Dynamic Target Choice Model in Multi-fisheries

Christopher M Anderson, Keita Abe University of Washington

> NAAFE Forum 2017 La Paz, Mexico

This study

• Estimates harvester's in-season decision of which fishery to target under ITQ management with limiting bycatch.

Key Idea:

- Choice of target within a season must make a dynamic plan for using quota, in addition to current factors.
- Develop reduced-form variable that captures in-season dynamics of quota use.

Key Result

- Including the dynamic quota use variable in the RUM improves the fit of the model.
- Policy counterfactual with the parameter estimates shows the reduction in bycatch with maintained main target.

Theory on ITQ management

- Single Species Framework
 - ITQ corrects common property problem under bycatch and no production externalities. (Boyce 1992, 1996)
 - Harvesters take into account shadow costs of quota.
- Multi-fishery participation
 - The opportunity cost of fishing is affected by availability of other fisheries.
 - The effect of management in one fishery may affect the timing of participation in another
 - · Individual quota allows delay of participation

Empirical Approach: Harvester Behavior under ITQ

	Single target species	Multi-fishery
Myopic	An advantage of Individual quota is to flexibly allocate the harvest over a season.	The choice problem must consider biological/economic condition of other fisheries available for harvesters.
Dynamic	The choice problem (entry decision) must consider quota allocation over a season.	 This Study Harvester choice: Multiple target fisheries Consider the dynamic quota use within a season.

Application to a fishing fleet

- Offshore fleet (Catcher-Processor)
 - · Listed in American Fisheries Act
 - Weekly data
- Main targets
 - Pollock: ITQ management
 - 2 seasons: A (Jan-Jun) & B (Jun-Oct), High value from roe in A season
 - Yellowfin Sole (YFS): TAC
 - No more than "traditional catch" level.
 - Pacific Hake: IQ management, in West coast
 - No Individual data for this, but just numbers of vessels in this fishery.
- Prohibited Species Catch (bycatch)
 - Salmon (Chinook & Chum)

Empirical Model

- Random Utility Model
- Weekly choice of fishery
- Model incorporates
 - Choice of other fisheries
 - Dynamic quota use

Covariates: Switching cost, # of vessel in hake
$$U_{ijyw} = \beta_j(X_{iyw})E\left(\frac{Rev}{Haul}\right)_{ijyw} + \gamma(Y_{iyw})E(Bycatch_{ijyw}) + \phi'Z_{ijyw} + \xi_i + \varepsilon_{ijyw}$$

State Variable: Quota Speed, Policy (A91), cumulative catch

Capturing Dynamic Quota Use

- Reduced form variable: Quota Speed
 - Capture the pace of actual quota use relative to "potential" use
 - Compare the quota left relative to the time left
 - Remaining time is weighted by the expected Revenue PUE
 - If the expected RPUE is high, "more time" to use quota given number of weeks remaining in the season.

 CPUE |
 - The value lies between -1 and +1.
 - If it is negative, the usage is too fast.

$$qspeed_{it} = \frac{\%QuotaLeft_{it} - \%WeightTimeLeft_{it}}{\%QuotaLeft_{it} + \%WeightTimeLeft_{it}}$$

Estimation Result

Dependent variable: Targ	pendent	variable:	larget
--------------------------	---------	-----------	--------

		A Season	1	C	B Season	
	Myopic	Single target	Dyn + Multi	Myopic	Single target	Dyn + Multi
	(1)	(2)	(3)	(4)	(5)	(6)
Expected Revenue	0.006***	0.012***	0.025***	-0.012***	-0.006*	-0.006
	(0.001)	(0.003)	(0.002)	(0.003)	(0.003)	(0.003)
Expected Bycatch	16.445***	7.115	26.660°	-69.664***	-51.420**	-88.232***
Rate	(4.821)	(7.649)	(10.575)	(9.246)	(19.817)	(23.176)
Exp. Rev. x QSpeed		0.041***	0.028***		0.038***	0.023***
		(0.004)	(0.003)		(0.003)	(0.002)
Exp. Byc. Rate x		45.498**	59.712**		96.776***	33.467
QSpeed		(16.619)	(22.107)		(27.121)	(30.037)
Akaike Inf. Crit.	1636.36	607.6	958.73	1484.43	858.74	980.98
Observations	2,551	2,551	2,551	2,668	2,668	2,668
Log Likelihood	-795.181	-279.800	-453.367	-719.214	-405.369	-464.489

Note: Only Key Variables are shown

*p<0.05**p<0.01***p<0.001

Pollock Participation Prediction (A season)

Pollock Participation Prediction (B season)

Use in Policy Evaluation

Setting

- <u>Proposed Policy</u>: Open B season 2 weeks earlier than status quo.
- Predict the participation decision by using parameter estimates.
- Calculate the pollock catch and salmon bycatch based on the predicted participations.
- Predict based on the data of each year (2005-2013) and take averages.

Counterfactual

Changes in pollock participation as result of earlier B season opening

Counterfactual Total Changes in catch and bycatch as result of earlier B season opening

Summary

- Harvester behavior depends on their alternative opportunities
 - Especially under ITQs, dynamic planning is possible.
 - Variable Quota Speed is one way of estimation without solving full dynamic programming.
 - Significantly improves fit over static, single-species models
- Biological/Economic Variables in other fisheries
 - Without them, the estimates may be biased due to omitted opportunity costs.

Appendix

Multi-fisheries problem

- Most of harvesters participate more than one species during a fishing season.
 - Seasonality
 - Portfolio: decrease the risk
 - · Bycatch problem:
- Single fishery management may not be ideal
 - Management on a fishery cause effort spillover into another fishery.
 - Management effect given multiple alternative fisheries is underresearched
- In ITQ fisheries, the allocation is a dynamic problem.
 - Target choice problem is a dynamic problem.

This study

- Model the process of dynamic fisheries choice.
 - Construct the seasonal model of fishery choice
 - Estimate a simple empirical model with dynamic variable
- Apply the model to a fleet in Alaskan Pollock fishery
 - Simulate the policy change with the model estimates, and evaluate the outcome

Theoretical framework

- The harvesters problem (Single agent)
 - Given quota, maximize the seasonal profit from two fisheries: ITQ and TAC management fisheries (1 and 2)
 - Considers time-variant price and bycatch rate
 - Avoid bycatch for (possible) three reasons
 - Constrained by individual bycatch quota (e.g. PSC limit)
 - Social penalty
 - Contemporaneous bycatch (e.g. list of weekly dirty 20 vessels)
 - Cumulative bycatch (e.g. seasonal dirty 20 vessels)
 - Start in fishery 2 (TAC), and move to fishery 1 (ITQ)
 - Assume that the price of fishery 1 rises over time.

Individual problem

$$\max \int_0^{\tau} (p^{f2} - c) e_{it}^{f2} dt + \int_{\tau}^{T} \{ [(p_t^{f1} - c) - \delta q_t^b] e_{it}^{f1} - \kappa z_{it} \} dt$$

Subject to

```
\begin{split} \int_{\tau}^{T} e_{it}^{f1} dt &\leq Q_{i} \;, \quad \int_{\tau}^{T} q_{t}^{b} e_{it}^{f1} dt \leq Q_{i}^{b} \quad \text{(main and bycatch quota)} \\ \dot{z} &= q_{t}^{b} e_{it}^{f1} \;, \; \text{(changes in cumulative bycatch)} \\ 0 &\leq e_{it}^{f1} \leq \bar{A} \;, \quad 0 \leq e_{it}^{f2} \leq \bar{A} \quad \text{(Capacity constraint)} \end{split}
```

• Set up Lagrangian and solve for e_{it}^{f1} , e_{it}^{f2} , and τ .

$$\mathcal{L} = \int_0^\tau \left(p^{f2} - c\right) e_{it}^{f2} dt + \qquad \qquad \text{Fishery 2}$$

$$\int_\tau^T \{ \left[\left(p_t^{f1} - c \right) - \delta q_t^b \right] e_{it}^{f1} - \kappa z_{it} + \mu_t q_t^b e_{it}^{f1} \} dt \qquad \qquad \text{Fishery 1}$$

$$-\mu_T \int_\tau^T q_t^b e_{it}^{f1} dt + \int_\tau^T \dot{\mu} z_{it} dt \qquad \qquad \text{Flow const.}$$

$$+ \lambda_1 \left(Q_i - \int_\tau^T e_{it}^{f1} dt \right) + \lambda_2 \left(Q_i^b - \int_\tau^T q_t^b e_{it}^{f1} dt \right) + \qquad \text{Quota const.}$$

$$\int_0^T \lambda_{3t} (\bar{A} - e_{it}^{f1}) dt + \int_0^T \lambda_{4t} (\bar{A} - e_{it}^{f2}) dt + \int_0^T \lambda_{5t} e_{it}^{f1} dt + \int_0^T \lambda_{6t} e_{it}^{f2} dt.$$

$$\qquad \qquad \text{Capcity const.}$$

Solution for effort in fishery 2

$$(p^{f2} - c) = \lambda_{4t} - \lambda_{6t}$$

- λ_{4t} : LM on capacity constraint (< A), λ_{6t} : LM on non-negative constraint.
- => either λ_{4t} or λ_{6t} is positive.
- The LHS is positive => $e_{it}^{f2} = A^{-}$

Solution for effort in fishery 1

$$(p_t^{f_1} - c) - \lambda_1 - [\delta + \kappa(T - t)]q_t^b - \lambda_2 q_t^b = \lambda_{3t} - \lambda_{5t}$$

- λ_1 : shadow cost of main quota, λ_2 : shadow cost of bycatch quota
- λ_{3t} : LM on capacity constraint (< A), λ_{5t} : LM on non-negative constraint.
- => either λ_{3t} or λ_{5t} is positive.
- If the LHS is positive , $e_{it}^{f1} = A^{-}$
- If the LHS is negative, $e_{it}^{f1}=0$

• Solution for τ .

$$(p^{f2} - c) = (p_{\tau}^{f1} - c) - \lambda_1 - [\delta + \kappa(T - \tau)]q_{\tau}^b - \lambda_2 q_{\tau}^b$$

• Impose linear forms on price 1 and bycatch rate, and solve for τ .

$$\tau = \frac{-\left[\beta^P - (\delta + \kappa T - \lambda_2)\beta^b + \kappa \alpha^b\right]}{2\kappa\beta^b} + \frac{\sqrt{\left[\beta^P - (\delta + \kappa T - \lambda_2)\beta^b + \kappa \alpha^b\right]^2 - 4\kappa\beta^b\left[\alpha^P - (\delta + \kappa T - \lambda_2)\alpha^b - p_2\right]}}{2\kappa\beta^b}$$

Theoretical Prediction

Time

Empirical Model: Random Utility

• Utility: Pollock

$$\begin{split} &U_{iyw}^{P} \\ &= \alpha^{P} + \beta_{1} ExpRe \, v_{iyw} + \beta_{2} ExpChinPollRati \, o_{iyw} \\ &+ \beta_{3} SpeedQuotaPol \, l_{iyw} + \beta_{4} SpeedQuotaChi \, n_{iyw} + \beta_{5} SwitchCost_{itw} \\ &+ \beta_{6} A91_{iyw} + \beta_{7} A91_{iyw} \times SpeedQuotaChin_{iyw} \\ &+ \beta_{8} A91_{iyw} \times ExpChinPollRati \, o_{iyw} + \sum_{w} \beta_{w}^{P} DW_{w} + \sum_{i} \beta_{i}^{P} DV_{i} + \varepsilon_{iyw}^{P} \\ \end{split}$$

- ExpRev: Expected Revenue
- ExpChinPollRatio: Expected Chinook-Pollock Ratio, the contemporaneous bycatch measure
- SpeedQuota: Speedo of quota usage (next slide)
- Switch Cost: Dummy variable (1 if the choice of the week and the week before is different)
- A91: Dummy for Amendmend 91 (1 if >=2011)
- DW: Dummy variable for week of season (fixed effects)
- DV: Dummy variable for individual vessel (fixed effects)

Empirical Model: Quota Speed

- How do we incorporate the dynamic cost of quota usage $(\lambda_1 \& \lambda_2)$?
- In theory, the shadow cost is time-invariant (at the t=0)
- In reality, the realization of the catch makes harvesters re-calculate the shadow value in each period.
 - If the usage is too fast (relative to the pace initially planned), the shadow value of the remaining quota gets higher
- We generate a variable which take into account this speed of quota usage.

Weighted time left

