Landing Obligation Economic Impact Analysis

Jennifer Russell (Anderson Solutions)
Sebastien Metz (Sakana Consultants)
Simon Mardle (Fishor Consulting)
Hazel Curtis (Seafish)
Rod Cappell (Poseidon)

Challenges for the analysis

- UK fleet is very diverse
- Multiple sea basins and stocks
- Knowledge of catch based on sample of trips
- Patterns of fishing are changeable
- How the LO's exemptions and derogations would be implemented was unclear at the time of analysis

Choke Analysis: Methodology

Choke species

- Choke species definition:
a species for which a fleet segment had insufficient initial quota allocation in 2013 to enable it to land its total catch of the species in 2013.
- Catch in excess of initial quota allocation has been addressed by a fleet segment in one of two ways:
- by discarding the excess catch; and/or
- by leasing or swapping in quota for the excess catch.
- With the landing obligation, discard of unwanted catch is not a valid option

Substantial amount of data needed

- Vessel data identifying gear type, PO membership and nationality were provided by MMO.
- Landings by vessel with PO and gear type identified were provided by MMO.
- Discard data by vessel and trip, as recorded in observer programmes, were provided by Marine Scotland Science, AFBI and CEFAS.
- Days at sea by vessel with PO and gear type identified were provided by MMO.
- FQA holdings by vessel, dummy licence and entitlement were provided by MMO.
- Initial quota allocations in tonnes for 2013 were also provided by MMO.

Segmenting the UK fleet

Assumptions for the choke analysis and the bioeconomic model

- Catch composition
- Catch is determined by applying the discard rate to landings. This is assumed to be constant throughout the year and no seasonality is taken into account.
- Effort
- The analysis assumes that effort not as restrictive as quota and is not limiting quota uptake. The average days at sea of the fleet are therefore assumed to be the maximum days available
- Quota allocation
- Quota holdings are allocated across the fleet
- Dummy licenses
- It is assumed that quota held by POs on dummy licenses is allocated across fleet segments in proportion to landings.
- Constant discard rate
- A constant average discard rate is used
- No leasing and swaps
- The extent that leases and swaps would be available under a landing obligation are unknown
- Quota uplift
- ICES catch advice is used to estimate top-up
- Re-allocation of quota
- The analysis does not reallocate unused quota, as a result of choke, between fleet segments
- IQA and EoY (just for the model)
- Initial quota allocation to each PO fleet segment, and end of year landings by each PO fleet segment. The end of year landings analysis therefore includes the effect of 2013 patterns of quota trading

Discard rates

- Discard data has been provided by CEFAS, AFBI and Marine Scotland for 2011, 2012 and 2013, based on sample fishing trips by CEFAS and Marine Scotland observer programmes
- Marine Scotland (432 trips) - North Sea (ICES area IV) and West Coast of Scotland (ICES area VI)
- CEFAS (560 trips) - North Sea (ICES area IV), Irish Sea (ICES area VIIa) and other parts of ICES area VII.
- Data is available for each species caught during each trip, retained weight / discarded weight
- Discard atlases are used to sense-check the discard rates obtained, but also to cover missing discard rates that were needed for the analysis
- For a few stocks, observer data show that for all the observed trips, all the fish were discarded. In that case, the estimation of the discard rate equals to 100%. Landings were however reported for the same stocks. This would cause the choke analysis and the model to produce errors. A 95\% maximum is used.
- After allocating the data per gear segment (demersal trawl/seine, Nephrops trawl and beam trawl) and area (North Sea, West Coast of Scotland, Area 7), there is not enough information to segment further discard data by country of origin of the vessel observed

■WHITEFISH ■NEPHROPS ■BEAM ■STATICGEAR ■OTHER

-WHITEFISH ■ NEPHROPS ■BEAM ■STATICGEAR ■OTHER

Choke analysis summary table example

| Choke analysis | 2016 Assuming cod, haddock, whiting and saithe subject to Lo | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Scottish nephrops trawl sector

	Days until quota used as \% of days actually used each year			Landings but no quota
Area IV	2011	2012	2013	
Species	\%	\%	\%	stock
Haddock	65\%	102\%	159\%	
Cod	219\%	129\%	76\%	
Whiting	49\%	31\%	74\%	
Saithe	95\%	96\%	132\%	
Plaice	88\%	59\%	81\%	
Sole	113\%	108\%	62\%	
Anglers		247\%	282\%	
Megrim	272\%	250\%	319\%	
Nephrops	96\%	122\%	125\%	
Lemons	77\%	78\%	63\%	
Dabs				
Turbot	195\%	154\%	71\%	
Skates \& Rays	785\%			
Hake	15\%	7\%	2\%	
Ling	188\%	118\%	135\%	
Tusk				

	Days until quota used as \% of days actually used each year			Landings but no quota
Area VI	2011	2012	2013	
Species	\%	\%	\%	
Haddock 6A	32\%	56\%	166\%	
Haddock 6B	1910\%			
Cod WS	0\%	0\%		yes
Cod 6B				
Whiting	0\%	0\%	0\%	yes
Saithe		549\%		
Plaice	63\%			
Sole	24\%	40\%		
Anglers		280\%	333\%	
Megrim	14\%	81\%	62\%	
Nephrops	86\%	80\%	90\%	
Ling	91\%	511\%		
Boarfish	2534\%			
Hake	4\%	54\%	78\%	
Pollack				

Bioeconomic Model: Methodology

Purpose

- To model the landing obligation
- Project started September 2014
- Landing obligation for demersals from 1 January 2016
- Considerable uncertainty with how the Landing Obligation was to be applied and how the sector would operate under the landing obligation
- The analysis is undertaken using a bioeconomic modelling tool that is based on economic and logbook data for 2012-13
- The model projects forward the impacts based on a number of assumptions and scenarios.
- The scenarios are designed to test if and how the outcome varies between different implementation approaches for the landing obligation.
- The model simulates the possible outcomes over the coming years and addresses issues of resilience, viability and vulnerability.

Approach

- The Landings Obligation EIA bioeconomic model supports the analysis of fishing fleets at a yearly level
- it provides an indication of the number of vessels and average level of effort (i.e. days at sea) that will be likely under different scenarios
- The model addresses the following:
- Economic performance of the modelled fishing fleets
- Evaluation of fleets, at the segment level defined in task 1, across the UK
- Analysis of the catching sector only
- Opportunities available to the modelled fishing fleets, including technology/gear change response
- Estimated biological status of the modelled stocks
- The impact of the landings obligation on demersal fleets to be implemented in 2016.
- The model provides a time phased solution that indicates the likely trajectory of the economic performance of the modelled fleets under agreed scenarios

The landing obligation

- Article 15 of the reformed Common Fisheries Policy (EC Reg. 1380/2013)
- For demersal fisheries, a phased approach on January 1st 2016

2016	2017	2018
Haddock, Plaice	+ Cod, Whiting, Nephrops, Sole	+ Saithe,

- Article 15 exemptions Survivability - species with "high survival" can be returned to the sea. 'de minimis' - 5\% discards allowed where increased selectivity and/or catch handling results in disproportionate additional costs
- Article 15 derogations and other features
\downarrow Uplift or top-up - the quota for a number of stocks will experience a 'topup' as the discards component can be included in what would become a catch quota rather than the current landings quota.
- Banking and Borrowing - an allowance for year-to-year flexibility up to 10% of quota.
\checkmark Quota flexibility - enable unwanted catch of up to 9% of target quota to be counted against that quota, where the non-target stock is within safe biological limits
- Regional discard management plans for each sea basin

Building blocks

SFO Demersal trawl / seine SFPO Demersal trawl / seine NESFO Nephrops trawl NPO Nephrops trawl

Data (2013)

- Economic data (by fleet segment)
- number of vessels, average days at sea, vessel price, investment parameters, fuel price, other fishing revenue, variable costs, fixed costs, crew costs, fuel costs, capacity costs
- Management data (by stock and fleet segment)
- TAC share, vessel catch composition
- Biological data (by stock)
- biomass, recruitment parameters, fishing and natural mortalities
- Production data (by stock and fleet segment)
- catchabilities, catch parameters, discard parameters (for undersized/over-quota catch), fish prices.

Fleets - Economics and Activity

		2008	2009	2010	2011	2012	2013				
Active vessels		15	14	16	10	9	9				
Fishing Income	9,038	,400	8,153,500	12,494,900	9,004,300 6	6,793,400 6,65	3,200				
Non Fishing Income	237	7,000	148,200	217,200	373,500	357,700 37	6,200				
Total Income	9,275	,500	8,301,700	12,712,100	9,377,800 7	7,151,200 7,029,	9,400				
Fuel	1,780	,300	1,328,700	2,092,000	2,112,800 1,	1,655,800 1,183,	3,500				
Crew share	2,586,	6,200	2,305,800	3,028,400	2,038,300 1,	1,596,900 1,703,	3,100				
Other Fishing Costs	2,083	,500	2,239,200	3,506,000	2,692,300 2,	2,241,700 2,27	8,900				
Total Fishing Costs	6,450	,100	5,873,600	8,626,400	6,843,400 5,	5,494,400 5,165,	5,500				
Total Vessel Costs	2,088	,400	1,908,100	2,711,000	1,692,300 1,	1,299,500 1,29	6,300				
Gross Value Added	3,323	,200	2,825,800	4,403,000	2,880,400 1,	1,954,200 2,27	0,700				
Operating Profit	727	กnก	52n 0 n	1271 Fnn	817100	25720 n 2	7 mon				
	days	days		\%age	000 euros	'000 euros	000 euros	parameter	parameter	parameter	parame
Depreciation	Operational days at sea	Oper	days at sea		Other species revenue						
Interest	per vessel per year in Area VI	perv Area	per year in	External operational days at sea	rate relative to incl species	Other species fixed revenues per day	Non-fishing income	Fuel costs parameter	Crew costs parameter	Variable costs parameter	Fixed cc parame
Other Finance Costs	DASopeVI_\#a	DASo		DASext_\#a	OtSpR_\#a0	OtSpF_\#a0	OtSpK_\#a0	Fuc_\#a0	CrC_\#a0	VaC_\#a0	FxC_\#a
Net Profit	AvgDaysAtSeaVI	AvgD	eaVII	AvgDaysAtSeaExt	OtherSpeciesRevRate	OtherSpeciesFixedR ev	OtherIncome	FuelCostsParm	CrewCostsParm 1	VariableCostsP arm	FixedCc
	63		15	1	1.025	5 13.405	19.909	1.662	18.5\%	1.428	
	51		7	2	1.084	$4 \times \quad 0.261$	86.457	1.359	24.0\%	1.548	
	3	3	14	1	1.004	4- 28.684	37.056	2.017	18.0\%	3.022	
	105		4	0	1.010	- 0.005	18.227	0.499	22.4\%	0.295	
	4	4	38	3	0.977	7. 25.929	20.486	8.540	17.8\%	3.180	
	11		0	0	1.032	2 0.129	73.861	1.056	24.9\%	1.784	
	6	6.	4	0	1.059	9 - 0.002	87.664	1.263	23.5\%	1.666	
	18		50	0	1.034	$4 \quad 12.221$	13.205	1.725	18.4\%	1.306	
	33		95	0	1.051	1 - 0.009	4.482	0.328	26.3\%	0.219	
	17		3	0	3.334	4 0.158	0.984	0.174	25.4\%	0.110	
	69		81	98	1.056	6 - 0.096	18.986	0.888	43.8\%	1.742	
	0	,	216	0	1.341	1 0.099	22.841	1.164	25.2\%	0.289	
	62		1	0	3.164	$4 \square$	2.698	0.074	29.0\%	0.079	
	3	3	0	0	1.043	[0.329	64.107	0.813	24.3\%	1.314	
	0	,	15	51	2.112	$112 \times$	2.191	4.403	45.2\%	7.104	
	0	,	24	0	1.079	9 0.043	91.360	2.728	22.5\%	1.937	
	n	ก	\bigcirc	\square	0995	¢	3850	3 4 ¢5	$7 \mathrm{f} \mathrm{\%}$	1717	

Model structure

Policy levers

Management scenario	Zero TAC stocks	Quota uplift	De minimis			Inter-species flexibility	Survivability
			LAX	MID	STRICT		
Baseline B1	\checkmark	\times	x	x	\times	x	\times
Baseline B3	x	\checkmark	\times	x	x	x	x
Scenario 1a	x	\checkmark	\checkmark	\times	x	x	x
Scenario 1b	x	\checkmark	x	\checkmark	\times	x	x
Scenario 1c	x	\checkmark	x	x	\checkmark	x	x
Scenario 2	\times	\checkmark	x	x	\times	\checkmark	\times
Scenario 3	x	\checkmark	\times	x	x	\times	\checkmark
Scenario 4a	\times	\checkmark	\checkmark	\times	x	\checkmark	\checkmark
Scenario 4b	x	\checkmark	x	\checkmark	\times	\checkmark	\checkmark
Scenario 4c	\times	\checkmark	x	x	\checkmark	\checkmark	\checkmark

The model

Model inputs

Model outputs

Stock status: Model Vs Actual in 2016

Bioeconomic model: Findings

Potential Responses to Mitigate the Impact of the Landing Obligation

Baseline Scenarios

UK Whitefish Fleet: Revenue - ICES areas $4,6 \& 7$

Modelled quotas and discard plans, top-up based on ICES advice for 2016 assumes solution for zero-TAC stocks

UK Nephrops Fleet: Revenue - ICES areas 4,6 \& 7

Modelled quotas and discard plans, top-up based on ICES advice for 2016 assumes solution for zero-TAC stocks

What are the choke stocks?

North Sea Choke Stocks for Scotland Whitefish Fleet in 2019 after top-up (2016 ICES advice) and trading

What impact might the exemptions and derogations have?

UK Whitefish Fleet: Revenue - ICES areas $4,6 \& 7$

Modelled quotas and discard plans, top-up based on ICES advice for 2016 assumes solution for Zero-TAC stocks

UK Nephrops Fleet: Revenue - ICES areas 4,6 \& 7

Modelled quotas and discard plans, top-up based on ICES advice for 2016 assumes solution for Zero-TAC stocks

How much UK quota might be left uncaught?

Catching the quota in 2019: Landings prior to choke points (6 home nation fleet segments)

With top-up and trading

With 'generous' policy levers

What happens if more selective gear is used?

Selectivity in Scotland Nephrops Trawl (prior to 2016 updates)

What happens if unused quota is traded within UK?

UK Quota Trading (prior to 2016 updates)

Catch and Quota for all 50 Fleet Segments in UK under Scenario 4C in 2019
Additional Catch
through UK Quota Trading (tonnes), 11,383,5\%

Potential of the bioeconomic model
A flexible and dynamic analytical tool

Potential Responses to Mitigate the Impact of the Landing Obligation

Additional

Thank you

seafish.org.uk

