

NOAA Fisheries University of Maryland Center for Environmental Science

The value of research involved in stock assessment

Barbara Hutniczak ^{with} Michael Wilberg (UMCES) John Wiedenmann (Rutgers) Douglas Lipton (NOAA)

Conclusions

Objective of the study

Goal of the project:

present appropriate performance metrics to evaluate a range of data acquiring decisions in terms of economic welfare while achieving the predefined management target of the probability of overfishing

How to design a management system

- How often to conduct stock assessments?
- How long should the assessment and management process take?

Empirical application: Mid-Atlantic Summer Flounder

State by state TAC with fixed state ratios 60% commercial & 40% recreational

SA interval: ca. 3 years (full assessment vs. update) DML: ca. 1 year

Image: www.greateratlantic.fisheries.noaa.gov

Case study

Figure 1: Summer flounder TAC size over time (commercial + recreational, sum for all states)

Management Strategy	Evaluation (MSE)			
Regula	tions	anagement plementation	Samplin	Performance metrics
		dynamics	Colle	ction
	Catch limits	s Sto assess	ock sment	Michael J Wilberg, John Wiedenmann,

Model-economic component

Results

Michael J Wilberg, John Wiedenmann, Andrea Sylvia, and Thomas Miller. Evaluation of Acceptable Biological Catch Harvest Control Rules and Factors Affecting Their Performance. WP, 2015.

Conclusions

Introduction

Model-ecological component

Conclusions

Ecological model scenarios

Example for SA interval =10 years and DML=3 years

Period catch limit is in effect

Barbara Hutniczak

Conclusions

Ecological model calibration

- Model variations based on:
- Life history (slow, medium, long)
- Data quality
- Recruitment variability

Summer flounder adapted version:

Adjusted based on observed biomass history

Ecological model output example

Stock assessment interval

Conclusions

Ecological model output - iteration

Barbara Hutniczak

July 20, 2016

Introduction	Model-ecological component	Model-economic component	Results	Conclusions	
Economic performance	metrics				
Performan - Probabi - Average - Average	ce metrics used by billity of overfishing e catch and biomass e annual variability of ce metrics proffered Char Ecor We	iologists/ecologist the catch by economists: nges in homic lfare	S	Changes in Consumer Surplus Changes in Producer Surplus	
Barba	ra Hutniczak	July 20, 2016		9	l

ic component Results

Conclusions

- CS based on Inverse Demand Model
- i: domestic summer flounder
 - domestic other flatfish
 - domestic groundfish
 - imports of flatfish
 - imports of groundfish

$$w_{it}\Delta lnv_{it} = \alpha_i + \sum_{j=1}^n \pi_{ij}\Delta lnq_{jt} + \pi_i\Delta lnQ_t - \theta_1 w_{it}\Delta lnQ_t - \theta_2 w_{it}\Delta ln(\frac{q_{it}}{Q_t}) + \varepsilon_{it}$$

Uncompensated price flexibilities evaluated at mean quantities and prices for domestic summer flounder: **-0.228** (p=0.014)

Figure 1: Inverse Demand Curves and Welfare Measures in Inverse Demand System (Kim, 1997; Park, Thurman and Easley 2004)

Bar	bara	Hutr	hicza	k

Introduction	Model-ecological component	Model-economic component	Results	Conclusions
Results – Consumer Surplus				

Consumer Surplus results

- Consumer surplus per 1000 East
 Coast inhabitants in 2014 USD
- Total for 30 years (starting at 2014) discounted at 4% constant rate

For DML=1

Average decrease: 1.5% per 1 year of increased SA interval

Average decrease is getting higher with

Discount rate

Impact of discount rate

DML=1

Results

General conclusions

Data lag and stock assessment frequency matter to fisheries management

For example, each year less between assessments improves CS change by about 1.5%

- Estimation of stock assessment cost for Cost-Benefit Analysis
- Adding capital adjustment cost to analysis

Conclusions

Costly capital adjustment

(Singh, Weninger and Doyle 2006)

Costly capital adjustment, and more generally, diminishing marginal returns to the current period harvest, creates an incentive to smooth the catch over time

The wedge between the purchase and resale price is assumed to result from refitting costs that are incurred when switching between fisheries

Pacific halibut trawl fishery: 27 000 – 85 000, used 76 500 us (236 500 usd vs. 1600 000 usd)

$$k_{t+1} = (1 - \delta)k_t + i_t$$

 δ – capital depreciation rate i – investment

 p_k^+ - capital purchase price p_k^- - capital resale price

$$p_k \begin{cases} p_k^+ \ if \ k_{t+1} > (1-\delta)k_t \\ p_k^- \ if \ k_{t+1} < (1-\delta)k_t \end{cases}$$

CS & PS

	Summer flounder – domestic (G1)	Other flatfish – domestic (G2)	Groundfish – domestic (G3)	Flatfish – import (G4)	Groundfish – import (G5)
G1	-0.228	-0.223	-0.119	-0.230	-0.288
	(0.014)	(0.015)	(0.013)	(0.017)	(0.024)
G2	-0.135	-0.443	-0.176	-0.113	-0.317
	(0.009)	(0.028)	(0.015)	(0.018)	(0.015)
G3	-0.042	-0.105	-0.318	-0.076	-0.383
	(0.006)	(0.011)	(0.019)	(0.016)	(0.013)
G4	-0.073	-0.048	-0.067	-0.376	-0.408
	(0.006)	(0.010)	(0.012)	(0.012)	(0.015)
G5	-0.018	-0.027	-0.081	-0.097	-0.765
	(0.002)	(0.004)	(0.005)	(0.004)	(0.006)

Table 1: Uncompensated price flexibilities evaluated at mean quantities and prices (standard errors in parentheses, not significant, i.e. p>0.05, in grey).