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Abstract:  In seeking to value environmental amenities and public goods, individuals often have trouble trading off the 
(vague) amenity or good against a monetary measure.  Valuation in these circumstances can best be described as fuzzy—both 
in terms of the amenity valued, perceptions of property rights, and the numbers chosen to reflect values. In this paper, we 
review three approaches to fuzzy valuation, and compare results from fuzzy valuation with those obtained using usual 
techniques of valuation. 
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1. Introduction 

Changes in well being associated with changes in the 
availability of many environmental amenities (and public 
goods) cannot be traced through market transactions, 
because, in technical terms, the utility function is 
separable in the amenity. In this case, the approach to the 
valuation of environmental amenities is often to employ 
the contingent valuation method (CVM). This approach 
simply asks survey respondents how much they are 
willing to pay (WTP) for hypothetical (hence the term 
“contingent”) increments or decrements in the availability 
of the amenity.1 WTP can be elicited either using an 
open-ended question format (letting respondents provide 
any value they please) or a dichotomous choice format 
(providing a value and having the respondent answer yes 
or no to whether they would pay the “bid” amount). The 
former suffers from anchoring problems, while the latter 
often results in “yea-saying”. CVM has been criticised by 
many researchers, with a major criticism being the large 
and irreconcilable difference between WTP and WTA 
(see Hausman 1993; Knetsch 2000). As a result, 
economists have begun to search for other methods of 
valuation. 

Adamowicz and his colleagues have proposed 
using choice experiments (CE) or stated preferences, an 
approach rooted in the marketing literature (Adamowicz 
1995; Adamowicz et al. 1998; Hanley et al. 1998). While 
the methodology has been used primarily to value 

                                                
1In practice and partly as a result of the nature of the 
interview procedure, respondents to questionnaires are 
generally asked to value a non-marginal change in 
availability (of wilderness area, a wildlife species, etc.). 
Further, WTP is employed because it appears to result in 
“better” estimates than elicitation of compensation 
demanded or willingness to accept compensation (WTA), 
which can be unbounded.  

recreational sites, Adamowicz et al. (1998) apply CE to 
the estimation of nonuse values. Unlike CVM, CE does 
not require survey respondents to place a direct monetary 
value on a contingency. Rather, individuals are asked to 
make pairwise comparisons among environmental 
alternatives, with the environmental commodity 
(alternatives) characterised by a variety of attributes. For 
example, a survey respondent is asked to make pairwise 
choices between alternative recreational sites or activities, 
with each distinguished by attributes such as the 
probability of catching a fish, the type of fish, site 
amenities (e.g., availability of boat rentals), distance to 
the site, and so on. It is the attributes that are important, 
and it is these that are eventually assigned monetary 
value. In order to do so, one of the attributes must 
constitute a monetary touchstone (or proxy for price). 
Distance to a recreational site might constitute the proxy 
for price, but, more generally, one of the attributes will be 
an entry fee or an associated tax (etc.). Once the values of 
all attributes are known (from the value of the one and the 
pairwise rankings), the overall value of the amenity is 
determined by assuming additivity of the attributes’ 
values. Of course, it is possible that the total value of the 
amenity is greater than the sum of its components, so 
proper design of the choice experiment is crucial.  

Hanley et al. (1998) point out a number of 
advantages of the CE approach. First, it enables one to 
value the attributes that comprise an environmental 
commodity, which is important as many policy decisions 
involve changing attributes rather than the total gain or 
loss of an environmental commodity. For example, when 
a wilderness area is developed as a result of timber 
harvest, not all of its attributes are lost. Attribute 
valuation is also important because of its use in 
prediction. Second, choice experiments avoid the “yea-
saying” problem of dichotomous choice surveys as 
respondents are not faced with the same “all-or-nothing” 
choice. Third, CE may offer advantages over CVM when 
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it comes to the transfer of benefits (e.g., transfer of 
estimated benefits for water quality improvements in one 
jurisdiction to those in another). Fourth, repeated 
sampling in CE enables consistency testing that is not 
possible in CVM. Fifth, CE may be a means of getting 
around the embedding problem (see Knetsch 2000). 
Finally, in the case of nonuse benefits estimation, by 
allowing some attributes to take on levels both above and 
below the status quo level, it is possible to estimate both 
WTP and WTA compensation (Adamowicz et al. 1998).  

Gregory et al. (1993) propose a multiattribute-
utility-theory approach to address the inability of 
respondents in a contingent valuation exercise to make 
holistic assessments about environmental resources. 
Individuals do not know the values of the resources they 
are asked to value, but construct them, “with whatever 
help or cues the circumstances provide” (p.181). In 
practice, workshops are used to “help” stakeholders 
construct values (preferences). One problem with this 
approach is that workshop participants (stakeholders) may 
not reflect the values of the broader society. Another is 
that the valuation process itself influences participants’ 
responses. As a result, this method has not caught on in 
the economics literature. 

In this paper, we address the potential of 
approaches rooted in fuzzy logic for evaluating nonuse 
amenity values. We investigate fuzzy approaches that 
complement CVM and pairwise rankings. Fuzzy logic has 
particular promise, in our view, when preferences are 
uncertain, with uncertainty originating for two reasons. 
First, people may have trouble valuing an environmental 
amenity because they are unfamiliar with the commodity, 
having little experience with it, or because the commodity 
is not readily describable in “crisp” language. How does 
one place a value on an “ecosystem” or on an “old-growth 
forest” when ecologists and foresters are unable to 
provide unambiguous definitions of these systems? 
Clearly, if we ask people in a CVM survey to place value 
on “old growth” or on an “ecosystem”, or on caribou or 
minke whales, different people will have different images 
of each of these “commodities”. Unlike market goods, 
environmental amenities cannot always be defined; they 
are best described as being a vague commodity.  

Second, even if respondents are completely 
familiar with the environmental amenity, they may have 
trouble expressing tradeoffs between the amenity and 
monetary value; they are uncertain about the monetary 
value to attach to a change in the availability of an 
environmental amenity and this shows up in preference 
uncertainty (Hanemann and Kriström 1995). Several 
authors have adopted varying but ad hoc approaches for 
dealing with preference uncertainty of this kind (Li and 
Mattsson 1995; Ready et al. 1995; Loomis and Ekstrand 
1998), but these rely on probabilistic interpretations of 
uncertainty. We contend that the apparent precision of 
standard WTP estimates (even as a mean value with 

confidence interval) masks the underlying vagueness of 
preferences and may lead to biased outcomes (Barrett and 
Pattanaik 1989).  

It is likely impossible to separate the two types 
of uncertainty, but we argue in this paper that a fuzzy 
approach may lead to improved valuation of non-market 
amenities. We begin in the next section by providing a 
brief introduction to fuzzy logic. In section 3, we apply 
fuzzy logic to a Swedish survey that asked respondents to 
value forest protection, interpreting CVM responses in the 
same manner as those conducting the survey (Li and 
Mattsson 1995). We also summarise the results of an 
alternative fuzzy method for analysing this same data 
using a different interpretation of responses (van Kooten 
et al. 2000). Finally, we describe the method of fuzzy 
pairwise comparisons in section 4, and apply it to the 
valuation of water quality in British Columbia. The 
results of the fuzzy pairwise comparison are contrasted 
with those obtained from an open-ended CVM question 
embedded in the same questionnaire and a separate 
dichotomous-choice CVM study for the same region. The 
conclusions follow.  

2. Brief Introduction to Fuzzy Logic 

Multivalued or “fuzzy” logic was first introduced in the 
1930s to address indeterminacy in quantum theory, with 
the quantum philosopher Max Black using the term 
“vagueness” to refer to uncertainty and introducing the 
notion of a membership function (Kosko 1992, pp.5-6). 
Subsequently, Lofti Zadeh (1965) introduced the term 
“fuzzy set” and the fuzzy logic it supports.  

Zadeh’s concern was with the ambiguity and 
vagueness of natural language, and the attendant inability 
to convey crisp information linguistically. The word 
“hot”, for example, may be used to communicate many 
things; the information it imparts is context dependent 
and, thus, the term itself may be considered ambiguous. 
“Hot” may refer to temperature, spiciness or trendiness. 
Once the frame of reference is identified to be 
temperature, the information conveyed is still not clear, as 
the subjective perception of heat by one person is not 
necessarily congruent with the perception of heat by 
another person. There is no absolute temperature at which 
a thing may be said to have attained membership in the 
set of things that are “hot” and at which it may be said to 
have ceased to be merely “warm”. Subjective 
interpretations of the term will allow for an overlap of 
temperature ranges. Thus, an object may be said to be 
“warm” by some while it is judged “hot” by others. In 
essence, it is accorded partial membership in both of the 
sets—it displays some of the requirements for being a 
“hot” thing while retaining some of the requirements for 
being a “warm” thing. It is this concept of partial 
membership that is central to the theory of fuzzy sets. 
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Now consider the idea of partial membership 
more formally. An element x�X is assigned to an ordinary 
(crisp) set A via the characteristic function PA, such that: 

PA(x) = 1 if x � A. 
(1) 

PA(x) = 0 otherwise. 
 

The element has either full membership (PA(x)=1) or no 
membership (PA(x)=0) in the set A. The function takes on 
one of two possible values, {0,1}. A fuzzy set A

~
 is also 

described by a characteristic function, the difference 
being that the function now maps over the closed interval 
[0 1]. Thus, an element may be assigned a value that lies 
between 0 and 1 and is representative of the degree of 

membership that x has in the fuzzy set A
~

.2 If PA(x)�(0 
1), element x has only some but not all of the attributes 
required for full membership in a set. A membership 
function describes the grade or degree of membership, 
with the membership function viewed as a representation 
of a fuzzy number (Klir and Folger 1988, p.17). It is in 
this form that fuzzy set theory is used to deal with vague 
preferences. Then, PA(x)=1 means that the decision maker 
is very satisfied, while PA(x)=0 indicates that the decision 
maker is completely unsatisfied, with intermediate values 
indicating degrees of partial satisfaction.  

Membership functions are crucial to fuzzy set 
calculus. Set-theoretic operations for fuzzy sets were 
originally proposed by Zadeh (1965), including the 

intersection of two fuzzy sets A
~

 and B
~

 as: 

(2) P
BA
~~

�
 (x) = min{PA(x), PB(x)} � x � X, 

and union as: 

(3) P
BA
~~

*
 (x) = max{PA(x), PB(x)} � x � X. 

Hence, the intersection A
~
� B

~
 is the largest fuzzy set that 

is contained in both A
~

 and B
~

, and the union A
~
� B

~
 is 

the smallest fuzzy set containing both A
~

 and B
~

. Both 
union and intersection of fuzzy sets are commutative, 
associate and distributive as is the case for ordinary or 

crisp sets. Further, the complement A
~ c of fuzzy set A

~
 is 

defined as: 
(4) P 

CA
~  (x) = 1 – P

A
~  (x). 

Fuzzy logic deviates from crisp or bivalent logic 

because, if we do not know A
~

 with certainty, its 

complement A
~ c is also not known with certainty. Thus, 

A
~ c � A

~
 does not produce the null set as for crisp sets 

(where Ac �A=I), so fuzzy logic violates the “law of 
noncontradiction”. It also violates the “law of the 

                                                
2Generally membership functions are normalised so that 
there exists at least one x�X such that PA(x)=1, and 0 d 
PA(x) d 1 � x�X. 
 

excluded middle” because the union of a fuzzy set and its 
complement does not equal the universe of discourse—

the universal set. A
~

 is properly fuzzy if and only if A
~ c 

� A
~
zI andA

~ c � A
~
zX, where X is the universal set 

(Kosko 1992, pp.269-72; also Zimmermann 1996). 
Fuzzy numbers are used to describe fuzziness 

and subsume membership functions. We distinguish two 
types of fuzzy numbers that are important for evaluating 
environmental resources. First is the notion of fuzzy class 
or category that is most frequently associated with fuzzy 
sets and membership functions (Cox 1994). Linguistic 
descriptors are often used but, no matter how well one is 
able to describe a particular resource aspect, it will always 
remain vague. As an example, consider the set of 
“ponds”. A “pond” ceases to be one when it becomes so 
large that it is conceived of as a “lake”, or when it 
becomes so small that it is better thought of as a “puddle”. 
But all three concepts—puddle, pond and lake—are fuzzy 
and dependent on the surface area of the water body to be 
classified, although other factors might enter into the 
classification, such as the water body’s permanency or 
suitability for certain activities. If surface area is the 
distinguishing feature, then the fuzzy sets might look like 
those in Figure 1. Fuzzy sets can take a variety of 
functional forms—they can be linear, piece-wise linear, 
one-sided (as in the case of “puddles” and “lakes”), two-
sided (as for “ponds”), bell-shaped, triangular, symmetric, 
asymmetric, and so on. Fuzzy sets can also overlap. 
Hence, a body of water can be classed as both a “puddle” 
and a “pond” at the same time, although (usually) with 
differing degrees of membership. It is the researcher’s 
task to construct the relevant parameters that characterise 
the fuzzy sets “puddles”, “ponds” and “lakes”, although 
surveys of experts, say, can be used to specify the forms 
of the fuzzy sets. 
 

1.0 

P 

0 Water surface area 

Puddle Pond Lake 

 
Figure 1: Comparison of fuzzy sets 

 
It is the concept of fuzzy category that is most 

relevant to the situation where the amenity to be valued is 
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not well defined or known. We have vagueness in 
classification: What exactly is the amenity to be valued? 
While additional information about the amenity to be 
valued is helpful, it cannot eliminate all uncertainty. 
Linguistic terms and fuzzy classification are one means 
for dealing with some of the confusion about what exactly 
is to be valued.  

The second type of fuzzy number is associated 
with fuzzy variables. In this case, the problem is not that 
of fuzzy set—the extent to which an element is a member 
of a vague set; rather, it is imprecision in value. For 
example, “pond” is a fuzzy class or quantity because it is 
not clear what surface area (or degree of permanency) is 
required to be sure that a “pond” is not a “lake” or 
“puddle”. In contrast, if a waterfowl biologist estimates 
the size of a body of water from a satellite photograph to 
be 2.0 hectares, it could be just as well be 1.5 ha or even 
3.0 ha. This is uncertainty about its exact size, and an 
example of a fuzzy variable. In this case, fuzzy numbers 
represent approximations of a central value and can be 
described by distributions about that value. Such 
distributions can be symmetric or asymmetric. They are 
constructed as membership functions, which should not 
be confused with probability distributions as has been 
demonstrated by Kosko (1992, pp.263-94).  

The fuzzy approach provides an alternative to the 
random utility maximisation model used to analyse 
dichotomous choice CVM responses (Hanemann 1984; 
Hanemann and Kriström 1995). It can be used to address 
preference uncertainty, or imprecision about the value of 
a particular variable (Cox 1994, pp.351-53). Fuzzy 
numbers can be used to deal with imprecision in the 
values that are elicited, although some of this imprecision 
will be related to fuzzy classification (vagueness about the 
amenity itself).  

Finally, a concept required for working with 
fuzzy numbers is that of the D-level set. The D-level set 
AD is simply that subset of A

~
 for which the degree of 

membership exceeds the level D, and is itself a crisp set 
(an element either meets the required level of D or it does 
not).  
(5) AD = {x _ PA(x) t D}, D � [0 1]}. 
AD is an upper level set of A

~
. The use of D-level sets 

provides a means of transferring information from a fuzzy 
set into a crisp form. Defining an D-level set is referred to 
as taking an D-cut, cutting off that portion of the fuzzy set 
whose members do not have the required membership or 
possibility value. It can be argued that the level of the D-
cut is a measure of the reliability of the imprecise 
coefficient. The trustworthier the central value of the 
fuzzy set, the higher is the D-cut. 

3. Fuzzy Contingent Valuation: Forest Preservation in 
Sweden 

To illustrate how fuzzy membership might be used to 
estimate non-market values, we employ data from a CVM 
survey of Swedish residents undertaken during the 
summer of 1992 (Li and Mattsson 1995, hereafter L&M). 
The survey asked respondents whether they would be 
willing to pay a given amount “to continue to visit, use, 
and experience the forest environment as [they] usually 
do”. Bid amounts took one the following values: 50, 100, 
200, 400, 700, 1000, 2000, 4000, 8000 and 16000 SEK. 
Since the authors were interested in preference 
uncertainty, they elicited post-decisional confidence 
(using a graphical scale with 5% intervals) by asking, 
“How certain were you of your answer to the previous 
[dichotomous choice] question?” The authors interpreted 
responses as the subjective probabilities that the 
individual’s true valuation is greater (for a ‘yes’ answer) 
or less (for a ‘no’ answer) than the bid. L&M also 
assumed that an individual might give different ‘yes/no’ 
answers to the same bid because of the randomness of her 
preferences. Finally, the researchers also collected data on 
household income, the respondent's age, gender, 
education level, and average annual number of forest 
visits. We employed the same criteria as L&M to obtain 
the same number of observations. 

The format of the confidence question posed by 
L&M allows for different interpretations. The 
interpretation used by L&M is that the ‘yes’ and ‘no’ 
responses are complementary, which leads to the 
construction of a single WTP function. The other 
interpretation is that responses are not complementary and 
thus separate functions for WTP and willingness not to 
pay (WNTP) need to be considered. We illustrate the use 
of fuzzy logic for each of these interpretations, although 
the fuzzy approaches for dealing with preference 
uncertainty in these cases are quite different. Compared to 
L&M, both approaches lead to lower estimates of non-
market value.  
 
Fuzzy Complementarity: Single WTP Function 
First assume that the individual’s response to the question 
of how certain she is about her answer to the choice 
problem is a measure of the “fuzziness” of the WTP 
response and not the utility function itself nor of the 
amenity to be valued. We construct a (single) fuzzy set of 
acceptable bids with various degrees of membership. 
Although choice of form of the membership function 
affects the results, this is no different than choice of the 
cumulative distribution function in the random utility 
maximisation model. If a respondent answers ‘yes’ to the 
dichotomous choice (DC) question, it is assumed she 
would then be willing to pay any lesser amount, so that 
we construct a one-sided membership function that is also 
a measure of the fuzziness of the WTP estimate. The bid 
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amounts are first converted to a proportion of 
respondents’ income. We assume that all respondents are 
willing to pay zero percent of their income to preserve the 
forest; we assign the maximum value of 1 to a bid of zero, 
interpreted as full acceptability in the fuzzy set of 
“acceptable bid values as a proportion of income”, 

denoted W
~

. For respondents who accept a bid, their 

response to the certainty question, P
W
~ (x)�[0 1], denotes 

the degree of membership of the associated bid inW
~

. For 
the person who rejects a bid, the complementary fuzzy 
number is used, via equation (4), to indicate the degree of 
acceptability. Since no respondent was willing to pay 
10% or more of household income towards forest 
protection, fuzzy numbers were truncated at the “tithe 
amount”. Measuring bid as a proportion of income along 

the abscissa and P
W
~ (x) along the ordinate, we can 

construct a fuzzy number for WTP for each respondent. 
The approach is explained with the aid of Figure 

2. Person #1 accepts with 90% certainty a bid that is 2% 
of household income. The fuzzy number takes on a value 
of 1 if there is no cost for forest protection. The degree of 
certainty in her willingness to pay declines linearly at a 
rate of 0.05 for each percent of income that must be 
contributed, until at 10% it falls to zero. Person #2 rejects 
with 95% certainty a bid that constitutes 4% of income, 
which is interpreted as having a degree of membership of 
0.05 in the set of acceptable bids (due to fuzzy 
complementarity). Again, assuming linearity, the person 

would be totally certain (P
W
~ (x)=0) that they would not 

contribute if asked to contribute anything above 4.21% of 
income (the point where the membership function 
intersects the horizontal axis). 
 

Person #2 

Person #1 

 1.0 

 0.9

 0.5 

 0.8 

 0.05 

4 

D –cut 

Bid as percentage of income 

10 5  0  2 

P 
W ~ ( x ) 

 
Figure 2: Membership functions for bids as a 

proportion of income 
 

Also indicated in Figure 2 is an D-cut of 0.8. For 
that value of certainty, person #1 would contribute 4% of 
income to protect the forest, while person #2 would only 
contribute 0.842% of income. Alternatively, suppose that 
#1 had an income of $40,000, while #2 had an income of 
$50,000. Then, person #1 accepts a WTP offer of $800 
with 0.90 certainty, and based on the fuzzy number that 
was constructed in Figure 2, a request to pay $1,600 for 
forest protection with membership of degree 0.8. Person 
#2, on the other hand, rejects paying $2,000 (4% of 
income) to protect forests with 0.95 certainty (implying 
acceptance with 0.05 degree of certainty). Based on the 
derived membership function for person #2 in Figure 2, 
this person would accept paying 0.842% of their income, 
or $421, with degree of membership of 0.8. The total 
amount the two would pay together would be $2,021 
(=$1,600+$421), or an average of $1,010.50 per 
household, with 0.8 degree certainty. For each 
respondent, we can plot the actual dollar amount on the 
abscissa and D on the ordinate. For each level of D, then, 
we determine an average WTP. 

The results of applying this approach to the 
Swedish data are summarised in Figure 3. Our 
calculations provide a fuzzy WTP number that ranges 
from 0 to 7,300 SEK, below the average values obtained 
by L&M, who estimate four different (but crisp) mean 
WTPs for their uncertainty-adjusted model. Their values 
range from a low of 7,352 SEK to a high of 12,817 SEK 
depending on the version of the model used and whether 
or not responses are truncated at 16,000 SEK. Our crisp 
representation of WTP depends on the degree of 
membership or D-cut chosen. While respondents would 
certainly be willing to pay nothing to guarantee that the 
forest environment will be preserved, from Figure 3 they 
would be willing to pay on average about 1,800 SEK, 
with membership value 0.90, for forest protection, but 
5,000 SEK with membership value 0.50. Thus, the higher 
the D-cut or membership value for the fuzzy WTP 
number, the greater is our confidence that respondents 
consider it to be an acceptable amount to pay for forest 
protection. 

In Figure 2, the membership function was 
assumed to take on only positive WTP values. This was 
done for convenience only because we constructed 
membership functions for every respondent and, for each 
respondent, we had but one observation on which to base 
the membership function. An alternative approach is to 
construct and estimate aggregate WTP and WNTP 
functions, which we do in the next subsection.  
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WTP (SEK) 

Degree of membership 

0 

1.0 

0.8 

0.6 

0.2 

0.4 

8000 2000 4000 6000 

 
Figure 3: Fuzzy WTP for continued use of forest 

environment 
 

Membership Functions for Willingness to Pay and 
Willingness Not to Pay3 
It is known that people have problems interpreting 
measures of uncertainty even when these are defined as 
probabilities (see, e.g., Knetsch 2000). We assume that an 
individual always provides the same ‘yes/no’ answer 
whenever the same bid is offered. Along with the ‘yes/no’ 
answer, she provides a post-decisional number between 0 
and 1 that we interpret as a measure of her comfort, 
enthusiasm or inclination toward the given answer, or the 
degree of membership of the bid in the fuzzy sets of  
“acceptable bids” and  “unacceptable bids”, respectively. 
Classical CVM requires only one value, maximum 
willingness to pay (denoted M), to define a crisp choice 
rule: Accept a bid W (‘yes’ answer) if WdM; do not 
accept a bid W (‘no’ answer) if W>M. The corresponding 
crisp choice function is Cyes(W)=1, if WdM and 
Cyes(W)=0, otherwise.  

Here we formulate the choice criteria using the 
notion of fuzzy preference, so that Cyes(W) is interpreted 
as a membership function for fuzzy WTP, and Cno(W) a 
membership function for fuzzy WNTP. Define fuzzy sets 

M
~

 and N
~

 such that fuzzy number M
~

 is the maximum 
WTP for an increase in the environmental amenity, and 

fuzzy number N
~

 is the minimum WNTP for preservation 
of the amenity. For very high or very low bids, the 

                                                
3 Material in this section summarises van Kooten et al. 
(2000). 
 

respondent has little (if any) uncertainty about the 
response. She rejects or accepts bids with a high level of 
comfort and consistency.   

The membership of WTP equals 1 for low bid 
values (the respondent is likely willing to “pay” negative 
amounts4 and may also be willing to pay small positive 
amounts) and then declines as the bid increases above w1 
(Figure 4). A bid w0 is the maximum value that a 
respondent would be WTP with a membership P(w0). The 
same w0 is the minimum bid that a respondent would not 
be willing to pay at the comfort level P(w0). As the bid 
amount W increases, membership in WNTP increases (as 
bids increase they become less acceptable for the 
respondent) and reaches 1 at w2 (Figure 4).  

 
 

w w0 
w 1 W 

N 
~ 

M 
~ 

1 

W2 

P�w0) 

 
Figure 4: Membership functions for WTP and WNTP 

as represented by the fuzzy numbers, M
~

 and N
~

, 
respectively. 

 

Three components of the fuzzy numbers M
~

 and 

N
~

 correspond to different aspects of a respondent’s 
preference uncertainty in the non-market valuation 

context. First, the shape of the membership curves of M
~

 

and N
~

 may depend on the respondent’s attitude toward 
risk, thus explaining the asymmetrical feature of the two 
curves. Second, P(w0) reflects the strength of a 
respondent’s preference uncertainty regarding valuation 
of the environmental amenity. A higher P(w0) corresponds 
to weaker preference uncertainty. Finally, the width of the 
interval [w1,w2] relates to the range of the bid values over 
which a respondent’s preferences are uncertain.  

For a bid w0, a respondent is indifferent, at the 

                                                
4 Kriström (1997) and Loomis and Ekstrand (1998) also 
permit negative WTP values. 
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comfort level P(w0), between two alternatives: accepting 
or rejecting the bid. When a respondent is certain of her 
preferences, then P(w0)=1 and w0=w1=w2. Thus, our 
approach to CVM with vague preferences includes 
preference certainty as a special case. Another extreme 
value, P(w0)=0, corresponds to the situation of strongest 
preference uncertainty. In this case, there is no single bid 
in the range of non-intersection that could be reported as a 
maximum value (with reasonable comfort) that a 

respondent is WTP. This occurs in Figure 4 if M
~

 and 

N
~

 do not intersect, in which case the degree of 
uncertainty is so great as to prevent a decision. This 
represents the situation where respondents register protest 
votes by not answering the valuation question. 

Despite similarities to the classical method, our 
approach to CVM with vague preferences is peculiar. 
Classical CVM requires one value (maximum WTP, 
denoted M) to define a crisp choice function. The choice 
rule is far more complex when vague preferences are 
considered and more information is required. This should 
not be treated as a disadvantage of the proposed 
methodology, but rather as a way of incorporating real-
life complexity. 

Define the membership function of WTP be as 
follows:  

 
PWTP (W)= 1,   W<w1 

(6) 
PWTP (W)= Cyes(W),  w1 dWdw0 
 

where Cyes(W) is monotonically decreasing for 
W�[w1,w0]. The degree of membership in WNTP is 

PWNTP(W) = Cno(W),  w0 dWdw2. 
(7) 

PWNTP(W) = 1,   W>w2, 
 

where Cno(W) is a monotonically increasing function for 
W�[w0,w2] (see Figure 4). Once the membership 
functions for WTP and WNTP are determined, the point 
of their intersection (w0, P(w0)) will be used to formulate 
an operational choice rule:  
Fuzzy choice rule.  
(a) Accept the bid Wdw0 with comfort 
Cyes(W)=P(W)tP(w0), where P(W)=PWTP(W).  
(b) Reject the bid W>w0 with comfort 
Cno(W)=P(W)tP(w0), where P(W)=PWNTP(W).  
 
The Swedish data are used to estimate fuzzy WTP and 
WNTP numbers. 

We first assume that an individual’s response to 
the question of how certain she is about her answer to the 
DC question is a measure of the uncertainty of WTP and 
WNTP in the case of ‘yes’ and ‘no’ responses, 
respectively. If a respondent answers ‘yes’ with a comfort 
Cyes(W) to the DC question at the bid value W, it is 

assumed she would then be willing to pay any lesser 
amount than W with a comfort at least as high as Cyes(W). 
It is also assumed that a maximum WTP value greater 
than W may exist, but with a comfort level lower than 
Cyes(W). Similar logic holds for ‘no’ answers and 
minimum WNTP. 

The sample data were divided into two groups 
according to the respondents’ answers to the DC 
contingent question. To estimate the membership function 
for WTP, we regress comfort level for the ‘yes’ answer on 
the relative bid expressed as a percent of the respondent’s 
income. Similarly, we regress comfort level for the ‘no’ 
answer on the respondent’s relative bid to estimate the 
WNTP membership function. Functional forms for fitting 
the sample data must satisfy conditions (6) and (7).  

Membership functions for aggregated WTP and 
WNTP are estimated from available data using a 
statistical approach for constructing membership 
functions (Chameau and Santamarina 1987). Instead of 
individual WTP and WNTP, estimated membership 
functions of aggregate WTP and WNTP are developed.  
For data (Wi,Pi), i=1,2, …, n, and choice of a suitable 
functional form, membership functions can be estimated 
using the method of least–squares.  Once the parameter 
values (a, b, …) are determined, then  
(8) P(W) = max[0, min(1, f(W, a, b, …)] ,     �W.  
Different classes of functional forms are used in the 
literature to construct membership functions (Turksen 
1991), but it is clear that estimating the contingent value 
is sensitive to the form of membership function chosen.  

We selected two non-linear forms of the 
membership function that can cover a broad range of 
applications (Sakawa 1993). The functional form used for 
‘yes’ responses is: 

(9) P
M
~ (x) = 

2

1
)(1tanh ��

� kbWa ,  a, 

b, k �� and a>0 . 
The minimum of the sum of squared deviations of the 
respondents’ post–decisional comfort levels is reached for 
estimated parameter values, a = 1.775, b = –0.026 and k= 
0.187. 

The functional form employed for ‘no’ responses is:  

(10) P
N
~ (x) = 

2

1
)tanh(

2

1
�� edW ,  d, e�� and 

d>0.  
The minimum of the sum of squared deviations of the 
respondents’ post–decisional comfort levels is obtained 
for d = 0.044 and e = 0.466.   

Our estimate of the intersection of the 
membership of maximum WTP and minimum WNTP 
occurs at a comfort level of 74.9% and is associated with 
the relative bid of 1.82% of income.5  With the average 

                                                
5 This is found by solving: 1.77 tanh–1(–0.026W+0.187) = 
0.5 tanh(0.044W+0.466). 
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income in the given sample of 171,190 SEK, the 
intersection of two membership functions is associated 
with the value of 3116 SEK. This value may be 
interpreted as the respondents’ WTP with a comfort of 
74.9%, but it is also the respondents’ WNTP with 74.9% 
comfort. It is thus the largest estimated value of the 
amenity for which there is an aggregate indifference 
between WTP and WNTP. Other measures of welfare 
may be reported if higher comfort levels than 0.749 are 
applied. In that case, we can report the WTP at the 
comfort level c >0.749 (which will be below 3116 SEK) 
and the WNTP at the level c (which will be above 3116 
SEK) (see Figure 5). The range of the values between 
WTP and WNTP could be interpreted as the aggregated 
indifference at the comfort level c. 

Again, our estimates of WTP are lower than 
those of L&M. The estimate of maximum WTP (3116 
SEK) at 74.9% comfort is less than half the magnitude of 
L&M’s lowest estimates—7352 SEK or 8578 SEK 
depending on what estimator is used.6  Several 
explanations for the difference between L&M’s and these 
results are possible. The one that accounts for the major 
difference is that L&M use mean WTP as a measure of 
welfare. If we assumed complementarity of the ‘yes’ and 
‘no’ answers, i.e., Cyes(W)=1–Cno(W), then the 
membership functions of WTP and WNTP would 
intersect at (w0, 0.5) and the value w0 would correspond to 
the median WTP (which L&M do not report). In that 
sense, it would be more appropriate to compare our 
measure with the median WTP. Further, different 
assumptions are made about the nature of preference 
uncertainty. Finally, unlike L&M, we do consider either 
the analyst’s uncertainty explicitly or other factors that 
may influence the response to the DC question.  

The form of fuzzy numbers for WTP and WNTP 
may be explained by different attitudes towards 
acceptance and non-acceptance of a particular bid.  
Complete certainty of a ‘no’ answer occurs only for very 
high bid values. A respondent chooses not to accept a 
wide range of bid values including low ones. At the same 
time, she indicates her uncertainty through an expressed 
comfort level that is below 1. Respondents indicated 
preference uncertainty even at low positive bid values. 
The membership function for WTP has its highest value 
in the negative domain. This is consistent with the results 
of Kriström (1997) and Loomis and Ekstrand (1998). For 
a particular bid value, the membership values of WTP and 
WNTP add to one only in extreme cases of very high or 
very low bid values. This indicates that preference 
uncertainty exists for a wide range of bid values. 

We now consider a means of using fuzzy logic 
that is closer to the approach of choice experiments 
because it relies on pairwise comparisons. 

                                                
6 These are the truncated means, which are significantly 
lower than the overall means.  

4. Fuzzy Pairwise Comparisons: Valuing Water 
Quality Improvements 

Livestock wastes are a major source of groundwater 
pollution in the Abbotsford region of south-western 
British Columbia, Canada. The Abbotsford aquifer covers 
approximately 100 square km in BC and an additional 
100 square km in the state of Washington. It is an 
important source of residential, industrial and agricultural 
water. Nitrate-nitrogen concentrations in the aquifer (as 
determined from well samples) have often exceeded the 
Canadian government’s drinking water quality standard of 
10 parts per million by volume (ppmv), as spelled out in 
its Guidelines for Canadian Drinking Water Quality. The 
nitrate-nitrogen concentration limit is meant to prevent 
adverse health impacts, including “blue baby syndrome” 
and possibly cancer.  

In order to determine the viability of measures to 
reduce pollution of the aquifer from livestock wastes, it is 
necessary to value the benefits. Since the benefits of 
improved water quality are non-market in nature, it needs 
to be shown that these are significant. Three studies have 
been conducted to determine the social benefits of 
improving water quality in the Abbotsford region. One 
study employed fuzzy pairwise comparisons, while the 
others elicited WTP using open-ended and dichotomous-
choice CVM formats.  
 
Fuzzy Pairwise Comparisons 
Fuzzy pairwise comparisons were first used by van 
Kooten et al. (1986) to study farmers’ goal hierarchies for 
use in multiple-objective decision making, and the 
approach relies on a market touchstone much like in 
choice experiments. The fuzzy pairwise method results in 
a ratio scale that can then be used to value non-market 
goods and services if one of the items in the set has a 
known market value. Fuzzy pairwise comparisons require 
that, if there are k items, all are compared in pairwise 
fashion; thus, there are k(k–1)/2 pairwise comparisons that 
need to be made. Items can then be ordered. Respondents 
are asked not only to choose between two items, but to 
indicate an intensity of preference between the items. 

A measure of the intensity of preference between 
two items, A and B, is made by marking on a line, with 
endpoints denoted A and B, the degree of preference for 
one over the other; a mark placed at the centre of the line 
indicates indifference. A measure of the intensity of the 
preference of item A over item B is determined by 
measuring the normalised distance from the left endpoint 
(where A is assumed to be located) to the respondent’s 
mark, where the line is of unit length after normalisation. 
Denote this distance by rAB. If rAB < 0.5, then A is 
preferred to B; if rAB > 0.5, B is preferred to A; if rAB = 
0.5, A is equally preferred to B; and rAB = 1 – rBA. 

Van Kooten (1998) develops a measure 
indicating the intensity of preference among items. This 
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concept can be understood as the degree of membership 
of a fuzzy number. Once all of the pairwise measures of 
preference of item i over j,  r ij, are obtained, the 
aggregated normalised measure of intensity for item j, mj, 
is: 

(11) mj = 1 – 
1

1
2

�

¦
 

k

k

i ijr
,  j = 1, 2, …, k 

where k is the number of items that are ranked by the 
fuzzy pairwise comparisons. Assume that, as a result of 
fuzzy pairwise measures, we obtain the following matrix 
of normalised distances: 
Item 1 2 3 4 
1 0 0.2121 0.9697 0.1212 
2 0.7879 0 0.5606 0.4242 
3 0.0303 0.4394 0 0.3485 
4 0.8788 0.5758 0.6515 0 

 
The matrix indicates that 1P2, 1P4, 2P4, 3P1, 

3P2 and 3P4, where P denotes “preferred to”. Using the 
above formula, the preference intensity scores are as 
follows: m1=0.4227, m2=0.3904, m3=0.6757 and 
m4=0.2863. Further suppose that item 3 is valued at $100. 
Then, by independence of irrelevant alternatives (one’s 
preference between oranges and apples does not depend 
on whether or not a grapefruit exists in the choice set), 
item 4 is valued at $42.37 (= $100 u 0.2863/0.6757). 
 
Comparing Methods for Valuing Water Quality 
Improvements 
Van Kooten (1998) employed the results of a mail-out 
survey of households in the Abbotsford area (see Hauser 
et al. 1994) to determine the benefits of water quality 
improvements using fuzzy pairwise comparisons. From 
the predicted preference intensities for two ranked items 
(water quality and a 33-inch colour television—the 
market touchstone), respondents’ intensity of preference 
for water quality relative to the colour television was 
determined using relation (11). Intensity of preference 
depended on whether the respondent owned land in the 
agricultural land reserve (ALR) and on whether they 
owned or rented their residence. Those owning both land 
and their residence valued improvements in water quality 
by a factor of 1.836 over the television, or about $165 per 
year (if the television is valued at $900). Those who 
owned their place of residence but did not own land in the 
ALR valued improvements in water quality at $128/year, 
while those who owned no property whatsoever valued it 
at $161/year. In general, improvements in water quality 
are valued higher by those with ALR land. These values 
are contrasted with those obtained using a traditional 
CVM instrument.  

Hauser et al. (1994) used an open-ended 
contingent valuation question imbedded in the same mail-
out survey to obtain estimates of WTP for improving 

water quality to at least the Canadian standard from 
whatever the respondents perceived it to be (they were 
only told that some well samples indicated it was above 
the standard). Their estimates of WTP ranged from 
$55.35 to $114.71 annually (depending on the regression 
model used for the bid functions) for those with ALR 
land, and $80.00-$114.71 for those with no land in the 
land reserve. 

Finally, van Kooten et al. (1998) conducted a 
telephone survey in which they elicited WTP for water 
quality improvements in the Abbotsford region using a 
DC format. Three levels of improvement were presented 
to respondents—eliminating the problem entirely, 
reducing the pollution so that the Canadian drinking water 
standard was always met (from an assumed 12 to 10 
ppmv), and a reduction of water pollution by half (from 
an assumed 12 to 6 ppmv). Mean annual household WTP 
(truncated at $300) was estimated from the logit models 
to be $160.54-$209.54, depending on the proposed 
reduction in water quality and the regression model 
employed. Median values ranged from $8.18 to $161.51. 

A comparison of the three studies suggests that 
the method of fuzzy pairwise comparisons provides 
results that are “in line” with those obtained by more 
traditional methods. A comparison of the open-ended and 
dichotomous choice approaches lends some support to the 
hypothesis that dichotomous choice formats lead to higher 
values of WTP because of “yea-saying”. However, given 
that the approaches used in the two studies differ 
substantially, it is difficult to draw a definitive conclusion 
from these results. Further, the fuzzy approach supports 
the values from the dichotomous choice instrument. 

5. Discussion 

Preservation of environmental goods such as wildlife and 
ecosystems, and the valuation of such amenities, is 
fraught with vagueness and uncertainty. While many 
environmental goods cannot be described in a crisp 
fashion (they are vague by nature), providing greater 
information will also not reduce the associated 
uncertainty. Thus, if someone is uncertain about how to 
trade off an environmental amenity against income, 
providing more knowledge about the trade off or the 
commodity will not reduce the person’s uncertainty. 
Uncertainty is not always associated with stochasticity. It 
is precisely in these instances that crisp forms of analysis 
fail, and that includes analyses that employ a probability 
approach. An alternative means of analysis is to use fuzzy 
logic. 

While fuzzy techniques might be considered 
somewhat ad hoc, they are not less so than is the case 
with other valuation methods. Choice of a membership 
function is no different than choice of functional form for 
the distribution of WTP, no different than choice of a 
Weibull or log-logistic distribution function in standard 
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CVM. While function (11) is a particular aggregation, and 
others exist, the choice used to aggregate across 
individuals is no different from choice of the functional 
form for a bid function in analysis of open-ended CVM 
responses, or aggregation in the case of choice 
experiments. 

In this paper, we demonstrate how several, 
different fuzzy approaches can be used to value 

environmental amenities. A summary of the comparisons 
between fuzzy and more traditional approaches is 
provided in Table 1. It is clear that fuzzy methods provide 
values that, on the whole, cannot be considered worse in 
some sense than those obtained by traditional CVM. This 
suggests that, at the very least, fuzzy analysis should be 
seriously considered in the valuation of that which is by 
nature fuzzy.  

 
Table 1: Comparison of Fuzzy and CVM Measures of Non-market Values 
Item Traditional CVM Fuzzy Approach 
Forest Preservation (SEK per year) 

– single WTP membership function 
– WTP and WNTP membership functions 

 
7,352 - 12,817 

7,352 

 
1,800 - 5,000 

3,116 
Water Quality Improvements (C$ per year) 

– open-ended CVM (mail survey) 
– dichotomous-choice CVM (telephone) 

 
55 - 115 

160 - 210 

 
128 - 165 
128 - 165 
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