t'émw XZ m~ b b Xz ze1r
n2 Ec 1-p
* 22 G 2 ¢ Pumn
b7 XZ
. Fe o 1l
1,5 G 2 2
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0 c3 E c
- (- mn i c )
1,6 12 2
G, m
XZ
3
H -6 cz+ct' ernn EcC
2,1 mn( 2 - 12 - 2)
G . m
Xz
E o2 (tn)? N O 2
H _ (o} N mn + (c +ct) _ o m c
2,2 o 5 12 mn 2 (t+t) ,2 9
22
o Cemn (t') 62 t c? 4 ct! o m2
2,31z *omn 2 TN t+¢) 2
2 G
c“4+ctt. n . yz
H2,4—emn( 2 ) 2 (I—G )
XZ
HZ,S_O
¢~ + ct
H2,6—emn{ 2 )
CZ Gmnc3 Ecc
s (- 30—z z)
G =




t +t

tta

3
cO t 2
mn t! C
H3 3% - 730+ Omn GGt e)(- 37) + N (
2 G 2
n vz c
H =—c(1- (- =)
, 4
2 bz XZ :
H3,5 =0
cz ct
Ba6 ) o
Ec G 2 aZ nZ nz G »
I—I4’1: L —2+—Zc(1-Gy)(
t'ow Xz m° b b Xz
2 E
N n c l-p
22 G 2 ¢ Pmn




nZ GZ
H4,2=—2-c(1-—y—G ) 6

b Xz

nz GYZ
Hy 3=—F¢c(l-g)e

b X2

nz G

R _yZ
H4,4_ 2 t'§ pmn+

b

m® 1
Hy 5572 73 “Pmn

a

n2 Gz
Hye=3c-5)

b X7

C EC

— st

Hem i eoNe
™ XZ

H =0
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5,3
= t!
H5,4 cO
2 2
_b m .
H5’5— > 3 (t+1t)
n a
H5’6=O
C3
— 41! e
H6,l ¢ emn( 12)
c  + ct!
H6,2=t' emn{ 2 )
2 2
_ (t') -t
H6,3—an( )

p_—y
H6’4_tc6m
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b2 rn2
H6,5:_2— T(t‘i't')
n a

He =(t +t')

5. Appendix E -- Determinant Elements
for Case a =0, Ec = o0

The elements of the determinant in equation (180) may be found by

taking the limit of the determinant in Appendix D as E —e». This is
i 1

done by multiplying row 1, row 2, and column 1 by the factor ol and
c

then taking the limit as EC—>oo. Thus, the elements of the determinant

in equation (180) are as follows:

2 2 2
I o1 CHLR ‘c'f&c2 (1 +_1}___ a l-p)
1,1 7 G 2 2 2 2 2 2 2
Xz m G b m
XZ
c ct!d .
Jl,ZZE e emn(c+t)
XZ
o yz a® n t'sc t m? nf 1y
1,3~ 2 .2 G mn2+pmnc(2+2 2)
xZ m b XZ a b
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GYZ a2 n e c'2 Gyz 1-p
_ B _4tg B - B
J1,4_G 2 £a 2NG (1 G 2 prnn)
xz m b b X7 XZ
5 B t'sc n2 1+p
TG 2 2
1,5 xz b
3 _ t'6c(m n2 1-}.1.)
1,6 Gy, .2 2 2
o WL I2,3592,47 93,5 93,6=0
G 2 2 [ : 2 2 B
___Yz a_ n_ taéc m n l-p
317 °G 2.2 G Oomn 7 * Pen ¢ 7+ 5 )
xz m b XZ a b
J3, > = H3, > (that is, no change from element H3, , in Appendix D)
J3,3 = H3 3 I3, 4= Hy 4 J3,5 = H3 5 N
G 2 2 2 2 G
3 __yz & E—-t'{)?— (€ (1 - yz l-p )
4,1 G 2 2 2 G G 2 Pmn
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6. Appendix F -- Determinant Elements
for Case a=2, E, =0

The elements of the determinant in equation (194) may be found
by a scheme similar to that used in Appendix E, but it is more conveni-
ent to deduce these elements from a study of the determinant in Appen-
dix E together with equations (173) through (178). In any event, the ele-

ments of the determinant in equation (194) are listed in order as follows:

All unlisted elements, Kp q’ have a value of zero.
2 2 2
1 a t'6c 1 a -
K, ;= ¥ (1+— > L
1,1 7 G 2 2 2 2 2 2
XzZ m G 7 b  m
Xz
ct's
K1,4 = — 1 - eml (C + tl)
Xz
G Z ! 2
a 1 t & : 1 1-
K oo=-=2 2= 2880 L, (B iy
1,7 G 2 G ml 2 ml 2 202
xzZ m b XZ a b
2 2
K _ﬁi a__l._. t'é _1_ e 1 GYZ l..:.&.
1,10 - G 2 2~ >l -5 - 2 eqy)
xz m b b X7z XZ
1
K _ _téc 1+
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2
_ _t'éc (m_.}___l_ l—p.)
G 2 2 2
xz a b
2 2 2
1 a t'sc (1+_4_ a 1_-_|.L)
G 2 2
XZ rnz'n'2 G 'n'2 bz mz
Xz
c ct's .
>l -G 2(c-i-‘c)
XZ
c 2 2 1
_-lz—a_-i_t'éc e El"l‘ C(E_+._4- 1_:&)
G 2.2 G m2 2 " Pm2 Z
xz m b XZ a b N
G 2 G
Yzi_‘_l__t|6_4_c (1 - Yz_l'“p )
G 2 .2 2 G G 2 m?2
xz m~ b b X7 XZ
_tlee 4 liu
G 2 2
XZ b
2
= -tléc (.__m ._4_.. .'_"._1)
2
GXZ aZ b 2
1 g t'd 9 & 1-p
a c a -
2 2 > 27 3 2)
XZ m G 7 b
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C Ct'6 '
Ky =2 |-G 9,;(ctt)
Xz
2 1 1 2
a t 6c t m 9 1-
Ky 0 T 5 G P32 s O g
’ Xz m b bid a b
G 2 2
_ ¥z a 9 1. 9 ¢ yz _1-p
K3, 12 = = -ti5 g 2 Pm3)
xz m b b XZ Xz
_ _tlee 9 14p
K315 -G 2 2
xz b
K B t'6c(m2+9 l-p,)
3,187 G 2 2 2
XZ a b
K4’4:1, K5,5"1, K6,6=1
2 , , 2
__ Yz a 1 téc t m 1 1-p
Kol ® 2 726 |Pm1ztPm Tt )
xz m b XZ a b
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2
16 t' m
K7,5"'9_No“t+t' Z
1r2 2.2 t3 gt')?’ 2 t'
e — ] e
K777 202 Pt 0T 01 T2 |0 Om 2
2
+m_2 +£lil_ 2 1p 2
2 Pmi1 © 2 2° 2 Pmi
a a b
« ) _}éNOa mZ
7,8 9 c 2
a
2 G | 2
T 1 =y bl e
' K7 10" 2Cyz Pm1 T OT Se(l-g 0,2 3 Pm1 ©)
b b X7 a
| )
_9_1__&1' CZ 2‘1
2 .2 2 e
a b _l
2 2
ot 2 1 1, 2 t'  m
K137 3 o7 — 0 ttem | —(8 5+ Prm1 ©)
b b a
mz 1 1- o
- T P
2 2 2 ml
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- -Sad Tp . v, m?
K7,16_- ow 26 1—l—té'n' 2(em12+ 5 pmlc)
a a N
+m£' 1 1-p
2 2 2 ¢¢°
a b2 m1l
k -.ovzal 4 tec | ¢ mf 4 1y
Lo 2 G m2 27 P2 Tt 5 )
XZ m b Xz a b
t!
K _ 16 Noa 2
8,4 9 t+t 2
a
2 2 ' ' .
codm 2 1 e 2 c” + ct t m
Kg,5= 12 O, (t) +tlem N e A CHI o P, <)
a
2
48 t' m
K8,6 N —ZSN o t+tl 2
a
].6 NOG. 2




2 1
4 2 t (t) 1
). . 9 |+ t'emw |(O
5 Gy P2 T O™ Y2 | 3T 12 ®m2
b
2
2
+rn2 p c) g 4 lp 2 PZ
22 m2 22 bZ 2 m2
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Figure 1. --Isometric drawing of a sandwich panel.
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Figure 2. --Differential element of the core.
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edgewise bending and compression as defined by a. Ng is the load in
pounds per inch of sandwich. -
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