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Abstract: Coastal communities face heightened risk to coastal flooding and erosion hazards due to sea-
level rise, changing storminess patterns, and evolving human development pressures. Incorporating
uncertainty associated with both climate change and the range of possible adaptation measures is
essential for projecting the evolving exposure to coastal flooding and erosion, as well as associated
community vulnerability through time. A spatially explicit agent-based modeling platform, that
provides a scenario-based framework for examining interactions between human and natural systems
across a landscape, was used in Tillamook County, OR (USA) to explore strategies that may reduce
exposure to coastal hazards within the context of climate change. Probabilistic simulations of extreme
water levels were used to assess the impacts of variable projections of sea-level rise and storminess
both as individual climate drivers and under a range of integrated climate change scenarios through
the end of the century. Additionally, policy drivers, modeled both as individual management
decisions and as policies integrated within adaptation scenarios, captured variability in possible
human response to increased hazards risk. The relative contribution of variability and uncertainty
from both climate change and policy decisions was quantified using three stakeholder relevant
landscape performance metrics related to flooding, erosion, and recreational beach accessibility. In
general, policy decisions introduced greater variability and uncertainty to the impacts of coastal
hazards than climate change uncertainty. Quantifying uncertainty across a suite of coproduced
performance metrics can help determine the relative impact of management decisions on the adaptive
capacity of communities under future climate scenarios.

Keywords: coastal hazards exposure; alternative futures analysis; climate change; Envision; coastal
erosion; coastal flooding; Tillamook County; Oregon

1. Introduction

The inherent variability of dynamic coastal systems, combined with the pressure
of coastal development, creates a high degree of uncertainty surrounding future coastal
community sustainability [1–3]. The formulation of adaptation pathways in response
to climate change poses challenges as it forces decision-making under unknown future
conditions [4,5]. Policy-makers need ways of assessing the possible consequences of a
range of decisions to accommodate and protect increasing populations along the coast-
line [6]. Understanding how to cope explicitly with uncertainty in rates and magnitudes of
climate change and human adaptive response, as well as how propagated uncertainty may
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limit the ability to quantify outcomes at a range of geographic scales, is important in the
development of adaptive capacity within coastal communities.

Analyses and approaches that couple physical landscape processes related to climate
change with human behavior have been used in vulnerability, mitigation, and adaptation
studies (e.g., [7–9]). Index/indicator-based methods are among the most commonly ap-
plied approaches used to quantify coastal vulnerability due to their relative simplicity
(e.g., [10–12]). Anfuso et al. [13] provide a recent review of these approaches, describing
data needs and examples of vulnerability indices being employed in adaptation planning.
While these approaches help identify aggregated relative risk along the shore based on
past conditions, they are not often suitable for evaluating evolving forcing conditions or for
assessing site specific variability (e.g., demographics are usually aggregated at the census
block level and are updated every 10 years). Furthermore, index/indicator-based methods
are limited in their ability to explore the feedbacks between natural and human systems,
which are necessary to understand the potential outcomes of adaptation strategies. On
the other hand, integrated scenario methodologies, which often combine storylines and
simulation, have become state of the art in exploring socio-environmental changes [14]
Integrated scenario analyses can provide important assessments of climate change and
climate change policy, allowing analysts and stakeholders to explore complex and uncer-
tain futures and address feedbacks between natural and human systems (e.g., [14–18]).
However, combining climate change scenarios and human adaptation scenarios can be
challenging as each type of scenario contains different forms of uncertainty. While climate
change scenarios are predominately used to address uncertainty in physical systems, hu-
man adaptation scenarios are concerned with uncertainties in economic, social, political,
and cultural systems [14].

In recent years, the U.S. Pacific Northwest (PNW) coast has seen a heightened risk
of hazards because of relative sea-level rise (SLR) and changing storm frequency and
intensity [19–23]. The underlying complexity of these phenomena complicates the pre-
diction of future climate conditions at local scales (e.g., [24–26]). Recent forecasts of SLR
by the end of the 21st century vary from approximately 0.1 to 1.5 meters along the PNW
coast and are dependent upon vertical land motion, atmospheric, and cryospheric vari-
ables [24,27,28]. Furthermore, downscaled predictions of the evolving wave climate and
the relative frequency and intensity of major El Niño Southern Oscillation (ENSO) events
are also variable [29–32]. Thus, capturing coastal hazards exposure in response to fun-
damental uncertainty within each of these three climate drivers (SLR, wave climate, and
ENSO frequency) and how that uncertainty may be exacerbated by their concurrence [33]
is critical in designing robust adaptation strategies.

In addition to quantifying variability of the drivers of coastal hazards with respect
to climate, informed adaptation also requires estimates of the uncertainty related to a
range of possible human actions [4,6]. Responses to coastal hazards vary depending upon
local social, political, and physical climate [34–37]. For example, communities in coastal
areas may protect infrastructure through a range of solutions from structural engineering
features (e.g., riprap revetments), to changes in land use (e.g., adjustments to zoning, urban
and infrastructure development, and regulations; [38]), to managed retreat (e.g., [39]).

This paper evaluates the uncertainty of alternative coastal futures by combining a
range of climate change and adaptation scenarios within our study site—Tillamook County,
Oregon (Figure 1). In Tillamook County, approximately one quarter of all permanent
residents live within a half mile of the Pacific Ocean and several communities already
experience issues related to coastal flooding, erosion, and limited beach accessibility [40–43].
Community stakeholders are interested in exploring potential future coastal resilience,
within the context of exposure to coastal hazards in a changing climate.
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holders, the Tillamook County Coastal Knowledge-to-Action Network (KTAN) described 
in [42], a set of coproduced adaptation policy scenarios related to management decisions 
and socioeconomic trends were developed and used to explore variations in the human 
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Figure 1. Left. Tillamook County, OR. Multidecadal shoreline change rates were computed be-
tween 1967 and 2002 (after [40]). Red stars represent the locations of the two photographs on the 
right (top—Rockaway Beach, OR and bottom—Neskowin, OR). Both communities are experienc-
ing relatively high shoreline erosion rates (>1.0 m/year), are therefore exposed to coastal change 
and flood hazards, and have responded via the construction of riprap revetments. 
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choices, and coastal hazards were simulated, as well as the methods for deriving climate 
and decision-making variability and uncertainty within that framework, are presented 
below. 

  

Figure 1. Left. Tillamook County, OR. Multidecadal shoreline change rates were computed between 1967 and 2002
(after [40]). Red stars represent the locations of the two photographs on the right (top—Rockaway Beach, OR and bottom—
Neskowin, OR). Both communities are experiencing relatively high shoreline erosion rates (>1.0 m/year), are therefore
exposed to coastal change and flood hazards, and have responded via the construction of riprap revetments.

A spatially explicit, policy-centric, agent-based modeling framework Envision [44],
was used to examine interactions between human and natural systems across this county’s
shoreline. First, uncertainty was addressed in the form of individual climate drivers (i.e.,
wave height, sea-level rise) and human adaptation drivers (i.e., development restrictions,
construction of backshore protection structures (BPS), such as riprap revetments). Second,
uncertainty was examined within the context of integrated alternative future scenarios
capturing both climate and management alternatives. Probabilistic simulations of total
water levels (TWLs, [33]) along the shoreline captured the variability of sea-level rise, wave
climate, and ENSO events under a range of climate change scenarios through the end of
the twenty first century. In collaboration with a group of local stakeholders, the Tillamook
County Coastal Knowledge-to-Action Network (KTAN) described in [42], a set of copro-
duced adaptation policy scenarios related to management decisions and socioeconomic
trends were developed and used to explore variations in the human system. The KTAN
included members from state, county, and local agencies, nongovernmental organizations,
private citizens, researchers, students, and outreach specialists. This stakeholder network
was interested in using Envision to evaluate how different adaptation policies and effects
of climate change my impact coastal Tillamook County into the future. Using stakeholder
defined landscape performance metrics related to coastal hazards exposure, the work
described here explores two questions: (1) which human (policy) or physical drivers de-
viate the most from current (or baseline) conditions, and (2) how does hazard exposure
uncertainty vary through time in response to human or physical drivers with respect to
stakeholder defined landscape performance metrics?

2. Methods

The framework through which climate change, socioeconomic change, policy choices,
and coastal hazards were simulated, as well as the methods for deriving climate and
decision-making variability and uncertainty within that framework, are presented below.
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2.1. Alternative Futuring through Coupled Human and Natural Systems Modeling

Envision [43,44] is a spatially explicit, multiagent-based modeling platform which
couples biogeophysical models with socioeconomic drivers and management strategies to
explore landscape change trajectories (Figure 2). This integrative modeling approach allows
scientists and stakeholders to explore outcomes and tradeoffs that result when decision-
making entities and their policies are included as part of evolving landscapes. Envision
enables spatiotemporal simulation of landscape change through the synchronization of
multiple submodels which are described below in the context of modeling regional scale
(O(100 km)) coastal hazards in Tillamook County, OR (Figures 1 and 2) [42,43]. Mills
et al. [43] provides a more detailed description of Envision, the coastal hazards submodels,
and the simulation approach related to population growth and development. Most of the
Tillamook County shoreline consists of sandy, dune-backed beaches, approximately 10% of
which is backed by BPS. Almost half of the coast was eroding at rates exceeding one meter
per year between 1967 and 2002 (Figure 1) [40].
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Figure 2. Envision inputs, landscape change models, and evaluative models specific to the modeling
of coastal hazards in Tillamook County, Oregon from [43].

2.1.1. Simulating Coastal Flood and Erosion Hazards

Within Envision, flooding due to storms, or event-based coastal flooding, was simu-
lated using the maximum yearly extreme TWL relative to the elevation of relevant back-
shore features (e.g., dune crest) [25,40,45]. To derive the maximum yearly TWL, TWLs
were calculated as a linear superposition of the tide, nontidal residual, and wave-induced
runup [33,46] as follows:

TWL = MSL + ηA + ηNTR + R2% (1)

where MSL is the mean sea level, ηA, is the deterministic astronomical tide, ηNTR, is the
nontidal residual generated by physical processes including wind setup and barometric
surge, and R2%, a function of wave height and wave length, is the two percent exceedance
value of vertical wave runup on a beach or structure above the still water level [47].
The Total Water Level Full Simulation Model (TWL-FSM, [33]), was used to generate
probabilistic time series of the components that comprise daily maximum TWLs, including
wave height, wave period, wave direction, MSL, ηA, and ηNTR, capturing variability,
nonstationarity, and the conditional dependencies in these parameters. The TWL-FSM
simulates deep water wave conditions which were then transformed to the 20-m (m)
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contour (or the seaward most location of the breaking parameter exceeding 0.4). A surrogate
model (look-up table) of a finite library of SWAN (Simulating Waves Nearshore) model [48]
simulations (details can be found in 33) was used to efficiently transform simulations of
wave conditions [49].

The transformed waves were ‘back-shoaled’ using linear theory and the empirical
relationship of [50] was used to compute R2% on sandy dune backed beaches (most of the
study area). Wave runup on BPS, bluffs, cliffs, and cobble berms was calculated based
upon the Technical Advisory Committee for Water Retaining Structures (TAW) method,
which provides a mechanism for adjusting the runup value based on parameters of the
backshore feature (e.g., roughness, slope, and porosity; [49,51,52]). The coastal flooding
hazard was assessed at 100 m alongshore resolution for the maximum yearly TWL event
between 2010 and 2099 under varying climate scenarios, which are described below. Where
the maximum yearly TWL exceeded the height of a backshore feature (i.e., dune toe or
crest, BPS), the extent of flooding was computed using a simple bathtub model (e.g., [53])
allowing for the accounting of the amount of infrastructure impacted by these hazards.

In addition to coastal flooding, three mechanisms of coastal change were combined to
evaluate cross-shore coastal retreat (after [54]):

Coastal Erosion = (CCRSB + CCRClimate)× T + CCEvent (2)

where CCRSB is the pro-rated long-term (interannual- to decadal-scale) shoreline change
rate [40], CCRclimate is the coastal change rate associated with climate-change-induced
factors (i.e., SLR) computed using the Bruun Rule [55], T is time in years, and CCEvent is the
event-based retreat, or retreat due to storms. To capture event-based erosion, a modification
of the foredune erosion model presented by [56] was implemented [57] which assumes
that the volume of sediment eroded from the foredune during a storm is deposited in
the nearshore as the equilibrium beach profile shifts landward. This event-based erosion
estimate is given as:

CCEvent =
TD

TS


(

TWLmaxyearly − MHW
)(

xb − hb
tanβf

)
dhigh − MHW + hb − (TWLmaxyearly − MHW)/2

 (3)

where TD is the storm duration, TS is the erosion response time scale, TWLmaxyearly is
the maximum yearly TWL, xb is the surf zone width from the mean high water (MHW)
position determined using an equilibrium profile, hb is the water depth of wave breaking
relative to MHW, tanβf is the beach slope, and dhigh is the crest of the dune (extracted
from lidar (light detection and ranging) data, 57).

This suite of coastal change models does not account for failure of BPS (due to a lack
of enough information about the process) or retreat of bluff-backed beaches (<5% of the
Tillamook County coast). On beaches backed by BPS, the beach was assumed to narrow
at the rate of the total local chronic erosion (CCRSB), resulting in dynamic beach slopes
through the simulation period. Modeled beaches were further narrowed in the process of
maintaining (i.e., raising to accommodate higher TWLs) and constructing BPS structures
at a 2:1 slope. On nonhardened dune-backed beaches, beach slope was static as the dune
erodes landward and equilibrium is reached.

The coastal flooding and erosion hazard models were intentionally relatively simple as
the approach was designed to be modular and allow for the utilization of more sophisticated
models (e.g., XBeach, [58]) when warranted.

2.1.2. Simulating Community Growth and Development

In addition to modeling physical landscape processes, human population growth and
associated development processes were simulated using two submodels within Envision.
The first submodel, Target (Envision Developers Manual, 2015), was used to grow and
allocate population based upon a growth rate and a build-out capacity. The build-out
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capacity was estimated prior to model simulation using zoning class and existing popula-
tion distribution patterns. New population was spatially allocated proportionally to the
difference between the existing density and the capacity surface, biased with preference
factors reflecting circa 2010 population patterns (i.e., a preference to locate near the coastline
or within a growth boundary). New development was allocated to the landscape based on
population growth and the number of people per building in a separate Envision submodel,
Developer (Envision Developers Manual, 2015).

2.2. Evaluating Uncertainty

Variability and uncertainty with respect to both climate change and human decision-
making were expressed through policy and climate drivers. The derivation of those drivers
and their use within the context of scenarios is described below.

2.2.1. Capturing Climate Uncertainty through Probabilistic Simulation of TWLs

The impact of climate change was analyzed through the perturbation of three in-
dividual climate drivers (Figure 3). Landscape metric uncertainty and variability was
measured through 33 simulations of the 90-year period of 2010–2099 with high and low
variations of SLR, wave climate, and the probability of occurrence of major El Niño events.
Projections accounting for regional steric and ocean dynamics, cryosphere and fingerprint-
ing effects, and vertical land motion, [24] were used to bound SLR projections. Possible
climate-change-induced changes in the wave climate were based on significant wave height
(SWH) distributions developed from the variability of statistically and dynamically down-
scaled projected global climate model estimates for the northeast Pacific Ocean [29,31,32].
Finally, the frequency of major El Niño events was varied between half of present and
double present frequency [30]. In each simulation of an individual climate driver, current
landscape conditions were maintained with no application of policies and the allocation of
population onto the landscape was unrestricted by growth boundaries, thus highlighting
the impact of each climatic driver. Thirty-three synthetic time series of current, or here-
inafter baseline (i.e., no changes to sea level, wave climate, or El Niño frequency), climatic
conditions were also simulated as a reference case.

2.2.2. Capturing Human Decision-Making Uncertainty through Stakeholder Derived
Policy Options

Using Envision’s policy framework, human decision-making was represented across
the landscape through an array of policies reflecting land management alternatives. The
suite of six coproduced policies characterize reasonable actions that might be taken to
build community adaptive capacity to climate change (Table 1). Each policy was first
implemented individually under the 33 synthetic baseline climate simulations so that only
changes resulting from that management decision were reflected in the results.

2.2.3. Capturing Uncertainty within the Context of Integrated Scenarios

In addition to simulating individual climate and policy drivers across the landscape,
integrated climate and policy scenarios were used to evaluate and examine uncertainty
and variability derived from the combination of physical and human drivers. Scenarios
allow for exploration of feedbacks that may or may not be obvious when simulating only
individual drivers (e.g., flooding may be exacerbated by the combination of both increasing
wave heights and SLR). High-, medium-, and low-impact climate scenarios were derived
around three SLR curves [24]. Within each scenario, the significant wave height and the
frequency of major El Niño events could vary continuously within the bounds used during
the simulation of the individual drivers (i.e., the frequency of major El Niño events varied
between half and double the historic frequency). Combinations of three SLR scenarios,
wave climate variability, and ENSO frequency projections were used to capture the inherent
variability of the physical drivers through 33 probabilistic TWL simulations for each high-,
medium-, and low-impact climate scenario, for a total of 99 scenarios overall (Figure 3).
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climate from early to late century (center), and the mean yearly total water level (TWL) (right). The solid line in the
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yearly average (after [43]).

Table 1. Policies implemented in the analysis of individual management drivers.

Policy Abbreviation Description

1 BPS Maintain current BPS and allow more BPS to be built on eligible lots.

2 Nourishment Add beach nourishment to locations where beach access in front of BPS
has been lost.

3 Easements
Remove buildings repetitively impacted by coastal hazards from within

the hazard zone and establish conservation easements (e.g., managed
retreat).

4 Relocate

Require movement of buildings frequently impacted by coastal hazards to
a location above the Federal Emergency Management Agency’s (FEMA)
Base Flood Elevation (BFE) plus an additional 3ft and in the safest site of

each respective lot.

5 Safest-Site
Construct new buildings above the Federal Emergency Management

Agency’s (FEMA) Base Flood Elevation (BFE) plus an additional 3 ft and
in the safest site of each respective lot.

6 Hazard Zone
Determine Urban/Community Growth Boundaries (U/CGB) in

accordance with the present-day policy but with prevention of new
development within existing coastal hazard zones.

In addition to climate scenarios, sets of individual policies were used to create four
distinct policy scenario narratives (Table 2). In most cases, general policies were developed
with variations specific to each policy scenario narrative. Each policy scenario was also
simulated across all 99 integrated climate scenarios.

Table 2. Four policy scenario narratives iteratively codeveloped with local stakeholders. Each policy
scenario contains a unique grouping of individual policies like those listed in Table 1.

Policy Scenario Scenario Narrative

Status Quo Continuation of present-day policies.

Hold the Line Policies or decisions were implemented that involve resisting environmental change
in order to preserve existing infrastructure and human activities

Realign Policies or decisions were implemented that involve shifting development to suit the
changing environment (e.g., managed retreat).

Laissez-Faire
Current policies (state and county) were relaxed such that existing buildings,

infrastructure and new development all trump the protection of coastal resources,
public rights, recreational use, beach access, scenic views.
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3. Results and Discussion

Variation from baseline conditions and between scenarios, as well as uncertainty
resulting from each of the climate and policy drivers, was quantified with respect to
stakeholder defined landscape performance metrics including two metrics associated with
exposure to coastal hazards, as expressed by 1) buildings impacted by flooding and 2)
buildings impacted by erosion, and one metric related to public good as expressed by 3)
beach accessibility. The two exposure metrics count the number of buildings impacted by
flooding and erosion before being removed from the landscape. The beach accessibility
metric relates to the percentage of time the beach is walkable and was defined as the ability
to walk the beach at least 90% of the year during the maximum daily TWL. In addition
to directly comparing the landscape performance metrics under baseline and variable
driver conditions, the percent difference from the baseline value was calculated for decadal
averages between 2030–2040, 2060–2070 and 2090–2100.

3.1. How Do Physical and Human Drivers Alter the Landscape through Time?

The variability with respect to landscape performance metrics was quantified for each
of the six policies (Table 1) under a baseline climate scenario characterized by no changes
to El Niño frequency, wave climate, sea level, or management of the landscape.

3.1.1. Impact of Individual Drivers

The difference in the landscape performance metrics resulting from the perturbation
of the human or climate driver relative to the baseline scenario is used to evaluate the
variability with respect to individual climate and human drivers. Figures 4, 6 and 8 display
metric evolution through time under both the mean baseline and perturbed climate driver,
while Figures 5, 7 and 9 display metric evolution through time under both the mean
baseline and individual policy driver.

Figure 4 shows the number of buildings impacted by flooding for low- and high-SLR
scenarios (a, b), low and high increases to wave heights (c, d), and halving or doubling the
frequency of major El Niño events (e, f). High SLR was the most influential of the physical
drivers in terms of impacts to buildings by flooding (Figure 4b). While the frequency of
major El Niño events did not significantly shift metric values from the baseline (Figure 4e,f),
changes to the wave climate did have an influence on flooding (Figure 4c,d), albeit relatively
minor, particularly in the latter half of the century. Even under the baseline scenario there
was an increase in the average number of buildings impacted through time (Figure 4),
primarily due to continued development near the coast.

In contrast, Figure 5 shows the number of buildings impacted by flooding under
the policy drivers (a) Policy 1: BPS, (b) Policy 2: Nourishment, (c) Policy 3: Easements,
(d) Policy 4: Relocate, (e) Policy 5: Safest-Site, and (f) Policy 6: Hazard Zones. The number
of building impacted by flooding was sensitive to the construction of BPS, the nourishment
of beaches fronting BPS, the formation of easements to facilitate managed retreat, and the
relocation of buildings to safer areas within a parcel (Figure 4a–d). Overall, individual
policy drivers had a larger variation between policies on the number of buildings impacted
by flooding, relative to the baseline, than individual climate drivers (Figure 5).

While installing BPS protected property from erosion, those protected properties ulti-
mately experienced greater levels of flooding due to the modification of local morphology.
Because BPS prevents landward migration of the backshore, the long-term erosion rate
due to sediment budget factors caused the beach to narrow and steepen, thus increasing
wave runup and eventually extreme TWLs. BPS were maintained through time to prevent
overtopping; however, the height of BPS was limited to preserve current view sheds. Addi-
tionally, raising the elevation of the BPS structure crest forced the extension of the structure
horizontally, further narrowing the beach, a feedback which resulted in increased exposure
to coastal flooding.
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The addition of sediment onto the beach through the process of beach nourishment
reduced flooding impacts through the widening and flattening of the beach and subsequent
reduction in TWLs (Figure 5b, Policy 2). Simulated easements effectively move buildings
outside of the hazard zone, whereas relocating buildings to the safest site within the existing
parcel was only partially effective (Figure 5c,d, Policies 3 and 4). Model results indicate that
restrictions on new development (i.e., hazard zone implementation and the requirement to
construct new homes only in the safest site of a parcel) reduce impacts only minimally by
the end of the century—primarily due to the low projected growth rate within the county
(0.39%–0.78% per year, [59], Figure 5e,f, Policies 5 and 6). Higher levels of deviation from
the baseline would be expected if a greater population, and thus more development, was
projected for the region in the future.

Figure 6 displays the second exposure metric, the number of buildings impacted by
erosion. The number of buildings impacted by erosion deviated from the baseline the
most under the heightened SLR (Figure 6). The increasing trend under all simulations
was a result of buildings impacted by (1) the background shoreline change rate related to
sediment budget factors, which is applicable under all climate drivers, (2) the shoreline
retreat due to SLR, and/or (3) increased erosion during storm events. Thus, near the end of
the century, the model indicates almost 600 structures would be impacted by the greatest
yearly TWL event under the baseline climate scenario. The introduction of a sediment
budget factor into the model based upon historical trends reduces the variability with
respect to climate in the number of buildings impacted by erosion. This long-term signal
may obstruct potential sensitivity to both ENSO frequency and shifts in SWH.
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Figure 7 shows the number of buildings impacted by erosion under the individual
policy drivers. Three of the modeled individual policy drivers had an impact on the
number of buildings impacted by erosion; the construction of BPS (Policy 1, Table 1), the
formation of easements in response to hazard exposure (Policy 3), and the relocation of
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existing buildings to the safest site within a parcel (Policy 4, Figure 7). Both the creation
of easements and the construction of new BPS essentially eliminated exposure to erosion
hazards (Figure 7a,c) whereas the relocation of buildings only reduced the exposure by
approximately 100 buildings by the end of the century (Figure 7d). The easement policy
(Policy 3) completely removed structures from areas impacted by hazards while the relocate
policy (Policy 4) only delayed the ultimate exposure to erosion by simply moving existing
structures within an existing parcel. Beach nourishment had no impact on the number of
buildings impacted by erosion as the policy was applied only at locations where BPS had
been previously constructed (Figure 7b).
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Figure 8 shows the third metric, beach accessibility under each climate driver. Beach
accessibility, was also impacted by both SLR and wave climate (Figure 8). High SLR alone
decreased beach accessibility from approximately 80% of the Tillamook County coastline
to less than 60% (Figure 8b). Should Tillamook county experience lower significant wave
heights into the future, results indicate that accessibility would increase by up to 10%
relative to the baseline (Figure 8c). Raising wave heights by the same margin had less of an
impact, decreasing accessibility by less than 5% (Figure 8d). As with the two performance
metrics related to coastal hazard exposure, variability in the frequency of major El Niño
events produced only minimal variations from the baseline (Figure 8e,f).

Figure 9 displays beach accessibility under each individual policy driver. Model
results suggest that individual policy drivers had less of an impact on beach accessibility
than climate drivers (Figure 9). The most significant variation from baseline occurred with
BPS construction, which reduced accessibility by less than 10% (Figure 9a). Including a
nourishment policy kept accessibility essentially constant through the century (Figure 9b).
Other modeled policies had no effect on beach accessibility.
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Modeled deviations from the baseline were asymmetric and did not linearly corre-
spond to the perturbation in the driver variable. Figure 10 reveals the percent difference
in each of the landscape performance metric values between each of the climate and pol-
icy drivers and the baseline scenario over three time periods representing early century
(2030–2040), midcentury (2060–2070), and late century (2090–2100). Error bars indicate
early in the century, human adaptation strategies in the form of easement creation, BPS
construction, and beach nourishment overwhelmed climate drivers in two of the three
performance metrics analyzed in terms of variation from the baseline (Figure 10). While
construction of BPS resulted in a reduction of the number of buildings impacted by erosion,
it increased exposure to flooding and reduced beach accessibility. In contrast, nourishing
the beach fronting BPS reduced wave runup, thus increasing beach access and reducing
overtopping of the structure crest. Easements reduced coastal hazards exposure by almost
100% and thus had the greatest benefit of any policy. Policies that modified future new
development patterns had less of an impact on the landscape due to Tillamook County’s
low projected population growth rate.
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SLR was the physical climate driver with the greatest impact on the three landscape
performance metrics. The county-wide variation in beach accessibility was minimal when
compared to the number of properties impacted by coastal hazards and was only influ-
enced significantly by high SLR. By midcentury, the greatest variation from a baseline
climate was under a high-SLR climate driver, which by 2100 increased the impact of
flooding and erosion, and decreased beach accessibility by approximately 150%, 75%, and
30%, respectively.
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3.1.2. Impact of Drivers Integrated as Scenarios

The three landscape performance metrics described above were also compared under
combined climate impact and policy scenarios (Figure 11). Here, variability associated
with climate was computed as the range of the mean high- and low-climate-impact climate
scenarios within any of the four policy scenarios (shading limits in Figure 11). The range
associated with each policy scenario is the difference between the means of the policy
scenarios (dashed colored lines in Figure 11).
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Greater variability in metric response was observed within policy scenarios than
individual policy drivers as each scenario contains multiple policies and was simulated
under 99 climate scenarios with varying shifts of ENSO frequency and SWH (grouped
by low, medium, and high SLR). The increase in the number of buildings impacted by
flooding during the first half of the century was in response to both climate drivers and
policy drivers, predominately in the form of SLR and the construction of BPS (Figure 11a).
A feedback not observed through our analysis of only individual drivers was the increased
levels of BPS construction in response to high SLR. The greatest impacts to buildings by
flooding occurred under the Laissez-Faire policy scenario, both because BPS construction
was permitted without restriction and because the preference for new development near
the shoreline was increased. Flooding impacts under the Realign policy scenario were
reduced by the end of the century due to both the relocation of people and development
away from coastal hazard zones and the limitation of further BPS construction.

The relative magnitude of variation between both policy scenarios and climate scenar-
ios was significantly less for buildings exposed to erosion hazards (Figure 11b). Erosional
trends were much different from the baseline trend observed in the previous section due
to both the construction of BPS (in the Status Quo, Laissez-Faire, and Hold the Line policy
scenarios) and the formation of easements under the Realign policy scenario. These two
management options reduced the magnitude of erosion impacts by almost two orders
of magnitude, even in a high-SLR scenario. Thus, in all scenarios, erosion had far less
of an impact on the landscape than flooding. Near the end of the century, the impacts
of climate and sediment budget factors began to overtake properties not eligible (under
current Oregon state law) for BPS construction in the Status Quo and Hold the Line policy
scenarios. The Laissez-Faire policy scenario had the fewest number of buildings impacted by
erosion as property owners constructed BPS regardless of current eligibility status. The lack
of BPS construction in the Realign policy scenario resulted in greater impacts to buildings
by erosion and greater variability with respect to climate scenarios.

By 2100, the combination of climate impacts and hardening of the shoreline signifi-
cantly reduced beach accessibility across all scenarios (Figure 11c). Greater accessibility
was maintained under the Realign and Hold the Line policy scenarios and reduced under
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the Status Quo and Laissez-Faire scenarios. Beach nourishment in the Hold the Line scenario
did not maintain beach accessibility under all climate impact scenarios and was ineffective
under the medium- and high-impact climate scenarios as the BPS were extended onto the
beach in response to higher TWLs.

The relative influence of climate and policy varied when considered as individual
drivers and within the context of scenarios (Appendix A). Generally, the consequences
of both climate drivers and human adaptations were exacerbated through time under
all metrics both within the context of scenarios and as individual drivers. Both policy
and climate had significant impacts on the three performance metrics evaluated. When
compared between policy scenarios, the number of buildings impacted by flooding were
more variable than when compared between climate scenarios. The number of buildings
impacted by erosion also varied with respect to human adaptation decisions both within
scenarios and when individual drivers were evaluated. In contrast, climate had the largest
influence on beach accessibility within the context of policy scenarios and as individual
drivers.

Comparing individual drivers to a baseline allows for exploration of metric sensitivity
to specific perturbations, whereas comparing metric results across scenarios allows for
comparison of potential feedbacks. For example, the impact of BPS across the landscape
was much greater in a high-SLR scenario, not only because a higher percentage of the
shoreline was armored in response to more frequent erosion, but also because increased
armoring changed the coastal morphology, thus exacerbating flooding later in the century.

3.2. How Do Climate and Policy Drivers Change Landscape Performance Metric Uncertainty
over Time?

Quantifying the uncertainty through time under each driver and scenario is important
in providing robust assessment of adaptation strategies and management options under a
range of climate scenarios. While there are many forms of uncertainty within the modeling
process described here, uncertainty as expressed in this analysis is equal to the spread in
landscape performance metrics resulting from probabilistic simulations of daily maximum
TWLs. The relative coefficient of variance, or the ratio of the standard deviation to the
mean, provides a measurement of uncertainty within the 33 simulations under each climate
and policy driver.

3.2.1. Impact of Individual Drivers on Metric Uncertainty

Variance over time is measured for each individual driver and compared to the
baseline in Figure 12. The highest levels of variance were found in the number of buildings
impacted by flooding (Figure 12a,d). Under all climate drivers, uncertainty with respect
to flooding decreased through time, particularly under high SLR. The overall increase
in magnitude and decrease in uncertainty was likely due to the presence of BPS and an
increase in yearly maximum TWLs through time. Within the model, once BPS has been
constructed to its maximum level and the beach had been narrowed such that there was
frequent overtopping, the same locations were likely to be impacted by flooding on a
regular basis. At some point, a threshold was reached under which the same properties
experienced flooding consistently during the maximum TWL event of the year. Surpassing
this threshold was accelerated and exacerbated under the high-SLR scenario. There was
more uncertainty across the policy drivers than climate drivers with respect to flooding
impacts. Easements produced a higher relative coefficient of variance throughout the
century because buildings that were regularly flooded were removed from the hazard zone,
thus the remaining buildings were impacted with greater temporal irregularity. Finally, the
construction of new BPS indicated higher uncertainty in the mid- to late century in metrics
related to flooding.
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Similar to flooding hazards, variance within the number of buildings impacted by
erosion decreased over time with the exception of under the high-SLR climate driver
(Figure 12b). Again, there was higher uncertainty under the policy drivers than the
climate drivers, particularly within the creation of easements, relocation of buildings, and
construction of new BPS, but this uncertainty converged to the baseline levels after the first
quarter century for the latter two drivers (Figure 12e).

Uncertainty in beach accessibility under all drivers, except for high SLR, remained
fairly constant through time and was smaller than uncertainty for the number of buildings
impacted by erosion or flooding (Figure 12c,f). This indicates that under all but a high-SLR
scenario, the portion of beach within Tillamook County that remains accessible at least 90%
of the year is constant, whereas under a high-SLR scenario, the accessibility of a segment
of coastline from year to year is less predictable.

Figure 13 shows the percent difference in the coefficient of variance for each of the
landscape performance metrics between each of the climate and policy drivers and the
baseline scenario. The majority of the individual climate and policy drivers increased
the coefficient of variance within the three metrics examined (Figure 13). Overall, policy
drivers had a much greater impact on increasing uncertainty in impacts to buildings by
coastal hazards throughout the century. However, no policy driver shifted uncertainty
with respect to beach accessibility by greater than 10%. The construction of BPS and
formation of easements generally increased uncertainty with respect to flooding and erosion
hazards. Beach nourishment trends reversed near the end of the century, and variance
with respect to buildings impacted by flooding was reduced. The relocation of buildings
early in the century increased variance with respect to erosion but decreased variance
with respect to flooding. Implementing hazard zones with respect to new development
and enforcing safest site construction in coastal areas resulted in no change in uncertainty
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until midcentury, at which time the two policies decrease uncertainty for metrics related to
erosion and increase uncertainty for metrics related to flooding hazards.
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Of the six climate drivers, only high SLR resulted in a persistent pattern of height-
ened uncertainty with respect to buildings impacted by erosion and beach accessibility
(Figure 13). As mentioned above, within the model there was a decrease in variance due
to the sustained inundation of coastal properties. Early in the century, the uncertainty in
beach accessibility caused by a positive shift in SWH was greater than any other driver,
physical or human. This trend was not maintained through the end of the century and
was in fact reversed midcentury. Unsurprisingly, decreasing the frequency of ENSO events
reduced variance with respect to beach accessibility, while doubling the frequency had
mixed effects throughout the century. By the end of the century, increases to climate drivers
increased uncertainty in beach accessibility, whereas decreases to these drivers (SWH,
ENSO frequency) decreased variance.

3.2.2. Impact of Drivers Integrated as Scenarios on Metric Uncertainty

Uncertainty, quantified using the coefficient of variance, was also examined with
respect to the integrated policy and climate scenarios (Figure 14). Uncertainty attributed
to climate was calculated within each policy scenario across all 99 climate simulations
(Figure 14a–c). Uncertainty attributed to human decisions was calculated under each cli-
mate impact scenario (high, medium, and low) across all four policy scenarios (Figure 14d–f).
In three out of the four policy scenarios, uncertainty due to climate decreased over time
for the metric of flooding impacts to buildings (Figure 14a). The exception occurred under
the Realign scenario, which reflected the increased uncertainty driven by the formation
of easements.
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Similar to the buildings impacted by flooding, the number of buildings impacted by
erosion was most uncertain with regards to climate under the Realign scenario (Figure 14b).
Climate uncertainty under the Laissez-Faire policy scenario lacked a distinct trend. The
number of impacted buildings in the Laissez-Faire policy scenario was minimal, thus
causing sensitivity in the coefficient of variance to small differences within the climate
simulations. Uncertainty in beach accessibility increased due to climate impacts under all
policy scenarios, the most so in policy scenarios in which BPS were constructed (Figure 14c).

Under each climate scenario, relative trends and magnitudes of uncertainty between
policy scenarios were essentially equal (Figure 14d–f). The coefficient of variance between
policy scenarios increased over time with respect to buildings impacted by flooding and
erosion (Figure 14d,e). There was no measured change in variance between policy scenarios
under any climate scenario in reference to beach accessibility (Figure 14f).

Comparing the variance within the context of scenarios indicates that the uncertainty
in landscape performance metrics with respect to climate is dependent upon human
decisions, whereas policy scenario uncertainty was generally consistent across a range of
climate drivers.

The maximum variance and general trends with respect to policy and climate un-
certainty both within scenarios and as individual drivers is illustrated in Table 3. Trends
within scenarios and in individual drivers were inconsistent across metrics. The metric
with the highest uncertainty was buildings impacted by flooding. This uncertainty was
greatest under individual management options and typically decreased through time.
For erosion hazards, uncertainty was greater within scenarios. Uncertainty in buildings
impacted by erosion due to individual human and physical drivers decreased through
time, whereas uncertainty between policy scenarios increased. The minimal uncertainty
of buildings impacted by erosion can be attributed to the shoreline change rate related to
sediment budget factors. Beach accessibility was less uncertain under almost all scenarios
and drivers.

Table 3. Magnitude and trend in relative variance (uncertainty) through time.

Buildings Impacted by Flooding Buildings Impacted by Erosion Beach Accessibility

Max. Rel.
Variance

General
Trend

Max. Rel.
Variance Trend Max. Rel.

Variance Trend

Individual
Drivers

Climate
Uncertainty 2.6 Decrease 0.2 Decrease 0.4 Increase

Policy
Uncertainty 3.7 Decrease 1.1 Decrease <0.1 No Change

Within
Scenarios

Climate
Uncertainty 3.1 Decrease 1.3 Static 0.2 Increase

Policy
Uncertainty 1.2 Increase 1.3 Increase 0.5 No Change
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4. Conclusions

Globally, coastal communities are increasingly faced with the impacts of climate
change. The combination of sea level rise, changes to patterns of storminess, and evolving
development pressures has the potential to significantly increase the effects of flooding
and erosion on coastal populations. The strategies used to adapt to these impacts have
the potential to either improve or exacerbate exposure to hazards. Understanding the
impact that each decision has on the landscape in combination with how that policy driver
influences the uncertainty of future projections of hazard impacts can more robustly inform
decisions. Using the spatially explicit, policy-centric modeling platform, Envision, the
relative impact to stakeholder relevant exposure metrics of six climate drivers and six
policy drivers (related to management options) was quantified with respect to baseline
conditions. Impacts were also quantified under a set of integrated climate scenarios
grouped by SLR and policy scenarios of grouped management options to allow a more
thorough exploration of feedbacks between climate and policy.

Variability and uncertainty were measured across three coproduced landscape per-
formance metrics including (1) number of buildings impacted by flooding, (2) number
of buildings impacted by erosion, and (3) beach accessibility in order to capture impacts
of climate change and adaptation measures to both the built and natural environments.
Variability in beach accessibility was greatest due to climate drivers within scenarios; for
buildings impacted by erosion, variability was greatest with respect to individual policies;
and for buildings impacted by flooding, variability was greatest between policy scenarios.
In general, variability with respect to both climate and policy increased over time. Trends
in uncertainty decreased, remained static, or increased through time depending upon the
metric and driver. Uncertainty was greatest for the metric of flooding hazards and least
for beach accessibility. Uncertainty in all landscape metrics with respect to climate was
dependent upon policy decisions, whereas uncertainty associated with policy decisions
was generally consistent across a range of climate drivers.

Overall, while adaptation policies produced a greater deviation from baseline con-
ditions, climate change produced the greatest variance through time. Based upon the
assumptions used in this modelling effort, the policies implemented in response to coastal
hazards have a greater impact on community exposure than climate change. Quantifying
variability and uncertainty within the Envision framework helped improve the relevance of
model results to the project’s stakeholders (Tillamook County Knowledge to Action Net-
work) by allowing for the determination of the relative impact of policy and management
decisions on the adaptive capacity of Pacific Northwest coastal communities under a range
of future climate scenarios. Implementation of policies for which the outcome is less certain
under the full range of climate scenarios may be less desirable than the implementation of
a policy simulated to positively impact the metric under all climate scenarios. While no
alternative presented here is a specific forecast representing the future of Tillamook County,
the range of results presented is allowing stakeholders to constrain the deep uncertainty
associated with their climate change adaptation planning. Understanding the impacts
of decisions and climate both as individual drivers and coupled within scenarios can
potentially allow for more robust and informed determination of best practices with respect
to various adaptation pathways, within the constraints of the modeled representation of
coastal community drivers and processes.
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Appendix A

Table A1. Maximum ranges of three landscape performance metric values associated with climate
and human drivers. As individual drivers, the range is measured by the maximum absolute difference
from the baseline value in any year during the 90-year time series. Within scenarios, the range
associated with climate is computed as the maximum range of the high and low climate impact
means within any of the four policy scenarios and the range associated with policy is the greatest
difference between the mean of the maximum metric value of all policy scenarios and minimum
metric value of all policy scenarios.

Variability
Buildings

Impacted by
Flooding

Buildings
Impacted by

Erosion

Beach
Accessibility

As Individual
Drivers

Max. Range
Associated with

Climate
840 Buildings 411 Buildings 33%

Max. Range
Associated with

Human
Decisions

610 Buildings 555 Buildings 23%

Within
Scenarios

Max. Range
Associated with

Climate
1780 Buildings 174 Buildings 35%

Max. Range
Associated with

Human
Decisions

1922 Buildings 178 Buildings 24%

https://tidesandcurrents.noaa.gov/


Water 2021, 13, 545 21 of 23

Appendix B

Table A2. List of symbols and acronyms.

Acronym or Symbol Definition

BPS Backshore protection structure

CCevent Event-based erosion

CCRclimate
Coastal change rate associated with climate change-induced factors
(i.e., SLR) computed using the Bruun Rule

CCRSB
Pro-rated long-term (interannual- to decadal-scale) shoreline change
rate

dhigh Dune crest height

ENSO El Niño Southern Oscillation

hb Water depth of wave breaking relative to MHW

KTAN Knowledge to action network

MHW Mean high water

MSL Mean sea level

PNW Pacific Northwest

R2%
Two percent exceedance value of vertical wave runup on a beach or
structure above the still water level

SLR Sea level rise

SWH Significant wave height

T Time

Tan βf Beach slope

TD Storm duration

TS Erosion response time scale

TWL Total water level

xb
Surf zone width from MHW position determined using an equilibrium
profile

ηA Deterministic astronomical tide

ηNTR
Nontidal residual generated by physical processes including wind
setup and barometric surge
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