# Consequences of Recovering Enforcement Costs in Fisheries

Jon G Sutinen
University of Rhode
Island

Peder Andersen
University of
Copenhagen

#### **Outline**

- Management expenditures and cost recovery
- Issues & purpose
- Bioeconomic models of cost recovery, policy & outcomes
- Results & Discussion
- Other issues & research directions

#### **Management Expenditures**

- Governments spend significant financial resources on fisheries management,
  - especially on enforcement, research, and management administration
- Sumaila, et al. (2016) estimate governments spend about USD 12.0 billion per year on management costs
  - Administration,research andenforcement

## **Cost Recovery**

- Most fishery management programs are entirely financed by general taxpayers
- A few countries have implemented user charges to recover the costs of management
  - Australia
  - Canada
  - New Zealand

### Recovery of fishery management costs

- Reasons & considerations
  - Raise revenue
  - Fairness
  - Economic efficiency
    - Improved cost-efficiency in provision of management services
    - Improved efficiency in mix of management services

#### **Issues**

- Getting the prices (cost recovery rates)
   'right'
  - Not straightforward in theory or practice
  - Eg. Canada, New Zealand difficulties
  - Ill designed programs can be detrimental
- Careful analysis of cost recovery design needed

#### **Issues**

- What are the advantages and disadvantages of different cost recovery methods?
  - User charges
  - Other financing methods (lump sum payments)
- What methods can best improve efficiency?
- How should charges be set & collected?

## Purpose of this study

- To examine the consequences of applying a royalty to recover enforcement costs
  - By developing formal bioeconomic models to assess consequences for policy & outcomes
- To determine how a royalty r to recover costs affects
  - Policy
  - Biological and economic outcomes

# **Bioeconomics Part I**

- Basic static bioeconomic model
  - Single species
  - Equilibrium
    - Fish stock
    - Fleet
    - Market
  - Fishery management authority
  - Fisheries enforcement agency

## A static bioeconomic model



## A static bioeconomic model



## **Enforcement & Compliance**

- Each firm's effort above  $e_{msy}$  is illegal
  - MSY is management's target level of effort
- Penalty given by

$$f = f(e - e_{msy})$$
, where  $f_e > 0$  when  $e > e_{msy}$   
 $f = 0$  otherwise, and  $f_{ee} \ge 0$ 

Probability of detection & conviction given by

$$\theta = \theta(S)$$
, where  $\theta_S > 0$ ,  $\theta_{SS} \le 0$ , and

S represents enforcement services, e.g. surveillance

# Firm's effort – open access



# Firm's effort costly, imperfect enforcement



# Firm's effort - with royalty, r>0



# Firm's effort Lower enforcement



# Firm's effort with royalty, less enforcement



## **Enforcement & Compliance**

• Aggregating each firm's effort rate across all firms results in the aggregate effort function

$$F = F(S, r, X)$$

Using the population equilibrium function

$$X = X(F)$$

• The aggregate effort function becomes

$$F = F(S,r)$$

Which is the relationship between aggregate effort, F, and enforcement services, S, and the royalty rate, r

#### Bioeconomic outcomes, no royalty, r = 0



#### Bioeconomic outcomes, no royalty, r = 0



**Enforcement Services** 

#### Bioeconomic consequences of a royalty, r > 0



# Bioeconomics Part II

- Dynamic optimal bioeconomic model
  - In terms of output, Q, not effort
  - Extension of the Sutinen and Andersen (1985)
     paper: The Economics of Fisheries Law
     Enforcement, Land Economics
  - Costly, imperfect enforcement

#### **Enforcement Costs**

- Enforcement costs are denoted by  $E(\theta)$ Where  $E_{\theta} > 0$  and  $E_{\theta\theta} > 0$
- Using the inverse form of the aggregate output function,  $\theta = Q^{-1}(Q,r,X)$

$$E(\theta) = E(Q, r, X)$$

Where  $E_Q < 0$ ,  $E_r < 0$ ,  $E_X > 0$ 

## **Optimal Policy**

- The management authority is assumed to maximize net social benefits subject to
  - The stock constraint, and
  - A cost recovery constraint
    - All enforcement costs are recovered via a royalty

## **Optimal Policy**

In earlier work (Sutinen and Andersen 1985) we derived optimal policies by maximizing the discounted sum of net social benefits over time,

$$\int_0^\infty \left[ \int_0^Q p(s)ds - C(Q,X) - E(r,Q,X) \right] e^{-\rho t} dt$$

Subject to the stock constraint

$$\dot{X} = h(X) - Q$$

# **Optimal Policy** without cost recovery, r=0

The optimal stock size when enforcement costs are not recovered (r=0) is determined by

$$[\rho - h_x] = \frac{-(C_x + E_x)}{\{p - (C_Q + E_Q)\}}$$

which results in a SMC<sup>\*\*</sup> that lies below the costless, perfect enforcement SMC<sup>\*</sup> and a lower optimal stock size.

This result is illustrated in the following two graphs.



# Optimal Policy with cost recovery, r>0

Optimal policies are found by maximizing the discounted sum of net social benefits over time,

$$\int_0^\infty \left[ \int_0^Q p(s)ds - C(Q,X) - E(r,Q,X) \right] e^{-\rho t} dt$$

Subject to the stock constraint

$$\dot{X} = h(X) - Q$$

and cost recovery constraint

$$rpQ = E(r, Q, X)$$

# **Optimal Policy** with cost recovery, *r>0*

When enforcement costs are recovered with a royalty (r>0), the optimal stock size is determined by a far more complex condition:

$$[\rho - h_x] = \frac{\{(E_r E_x)/[pq - E_r]\} - (C_x + E_x)}{\{p - C_Q - E_Q + E_r [rp - E_Q]/[pq - E_r]\}}$$

This shifts the SMC up towards the costless enforcement SMC\* resulting in an optimal stock that is larger than when enforcement costs are not recovered with a royalty.

This is illustrated in the following graph.



#### **Results & Discussion**

- A royalty to recover enforcement costs
  - Reduces the incentive to produce & violate
  - Can lower the cost & amount of enforcement for a given level of production
  - Has a conservation payoff
    - A result not heretofore understood
    - In addition to other efficiency payoffs

#### **Results & Discussion**

- Our results are further evidence that 'Who pays and how they pay'
  - Influences policies and performance of a fishery
  - Specifically, producers paying via a royalty appears to be one of the best methods to recover costs of management

#### Limitations

- Limitations of our analysis
  - Other management costs need to be considered
    - Research, observers, administrative, etc.
  - Only licensed, authorized producers are considered

#### **Other Issues**

- Pros & cons of different types of user charges?
  - User fees
  - Regulatory fees
  - Beneficiary-based taxes
  - Liability-based taxes
- How should user charges be set?
- How best to collect user charges?