PREDICTIVE CONTROL FOR KILN DRYING LUMBER

Sita Millar AMEC, PLC

Control of Lumber Dry Kilns

Traditional

- Conventional open loop control of lumber drying:
 - control kiln atmosphere temperature and humidity to predefined schedules actuating heating valves and vents.
- Manual "closed loop" control:
 - monitor the drying outcome and refine the drying schedule
 - periodically extract sample boards to assess the drying rate and adjust the drying schedule.
- · Decades ago this was adequate
 - mills drew logs from a few geo-climatic zones and the lumber properties were relatively consistent and known.
- Today logs are widely traded between mills and kiln charges are more variable.
 Manual tuning of the controls cannot cope with the throughput rate.

Modern

- High volume dimension lumber drying has short, high temperature drying cycles, no time to use sample boards.
 - The skill level of kiln operators is variable and turnover high; manual adjustments to drying schedules "on the fly" require seasoned judgment and errors are expensive.
- Modern kiln controls automate closed loop control, using in kiln sensors (MC, etc.) and quasi-empirical algorithms.
 - May adaptively delay schedule transitions until desired MC or drying rate achieved.
- State-of-the-art control systems employ several sensors, sometimes in combination:
 - Resistance probes monitoring the moisture content (MC) of a set of sample boards.
 - Dual resistance probes monitoring MC gradient.
 - Temperature difference across the load as a measure of aggregate drying rate.
 - Kiln load weight measurement.
- Limitation: assumes the load is more or less homogeneous, vulnerable to bias in sample board selection.

Advanced

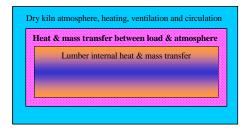
 Using sensors to characterize the variability of lumber MC and drying characteristics and kiln drying conditions:

- IR monitoring of 2-dimensional MC &/or drying rate on the load face.
- Ultrasonic or stress wave M.C. measurement
- CAT scan
- Acoustic emission monitoring (lumber cracking).
- None have been reduced to practice
- Nothing today directly controls the drying rates & MC gradients that cause degrade.

Intelligent

- Model based control can generate "virtual" measures of MC gradients & stress for closed loop control.
- Intelligent lumber dry kiln control takes a systems approach responsive to measured drying performance (adaptive control)
 - Based on general and detailed models of the drying process.

VOC Mitigation


- Lumber dry kilns emit volatile organic compounds (VOC) that are "hazardous atmospheric pollutants" (HAP) subject to regulation
- Lumber drying control systems that minimize VOC emissions with adaptive control may be a cost effective response.
- Combining drying & VOC control requires a complex system with interacting control loops, multiple modes of operation (for different drying phases) and many constraints.
- Defining the optimal control solution for a wide range of drying conditions is difficult.

Model Based Monitoring and Control

- Model based control uses models of physical processes to create virtual sensors for closed loop control (e.g., drying rate, MC gradient, stress levels)
- Models can dynamically adjust control loop parameters for more precise drying control, improving drying quality.
- Model based control facilitates the use of multiple sensors and effectors (multiple input/multiple output, MIMO) to achieve optimal performance: e.g., combined circulation fan speed, temperature and humidity control for best cycle time, quality and energy consumption.
- Models can flag process deviations for fault identification and isolation
 - Depend on the fidelity of the models, and must accommodate variation of equipment performance or kiln charge characteristics.
- Advanced techniques tune the process model(s) to account for performance degradation and feedstock variation.
 - Practical experience with these techniques is limited.
 - Realistic models of variation & degradation are critical.
 - Knowing where to draw the limit to adaptive control and validation for actual use remain challenging.

Conceptual Approach to Modeling Kiln Drying

 At some level, kiln control is based on models of these processes.

Wood Drying Models - Internal Heat & Mass Transfer, & Strain

- Modeling the internal drying of wood considers two processes:
 - the migration of water & moisture content gradients
 - the strains imposed by differential wood shrinkage
- VOC emission processes are likely similar to drying, possibly with some influence of water transport and chemical reactions.

Wood Drying Models - Internal

- Finite element analysis to simulate combined drying and wood stress is too complex, inapplicable for control.
- Simpler drying models theoretical, empirical, or mixed can be used for integrated kiln drying control.
- Wood stresses are derived from the drying models' moisture gradient evolution.
- Releases of VOC could also be similarly modeled, requires measurement & understanding of the basic physical processes.

Wood Drying Models - Kiln Charge

- Detail modeling of real kiln charges is impractical
 - highly variable wood properties
 - need measurements of individual board characteristics (density, MC, grain orientation)
- Semi-empirical constraints and simple models of wood drying provide the basis for constraints for high-level model based control.
- Similar parametric models for VOC release should be practical.

External Heat & Mass Transfer

- More tractable for theoretical & semi-empirical treatment. Well validated models exist.
- Variation in board size, stacking & stickering and kiln airflow & temperature distribution limits model fidelity
 - Aggregate and approximate charge characterization
- Empirical and semi-theoretical models combine internal and external heat & mass transfer effectively
- A similar approach may suffice for VOC emissions prediction

Integrated Lumber Dry Kiln Modeling

- A "one-dimensional" model of the overall process
 - Model and characterize aggregate kiln charge heat & mass transfer.
 - Models for circulation, heating, steaming and spraying, ventilation and control system dynamics are available to be customized to the kiln design.

- Two- or three-dimensional models of the kiln airflow and kiln charge can also be developed to represent airflow and heat & mass transfer in more detail.
- To characterize the kiln and load behavior for control logic design.
- A suite of models for heat & mass transfer between atmosphere & load and within the load, and the resulting stresses

Complex Control Logic and Architectures

- Complex control systems (multi-input/multi-output, conventional or model based) are difficult to implement, with hard to predict interactions.
 - Extensive analysis & testing is required
 - Minor changes = extensive code rewrite and test.
- Comprehension of the total process and control system interactions becomes the limiting factor for design

Advanced Control Techniques

- "Fuzzy logic" and neural nets have shown promise to manage the high variability of natural resource feed stocks.
 - Fuzzy logic is ill adapted to control constraints.
 - Neural nets need extensive "training".
- Application of these techniques to drying has promise, and may have application to combine quality drying with VOC control:
 - E.g., a neural net model to predict both lumber stress and VOC release from drying parameters.

Model Predictive Control

- Model predictive control (MPC) is a radical departure
 - Applied today to process control, particularly in Europe.
- Theoretical concepts date to the '60s, application primarily to petroleum refining and petrochemicals processing.
 - Application to pulp digesting is growing.
 - Wood chip & OSB strand drying control is in use.
- The University of Sydney (Australia) has demonstrated a 10% reduction in hardwood timber drying time using MPC.

Modern predictive control - defined

- MPC defines a path in "state space" to achieve a desired end state while optimally satisfying an objective function:
 - A trade off of measured or virtual process parameters
 - Includes both engineering and economic metrics.
- MPC recursively optimizes the solution within a finite time interval, the prediction horizon.
- · Based on an integrated model of the process
 - vs. conventional control logic with multiple control loops for each process input/output, with dedicated sensors.
- State-of-the-art MPC uses linearized models
 - Formulations for non-linear models are coming.

- Requires a representative & stable process model
 - "Process identification" techniques may generate empirical dynamic models from process test data.
- Adaptive models are being developed
 - Tune the process model on-line to variations in behavior, between plants and with degradation over time.

Model Predictive Control Today

- Initially, MPC formulations were proprietary to the industrial users.
- Specialized and general purpose control system suppliers have emerged:
 - Adersa, DMC Corp., Honeywell Profimatics, Setpoint Inc., Trieber Controls, and Matricon offer custom designed MPC and hybrid-MPC control systems and toolsets.
 - Honeywell (RMPCT), ABB (3D-MPC) and Matlab (MPC Toolbox) provide software development environments
- In process control applications, MPC software runs on robust proprietary operating systems or COTS OS (Wind River VxWorks, Green Hills INTEGRITY, Linux/RT...).

MPC & Process Monitoring

- MPC enables real-time monitoring of deviations between the process and the model. MPC's accommodation of these deviations can provide valuable inputs to process monitoring:
 - Track equipment and process performance degradation.
 - Detect and isolate equipment failures.
 - Characterize and adapt to individual kiln charge behavior.

MPC - Advantages

- Optimal control solutions "on the fly" accounting for process constraints and interactions.
- The control logic is updated by modifying the model, constraints or objective function, with less testing, trial & error.
- Additional sensors, effectors and other process changes accommodated with model updates. Process parameters from the models provide "virtual sensors".
- MPC is robust in handling process upsets, loss of sensors or effectors, and operator interventions.
- A well developed body of practice exists within a diverse resource base.

MPC - Challenges

- · MPC is unfamiliar and technically daunting
 - MPC is now a part of controls engineering courses.
- Validation/verification procedures are immature.
 - Lumber drying is non-critical and tolerant of moderate process deviations.
- MPC's computational burden is high for complex processes with short time constants.
 - The slow drying process can be accommodated with a PC.
- Reliable, robust and accurate process models are needed.
 - Better drying models that adequately represent lumber drying & VOC generation.

15

Integrated Control of Drying and VOC Emissions

- Research shows lumber drying and VOC emissions are interdependent. Simple kiln controls are not capable of managing the both processes.
- Conventional multi-input/multi-output (MIMO) solutions will be difficult to develop and impractical to adapt to the large variations in lumber kiln charge characteristics.
- MPC offers a powerful and flexible tool to optimize lumber drying for conflicting requirements with strongly interacting process parameters.
- Adequately modeling lumber drying can be accomplished.
- Basic research and analysis is needed to develop adequate models of VOC generation.
 - The process is ill-understood and the interaction with the drying process ill-defined.
 - Optimal control of drying and VOC's needs better theoretical understanding and empirical data.
- Probabilistic (e.g., "fuzzy logic) approaches should be considered to handle variability within the kiln charge and between kiln loads.
 - Hybrid MPC designs are available.
- MPC is most effective with more inputs than process degrees of freedom.
 Additional process control inputs would widen the scope for precision control and process monitoring:
 - Variable speed fans & airflow distribution control
 - Steaming and spraying, dehumidification
 - M.C. & species sorting, better characterizing of the load
 - Redundant sensors (TDAL, load M.C. distribution, internal lumber M.C. gradients, lumber strain or cracking...).
- Retrofitting existing kilns will require only process controller upgrades.