"Nascent Developments in Arctic Fisheries: Managing the Red King Crab in the Barents Sea"

Present and emerging Arctic fisheries

Brooks Kaiser¹, <u>Melina Kourantidou¹</u>, Linda Fernandez²

IIFET 2016 Wednesday 13/07/2016, Aberdeen

1 University of Southern Denmark 2 Commonwealth Virginia University

Distribution & Management Overview

- ✓ East Finnmark coast
- Purposeful Introduction at Kola, from N.Pacific
- ✓ 12% Barents coverage

History of Invasive Red King Crab

Tradeoffs of a profitable invader

Scarce Empirical Observations

- Inevitable Uncertainties
 - Stock (X)
 - Growth F(X)
 - Damages DM(X)
 - Control Costs
- Trade off-Sign of λ
 - X or h source of future benefits ?
 - Value from investing in this asset or divesting in this liability

$$MaxV = \int_{0}^{\infty} e^{-\delta t} \left[Ph_t - C(X_t)h_t - DM(X_t) \right] dt$$
$$F'(X_t) - \left(\frac{DM'(X_t) + C'(X_t)F(X_t)}{P - C(X_t)} \right) = \delta$$

s.t.

$$\dot{\mathbf{X}} = \mathbf{F}(X_t) - h_t$$
$$0 \le h_t \le X_t$$
$$X_0 \le X(0)$$

$$\lambda = \frac{\dot{\lambda} - DM'(X) - C'(X)h}{\delta - F'(X)}$$

Cost Function

- 2016 NO Registry & 2002-2007 dataset
- Individual effects: Variation in costs across vessels
- Regression Analysis: explanatory variables: annual X, Vessel Length (VL), harvest (monthly)
- Overview of how output and X affect variable unit costs $CPUEmales = 0.0085X^{0.4482}$
- Annual Operational Costs sorted by VL (S:8-9.9m, M: 10-14.9m, L: 15-20.9m)
- Fixed Weighted Averaged Cost for every year

$$\overline{C}_{t} = AC_{t}^{S} / \sum_{S} T_{t} + AC_{t}^{M} / \sum_{M} T_{t} + AC_{t}^{L} / \sum_{L} T_{t}$$

- %CQi fraction of crab quotas when compared to overall other quotas
- AC annual cost; weighted average of annual VL classes
- *SPD is the sum of Pot days (for every individual trip) of every vessel i.*

Broadening the Perspective

Multiple Fisheries managers (RU/NO) goals incomplete Full Ecological Economic Story includes Damages and Externalities, and Unknowns

- Different Costs, Incentives
 - Bycatches
 - removing baits, losing target species, entagling & destroying nets
 - Predation upon commercial species
 - Capelin (Mallotus villosus)
 - Arctic lumpsucker (*Cyclopteropsis macalpini*)
 - Icelandic Scallop (Chlamys islandica)
 - Ecosystem Damages
 - Benthos
 - Competition with native species
 - Parasites & Commensal

epifaunal communities are impoverished

trawl catch at 110 m depth in non invaded nearby fjord

Icelandic Scallop habitat

Pro's and Cons of Commercial harvesting as a means of control for ecological goals

- ✓ Quotas: Compensation for Damages
- Market Benefits grow larger as invasion develops
- ✓ Increasing economic dependence
- ✓ Additional pressure on Social Planner
- ✓ Myopic strategies may justify larger steady state X*
- ✓ RKC < 0.8kg not commercial
- Måsøy: Expand the border to give access to Quota Regulation!
- ✓ E/W Discard policy differs too
- Norwegian violations of international policy on invasive species?

Thank you very much for your attention mkour@sdu.dk, baka@sdu.dk, Imfernandez@vcu.edu

Blunt management tools: Need for refinement?

Spatially explicit concerns ✓ West

Reduce X (With Investment beyond OA outcome):

- own damages
- International Spatial spread/Mitigation?
- ✓ East
- Reduce X (With Quota?) for
- own damages (if any)
- Within Norway Spatial spread/Mitigation?

- ✓ RKC expanding spatially & in density
- Management pushing down X
- ✓ Laksefjord (close to 26°): unstable. Increased harvest maybe ?
- ✓ Posangerfjord & other fjørds ?!

