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[1] A hydrodynamic model incorporating a self-consistent treatment of ocean self-
attraction and loading (SAL), and a physically based parameterization of internal tide (IT)
drag, is used to assess how accurately barotropic tides can be modeled without benefit of
data, and to explore tidal energetics in the last glacial maximum (LGM). M2 solutions
computed at high resolution with present day bathymetry agree with estimates of
elevations from satellite altimetry within 5 cm RMS in the open ocean. This accuracy, and
agreement with atlimetric estimates of energy dissipation, are achieved only when SAL
and IT drag are included in the model. Solutions are sensitive to perturbations to
bathymetry, and inaccuracies in available global databases probably account for much of
the remaining error in modeled elevations. The �100 m drop in sea level during the LGM
results in significant changes in modeled M2 tides, with some amplitudes in the North
Atlantic increasing by factors of 2 or more. Dissipation is also significantly changed by the
drop in sea level. If IT drag estimated for the modern ocean is assumed, dissipation
increases by about 50% globally, and almost triples in the deep ocean. However, IT drag
depends on ocean stratification, which is poorly known for the LGM. Tests with modified
IT drag suggest that the tendency to a global increase in dissipation is a robust result,
but details are sensitive to stratification. Significant uncertainties about paleotides thus
remain even in this comparatively simple case where bathymetry is well
constrained. INDEX TERMS: 1255 Geodesy and Gravity: Tides—ocean (4560); 4560

Oceanography: Physical: Surface waves and tides (1255); 4267 Oceanography: General: Paleoceanography;

4568 Oceanography: Physical: Turbulence, diffusion, and mixing processes; KEYWORDS: tides, energy

dissipation, Last Glacial Maximum
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1. Introduction

[2] The evolution of the moon’s orbit is closely linked to
the history of tidal dissipation in the ocean [e.g., Hansen,
1982; Bills and Ray, 1999]. This connection, and the clear
evidence that tidal dissipation must have varied significantly
over time, have spurred a number of efforts to model the
ocean tides in the recent and distant past [e.g., Thomas and
Sündermann, 1999, and references therein]. It is far from
clear how reliable these model-based estimates of paleotides
are, particularly given that bathymetry and the locations of
shorelines are only crudely known in the increasingly
distant past. Moreover, some models appear incapable of
reproducing present-day tides with any degree of fidelity, a

fact that should not be surprising if we consider that the
basic mechanisms of tidal energy dissipation are still being
debated [Munk, 1997]. Indeed, our considerable knowledge
of present-day tides relies at least as much on the near-
global measurements made possible by altimetry as on
numerical modeling or theory. Before considering what
the tides, and tidal dissipation, may have been in the past
it is appropriate to ask how accurately we can model the
tides of the present-day without benefit of direct tidal
observations or data assimilation.
[3] Early efforts to model the present-day tides using

very coarse grids and only partly known bathymetry [e.g.,
Bogdanov and Mugarik, 1967; Pekeris and Accad, 1969],
led to global solutions which differed significantly amongst
themselves, and which were only qualitatively consistent
with what was then known about tides in the open ocean
[Hendershott, 1977]. With the availability of TOPEX/
Poseidon (T/P) altimeter data, tidal elevations in the deep
ocean are now known with an accuracy of a few centi-
meters [Shum et al., 1997; Le Provost, 2001], and it is now
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possible to assess quantitatively the accuracy of numerical
tidal solutions.
[4] A great advance was the global finite-element solu-

tion of Le Provost et al. [1994]. The relatively close
agreement of their solution with T/P measurements sug-
gested that highly accurate solutions could be obtained with
a purely hydrodynamic model, provided accurate bathym-
etry and numerical grids with sufficiently high resolution
were used. However, Le Provost et al. solved their model
equations separately for individual ocean basins, and then
spliced together those results. Open boundary conditions for
each basin were adjusted to achieve agreement with tide
gauges, either informally or with a strong constraint data
assimilation approach [Lyard and Genco, 1994]. Thus
although their numerical solution satisfied the astronomi-
cally forced linearized shallow water equations (SWE)
within each basin, the solution was not really independent
of all data. Subsequent improvements to the finite element
hydrodynamic code allowed simultaneous modeling of the
full globe with no adjustable open boundary conditions.
Initial applications of this code, with the traditional qua-
dratic bottom friction drag parameterization, resulted in
global solutions that fit the T/P data and validation tide
gauges much more poorly (F. Lyard and C. Le Provost,
personal communication, 1999), demonstrating the critical
role played by data in the original 1994 solution. Indeed, all
of the best present global tidal solutions are tightly con-
strained to fit T/P altimeter data.
[5] The altimeter data have also revealed a major short-

coming in the usual formulation of the SWE used for
modeling barotropic tides. Egbert and Ray [2000, 2001]
have shown that there is significant dissipation of tidal
energy over rough topography in the open ocean, almost
certainly due to conversion from barotropic to baroclinic
waves. Since the inferred internal tide conversion amounts
to roughly one third of the total tidal energy dissipation,
accurate modeling of the barotropic tide will require ac-
counting for this process, either by parameterizing the
dissipation in the two-dimensional SWE [Jayne and St.
Laurent, 2001; Carrére and Lyard, 2003], or with a full
three-dimensional model of the stratified ocean. Experi-
ments with the latter approach have been initiated (e.g.,
H. Simmons, personal communication, 2003), but owing to
the small spatial scales associated with internal tides, the
first approach is computationally more practical at this time.
[6] In this paper we describe our efforts to develop and test

a global barotropic model which reproduces the present-day
tidal elevation fields using only knowledge of bathymetry
and the astronomical forcing, with no additional forcing or
boundary condition constraints obtained from data. We use a
straightforward modeling approach, based on finite differ-
ence time stepping of the nonlinear SWE, with a rigorous
treatment of ocean self-attraction and loading (SAL), and
several parameterizations of internal tide (IT) drag. Compu-
tations are done for a wide range of nearly global grids, with
resolutions ranging from 1� to 1/12�. We also do experiments
with small perturbations to our standard bathymetry, to test
sensitivity of solutions to this critical input parameter. For all
of the results reported here we focus on the principal lunar
semidiurnal constituent M2, although other constituents were
included in the model runs to better represent nonlinear
bottom drag in shallow water. Including a parameterization

for IT drag significantly improves the fidelity of the solution.
The best model results (5 cm RMS misfit between deep-
ocean T/P elevations and the numerical model) are obtained
with the highest resolution grid, and with rigorous treatment
of ocean self-attraction and loading. The level of accuracy
achieved is reasonably consistent with the effect of likely
errors in the currently best available bathymetry.
[7] After validating our solution for the modern oceans,

we consider the effect of dropping the sea level to that
estimated for the last glacial maximum (LGM). The IT drag
parameterization we use depends on ocean stratification,
and it is not clear how this should be changed for the LGM.
We test several scenarios, including stratification similar to
the modern ocean, and significant reductions and increases
in stratification. As we shall show, the effects of LGM sea
level changes are much larger than errors in the modern
solutions, with total tidal dissipation increasing in our LGM
model solutions by up to 50%. However, details of these
solutions depend on assumptions about ocean stratification.

2. Hydrodynamic Modeling

2.1. Finite-Difference SWE

[8] We assume shallowwater dynamics [e.g.,Hendershott,
1977]

@U

@t
þ f � Uþ U � ruþ aHr2Uþ gHrðz� zSALÞ þ F ¼ f0 ð1Þ

@z
@t

¼ �r � U; ð2Þ

where z is the tidal elevation; U is the volume transport
vector, equal to velocity times water depth H; f is the
Coriolis vector (oriented to the local vertical), F is the
frictional or dissipative stress, and the term aHr2U is a crude
parameterization of horizontal turbulent eddy viscosity.
[9] In initial tests we experimented with a range of values

of aH centered around 103 m2 s�1. Elevations in the open
ocean were found to be insensitive to the exact value of aH
unless it was increased by several orders of magnitude.
Although Thomas and Sündermann [1999] [see also Zahel,
1980] found empirically that aH = 105 m2 s�1 produced the
most realistic solutions in their global tidal modeling
studies, the large lateral momentum transfer implied by
such large viscosities is difficult to justify physically [e.g.,
Colbo, 2002] and much smaller values of this parameter are
typically assumed [e.g., Wunsch et al., 1997]. For modeling
tides, this horizontal viscosity can be justified primarily for
numerical stability, and should probably be kept as small as
grid resolution allows. The large values of aH used in some
previous tidal modeling studies probably improved solu-
tions by increasing dissipation in deep ocean areas, com-
pensating for inadequacies in the parameterization of other
dissipative processes.
[10] M2 solutions in the deep ocean were in fact changed

only slightly if the nonlinear advective terms in equation (1)
are omitted. With advection omitted we found that aH could
be reduced to zero with little effect. Thus for most of the
high resolution numerical experiments described below the
advective and turbulent viscosity terms were omitted to
reduce run times. The astronomical tide generating force,
which includes perturbations caused by the Earth’s body
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tide [Hendershott, 1972] is denoted by f0. We included up to
8 constituents (M2, S2, N2, K2, K1, O1, P1, Q1) in f0.
However, very similar results were obtained for M2 when
the forcing was restricted to the dominant semidiurnal and
diurnal constituents M2 and K1, so only these two constit-
uents were included for most of the extensive modeling
experiments described here.
[11] Tidal loading and self-attraction [Hendershott, 1972;

Ray, 1998] are accounted for by the term zSAL, which we
consider in more detail below. We solve the system of
equations (1) and (2) numerically on a C-grid, following the
finite difference time stepping approach described in Egbert
et al. [1994]. All grids are nearly global, covering the area
from 86�S to 82.25�N. Bathymetry was interpolated (and
smoothed where appropriate) from a combination of the
1/30� Smith and Sandwell [1997] database in deep water
and equatorward of 72�, ETOPO5 [National Geophysical
Data Center, 1992] in shallow areas and the Arctic, and a new
compilation of bathymetry for the Antarctic (L. Padman,
personal communication, 2001). Boundary conditions at the
coast were zero normal flow. Open boundary conditions at
the small northern boundary of the domain in the Arctic were
specified elevations, taken from the global FES94 solution
[Le Provost et al., 1994]. Tests with variants, including the
Arctic assimilation solutions of Kivman [1997], and a rigid
wall at the top of the domain, showed that elevations outside
the Arctic were nearly independent of the details in these
boundary conditions. Recent modifications to our modeling
code allow more general spherical coordinate systems with
both poles over land, and make time stepping of the SWE
over the full globe possible. Limited tests of this approach on
the full globe with no open boundaries also resulted in little
change from the nearly global solutions.
[12] The dissipation term F = FB + F IT included

components for bottom boundary layer drag in shallow seas
and IT wave radiation. The first component was parameter-
ized in the usual way as quadratic in velocity

FB ¼ ðcD k v k =HÞU; ð3Þ

where v is the total velocity vector (in our model, all tidal
constituents), and the value of the nondimensional para-
meter cD is approximately 0.0025. Tests with cD in the range
0.001–0.01 showed that deep-water elevations were only
weakly sensitive to the exact value of this parameter.

2.2. Parameterization of Internal Tide Drag

[13] Bell [1975] derived an expression for energy con-
version from barotropic to baroclinic tides by small ampli-
tude sinusoidal topography of amplitude h and wave
number k

Ef ¼
w2 � f 2ð Þ1=2

2w
r0kh

2Nu2; ð4Þ

where N is the buoyancy frequency, r0 the mean ocean
density, f the Coriolis parameter, w the tidal frequency, and u
the barotropic tidal velocity perpendicular to the topogra-
phy. Jayne and St. Laurent [2001] used equation (4) to
develop a simple IT drag parameterization for global tidal
modeling. They estimated the height of the scattering
topography as the RMS of bathymetric variations not
resolved by their 1/2� numerical grid, and, ignoring the

dependence on tidal frequency w, obtained a spatially
varying linear drag coefficient

cIT ¼ 1

2H
kh2N : ð5Þ

The buoyancy frequency N (the value at the ocean bottom is
most appropriate for nonuniform stratification [see Llewelyn-
Smith and Young, 2001]) was obtained from Levitus [1999],
and the wave number k was left as a tunable parameter. Note
that cIT is just the linear drag coefficient required to match
the energy loss to the barotropic tide given by equation (4).
Jayne and St. Laurent [2001] found that including this
extra drag term in their implementation of the SWE (with k�
2p/10km) significantly improved the fit of modeled tidal
elevations to those estimated from T/P. Carrére and Lyard
[2003] report similar improvements in tidal solution accuracy
when a qualitatively similar parameterization of IT drag was
incorporated into their global finite element model.
[14] We tested the scheme of Jayne and St. Laurent [2001],

along with two variants. The first of these is based on the
work of Sjöberg and Stigebrandt [1992], who give an
alternative (but dimensionally similar) expression for baro-
tropic energy conversion. In this approach the conversion
(comparable to Ef of equation (4)) is calculated by treating
the bottom topography as a series of discrete steps and
applying theories developed for generation of internal waves
by flow over sills. Note that in this approach energy conver-
sion is calculated for each step independently, and that this
can only be formally justified if the steps are far enough
apart. Expressions for energy flux away from each topo-
graphic step are given in Sjöberg and Stigebrandt [1992] and
are summarized in Gustafson [2001]. The resulting expres-
sions for Ef again depend quadratically on the cross-step tidal
velocity, so a linear drag coefficient cIT is readily derived as
for the Bell formula (4). This second approach has no
obvious unknown or tunable parameters, but in fact the
expression for Ef can be shown to depend strongly on the
grid resolution used to define the steps [Garrett et al., 2002].
For our calculations we used a 1/12� grid to define the
topographic steps, and stratification profiles from Levitus
[1999] to compute the IT drag. In numerical experiments
with this parameterization it was found necessary to allow for
an extra tunable scaling factor to obtain the best results,
although the optimal scaling factor was of order one.
[15] The third approach we tried is based on an extension

of the theory of Bell to allow for two-dimensional topog-
raphy and a finite-depth ocean [Llewellyn Smith and Young,
2001]. As with Bell [1975] the theory is based on linear
inviscid dynamics, and small amplitude topography is
assumed on an otherwise (locally) flat bottom. In the
Appendix we show that in the small amplitude limit the
internal tide radiation stress at a fixed tidal frequency is
linearly related to the barotropic volume transports via
convolution in space with a 2 � 2 tensor

F IT ¼ Rw * U=H ; ð6Þ

where the kernel Rw is readily calculated given the
stratification and bathymetry, using the results presented
in Llewellyn Smith and Young [2001]. Although linear in the
transports, the relation is nonlocal in space, and since the
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dissipation operatorRw is frequency dependent, also in time.
As it would be extremely expensive to fully implement this
convolution in a numerical scheme for solving the time
dependent SWE, we implemented this scheme only
approximately, replacing the convolution of equation (6)
with local multiplication by a 2 � 2 drag tensor. For this last
approach there are no tunable parameters. Further details are
given in the Appendix.
[16] The second and third approaches, which are rather

similar to that used by Carrére and Lyard [2003], appear to
be qualitatively different from the classical Bell formula used
by Jayne and St. Laurent [2001] in that they parameterize IT
drag in terms of resolved topographic gradients instead of
unresolved bottom roughness. However for all three IT drag
parameterizations the energy flux scales quadratically with
topographic amplitude and tidal velocity, and linearly with
bottom stratification and topographic wave number, as in
equation (4). Thus in practice the spatial patterns of IT drag
coefficient variations are very similar in all cases, with the IT
drag largest in the open ocean over rough topography, in
most of the same areas where Egbert and Ray [2000, 2001]
empirically mapped significant deep-water dissipation in the
barotropic tide. Provided scaling parameters (e.g., k in
equation (5)) were chosen to optimize fit of the tidal solution
to T/P constrained elevations, we found that all three IT drag
parameterizations performed similarly. For results described
in the remainder of the paper we use the third approach,
outlined in the Appendix. In addition to producing reason-
able results without any tunable parameters, this variant has
the potential advantage of providing an anisotropic tensor
representation of the IT drag. This refinement should allow a
more realistic treatment of IT drag in some areas, such as
along the continental shelf edge where IT drag coefficients
should be large for cross-shelf but not along-shelf flows.

2.3. Implementation of the SAL Correction

[17] The importance of ocean tide self-attraction and
loading (SAL) in global hydrodynamic models has been
realized since the mid-1970s [Hendershott, 1972; Gordeev
et al., 1977]. In equation (1) the effects of SAL are included
as an extra equilibrium-like tide zSAL, which can be related
to z through convolution with the SAL Green’s function
[e.g., Hendershott, 1972; Ray, 1998]

zSAL ¼ GSAL* z: ð7Þ

Substituting equation (7) into equation (1) results in an
integro-differential equation. Applying the full convolution
operator of equation (7) at each time step is not
computationally practical, so other nonexplicit solution
strategies are required. For the modern ocean a bootstrap
approach is possible: given a reasonable approximation to z,
zSAL can be computed once and added to equation (1) as an
extra forcing term. This approach, with elevations from
Schwiderski [1978], was used by Le Provost et al. [1994].
The same approach, using more accurate T/P constrained
elevations to estimate zSAL, has been used for global data
assimilation solutions by Le Provost et al. [1998] and
Egbert and Erofeeva [2002]. However, solutions computed
in this way are not really independent of all data, and the
computed elevation fields will not in general be consistent
with the assumed zSAL. This inconsistency can lead to

significant imbalances in the energy equation [e.g., Le
Provost and Lyard, 1997]. More seriously, this simple
approach cannot be applied to calculations with different
ocean geometries, where tidal elevations may deviate
significantly from the modern estimates of z available to
compute zSAL.
[18] Another simple approach that has frequently been

used is to approximate convolution with GSAL with multi-
plication by a scalar factor b. In this case z � zSAL is
replaced by (1 � b) z and equation (1) is again reduced to
a partial differential equation. Analysis by Accad and
Pekeris [1978] suggested b � 0.085; Schwiderski [1978]
used b = 0.1. However, as pointed out by Ray [1998] this
approximation is crude, and in any event no fixed scalar b is
appropriate for all locations in the ocean. To allow a more
rigorous data-free treatment of SAL in global modeling
Hendershott [1972] suggested an iterative solution
approach, with elevations zn from iteration n used in equa-
tion (7) to compute zSAL

n , and then the result used in
equation (1) as an additional forcing to compute zn+1.
Unfortunately, numerical experiments suggested that
convergence of this scheme could not be guaranteed
[Hendershott, 1972, 1977]. We tested this iterative
approach for the modern ocean, starting from an initial
guess at zSAL

0 estimated from an accurate T/P based model
(TPXO.5). The RMS change in elevations jzn � zn�1j
between successive iterates is plotted as a dashed line in
Figure 1a. Differences increase with each iteration, so the
scheme is not converging.
[19] A slightly modified iterative approach, which was

first suggested by Accad and Pekeris [1978], converges
rapidly. The idea is to write

zSAL ¼ bzþ ðGSAL* z� bzÞ ¼ bzþ G0
SAL* z; ð8Þ

where b is chosen to be a reasonable scalar SAL approx-
imation. At iteration n + 1 we then replace z � zSAL in
equation (1) with (1 � b) zn+1 � G0

SAL * zn. It is readily
verified that if this converges as n ! 1, zn converges to
the solution of the full integro-differential equation. The
change between successive iterates for this modified
scheme (using b = 0.1) shows convergence in 4–5 iterations
(solid line in Figure 1a). Note that zSAL computed from
TPXO.5 was used to initialize both schemes, so the first
iteration is the same in both cases. For some of the results
discussed below, where sea levels are dropped to LGM
levels, z deviates significantly from the modern T/P
constrained elevations. In this case, our initial choice of
zSAL is a poor approximation, and additional iterations are
required for convergence.
[20] In Figure 1b we plot the total work done by the SAL

term in the tidal equations

WSAL ¼ rg
Z

zSAL @z=@t dS
� �

: ð9Þ

Since we assume an elastic Earth (with Love numbers
strictly real) GSAL is also real and the cycle average, denoted
by the brackets hi of the global integral must be zero [e.g.,
Hendershott, 1972]. WSAL (computed with z obtained from
iteration n and zSAL from iteration n � 1) is plotted in
Figure 1b. For the first iteration WSAL is nearly 0.5 TW, a
significant fraction of the 2.5 TW of M2 tidal dissipation.
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For the modified (but not the simple) iterative scheme WSAL

converges rapidly to zero, further demonstrating the
consistency of zSAL and z obtained in this way.

3. Results

[21] Using the numerical hydrodynamic model described
above we ran a series of tidal simulations for the modern
ocean, varying grid resolution and model parameters, in-
cluding bathymetry. To assess accuracy of the solutions we
compare model elevations to TPXO.5, an updated version
of the global tidal inverse solution described in Egbert et al.
[1994]. We emphasize comparison to areas where the
reference elevations are most accurate, in the deep open
ocean, and equatorward of 66� where T/P data are available.

3.1. Effect of Grid Resolution

[22] The RMS difference betweenM2 elevations computed
with the hydrodynamic model and the T/P reference
solution are plotted as a function of grid resolution in
Figure 2. Increasing resolution of the finite difference grid
significantly improves agreement between model outputs

and elevations inferred from T/P. This is true for model
runs with and without an IT drag parameterization, and in
deep and shallow water (Figure 2a). Including IT drag
significantly reduces misfits for all resolutions. The best
results, with misfits in deep water (H > 1000 m) slightly
below 5 cm RMS, are obtained with IT drag run at 1/12�
resolution. Including shallow seas in the comparison
increases misfits somewhat (thinner lines in Figure 2a).
Only slightly worse results are obtained with a grid
resolution of 1/8�. To reduce computation times we used
this resolution for most of the numerical experiments
discussed below.
[23] For the results presented in Figure 2 IT drag was

parameterized in terms of the linear drag tensor R defined in
the Appendix, without adjusting any parameters. Very
similar results were obtained with the other two IT drag
parameterizations discussed above, but in these cases some
tuning of the overall scale of the IT drag was required. For
the scheme based on Bell’s [1975] formula (i.e., 5) results
were best for a value of k � 10�3m�1, slightly larger than
the optimal value k � 2p � 10�4m�1 found by Jayne and
St. Laurent [2001]. For the second scheme IT drag coef-

Figure 1. Convergence of iterative schemes for ocean self-attraction and tidal loading. (a) Global RMS
difference in elevation between successive iterates. Dashed line indicates iterative scheme proposed by
Hendershott [1972]. Solid line indicates modified scheme (following equation (8)) of Accad and Pekeris
[1978]. (b) Convergence of global integral of SAL work term (9) for the simple (dashed lines) and
modified (solid lines) iterative schemes.

Figure 2. (a) RMS difference between M2 elevations from the global inverse solution TPXO.5, and
hydrodynamic solutions computed for a range of grid resolutions, equatorward of 66�. Solid and dashed
lines are for computations with and without internal tide drag, respectively. Heavy lines give misfits for
deep (H > 1000 m) water; light lines for all depths. (b) Global integral of work done by the M2 tidal
potential, for solutions with (solid lines) and without (dashed lines) internal tide drag. (c) Global integral
of kinetic and potential energy, and Q as a function of model grid resolution. In panel (c) heavy lines are
for models run with internal tide drag, light lines are for models with no internal tide drag.
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ficients derived from Sjöberg and Stigebrandt [1992] (com-
puted using bathymetry on a 1/12� grid and stratification
from Levitus [1999]) worked best when multiplied by a
factor of 0.75. Note also that our results obtained with and
without IT drag are comparable to those reported by
Carrére and Lyard [2003] in similar experiments with
incorporating IT drag into a high resolution global finite
element model.
[24] Although our focus here is on the dominant semidi-

urnal M2 constituent, we also always obtained solutions for
the dominant diurnal constituent K1. At the highest resolu-
tion the RMS misfit to the T/P constrained elevations
was 1.9 cm in the deep ocean when IT drag was used,
and 2.3 cm when it was omitted. Thus even though the IT
drag coefficients, which should in principle depend on
frequency, are most appropriate for semidiurnal constitu-
ents, we also achieve some improvement in accuracy for
diurnal constituents.

3.2. Energetics of the Hydrodynamic Solutions

[25] The work done by the tidal potential, which for an
energetically consistent model must equal the global tidal

energy dissipation, can be computed as [e.g., Hendershott,
1972]

W ¼ rg
Z

zEQ @z=@t dS
� �

ð10Þ

(we again neglect the small Earth-tide dissipation). W
approaches the well constrained modern value of approxi-
mately 2.45 TW [Egbert and Ray, 2001] as the numerical
grid is refined (Figure 2b). For lower grid resolutions the
agreement is significantly better when the IT drag
parameterization is used. For the better resolved grids
similar values of the global dissipation total are obtained
with and without IT drag.
[26] However, there are significant differences in the

model energetics at all resolutions. When IT drag is omitted
from the model, potential and kinetic energies are roughly a
factor of two higher (Table 1), and these global integrals are
much more sensitive to grid resolution (Figure 2c). Vertically
integrated M2 kinetic energy is plotted in Figure 3. Tidal
currents in the Pacific are in particular significantly more
energetic if the IT drag term is omitted. Kinetic energy

Table 1. Potential, Kinetic Energy, and Q for M2
a

TPXO.5 GOT99
0 ka 0 ka 20 ka 20 ka 20 ka 20 ka
IT no IT IT IT � .5 IT � .25 IT � 2

PE (�1017 J) 1.28 1.29 1.23 2.32 3.76 5.21 6.87 2.48
KE (�1017 J) 1.78 1.89 1.76 3.01 4.65 6.24 8.02 3.19
Q 17.7 18.2 15.6 27.6 29.3 38.4 50.7 21.6

aTPXO.5 and GOT99 are constrained by T/P data, the other six are purely numerical solutions discussed in the text.

Figure 3. Map of vertically integrated M2 kinetic energy for solutions computed (a) with and
(b) without IT drag parameterization. Note that a logarithmic scale is used to display the wide range in
tidal kinetic energies.
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increases less in the Atlantic, and there is little change in the
Indian Ocean. The nondimensional dissipation timescaleQ =
w(KE + PE)/W also increases quite significantly, from 16
with IT drag to around 30 without (Table 1, Figure 2c).
Estimates of Q obtained from models constrained by T/P
data are all around 18–20 for semidiurnal tides.
[27] The spatial distribution of dissipation is of course also

strongly affected by the inclusion of IT drag. Following the
approach of Egbert and Ray [2001] we computed maps of
dissipation for the numerical solutions as a local balance
between energy flux divergence and work done by the tide
generating force and SAL (Figure 4). As could be anticipated,
when the IT drag parameterization is omitted (Figure 4a)
nearly all dissipation occurs in a small number of marginal
shallow seas. Inclusion of a parameterization for IT drag
leads to substantial additional energy dissipation in the deep
ocean over rough topography (Figure 4b).
[28] The pattern of enhanced dissipation in Figure 4b is

qualitatively similar to the empirical maps presented by
Egbert and Ray [2000, 2001], but with dissipation more
localized and focused in the numerical solution plotted here.
For a more quantitative comparison to dissipation inferred
from T/P we consider integrals over individual shallow seas
and selected patches of the deep ocean. These are presented in
Figure 5 for the ocean areas defined in Egbert and Ray [2001,
Figure 2] for the 1/8� numerical solutions with and without IT
drag, and for three of the empirical T/P estimates discussed in
Egbert and Ray [2001]. A rough breakdown between total
shallow sea and deep ocean dissipation is given in Table 2.
Including IT drag brings the spatial distribution of M2

energy dissipation into much better agreement with the

Figure 4. Map of M2 dissipation computed as the balance between energy flux divergence and work
terms for numerical solutions computed using present-day bathymetry (a) without and (b) with the IT
drag parameterization.

Figure 5. Energy dissipation integrated over shallow seas
and selected deep ocean areas defined in Egbert and Ray
[2001, Figure 2], for solutions computed with and without IT
drag. For comparison three empirical T/P estimates of
dissipation (TPXO.5, GOT99hf, GOT99nf ) are plotted.

C03003 EGBERT ET AL.: GLOBAL TIDAL MODELING

7 of 15

C03003



empirical estimates. Most obviously, including the IT drag
parameterization increases dissipation in the deep ocean area
of Egbert and Ray [2001] from a negligible level to about
25% of the total, in rough agreement with the T/P estimates
(Table 2). The distribution among deep-sea areas is also for
the most part in reasonable agreement with the T/P estimates
(Figure 5). The addition of IT drag (primarily in the deep
sea) also changes the pattern of dissipation in shallow seas,
improving agreement with the empirical estimates (Figure 5).
Without IT drag the numerical model dissipates significantly
more energy in some major shallow sea sinks (e.g., Hudson
Bay/Labrador Sea, Patagonian Shelf, Bering Sea) than is
indicated by the T/P solutions. Dissipation in these shallow
areas is reduced to more reasonable levels by allowing for
IT drag in the deep ocean.
[29] Even with IT drag there remain discrepancies be-

tween dissipation in the hydrodynamic solution and the
empirical estimates. Some of this disagreement can be
attributed to uncertainties in the correct distribution of
dissipation in the modern ocean, as suggested by the scatter
in the three T/P estimates. Note in particular that areas
around Indonesia are poorly constrained by the T/P data,
as discussed in Egbert and Ray [2001]. However, there are
some anomalous areas including the Arctic/Norwegian Sea,
the Northwest Coast of North America, and around New
Zealand, where differences between the numerical model
dissipations and the tightly clustered T/P estimates are
significant. In all of these areas the numerical models
significantly exceed the T/P based dissipation estimates. In
deep water, areas in the South Pacific (Micronesia/Melanesia
and Polynesia) come out high in the numerical solution with
IT drag, while the Mid-Atlantic and W. Indian Ridges come
out low. This suggests that our simple linear IT parameter-
ization overestimates drag produced over the larger scale
topography associated with volcanic arcs and island chains,
and underestimates drag over oceanic spreading centers,
which are dominated by smaller spatial scales and are spread
over a larger area. Overall there is less deep ocean dissipa-
tion in the numerical model than in the T/P estimates
(Table 2). Much of the additional dissipation in the empirical
estimates is spread over the deep ocean, not necessarily near
major topographic features. This difference may reflect in
part the poor spatial resolution of the empirical estimates, but
it also perhaps indicates some inadequacy in our parameter-
ization of deep ocean dissipation. For example, scattering
into internal waves by seamounts or small-scale bottom
roughness may be poorly accounted for in our parameteri-
zation, perhaps due to violation of the small-amplitude
topography assumption, and/or inadequacies in currently
available bathymetric data.

3.3. Sensitivity to Errors in Bathymetry

[30] Figure 2 suggests that further increases in model grid
resolution will lead to little improvement in fit to the

observed modern tidal elevations. A number of factors
probably limit the accuracy that can be expected from
numerical solution of the SWE at any resolution. For
example, the IT drag parameterizations we have tested are
all based on a linear treatment appropriate to small ampli-
tude topography. Even for this simplified linear case a
proper treatment of IT drag would involve convolution with
a nonlocal operator (see the Appendix), so we have only
incorporated IT drag approximately. The parameterization
of bottom drag in terms of (3) with a constant cD must also
be only approximately correct. And of course, even for the
modern ocean, there are potentially significant errors in the
available bathymetric databases.
[31] To test the sensitivity of model solutions to uncer-

tainties in the bathymetry we ran a series of simulations
with small random perturbations to our standard bathyme-
try. To save computer time these runs were all done on a
1/4� grid. Several scenarios for the bathymetry errors were
considered. For the first case the random variations were 5%
of the local depth, with a decorrelation length scale of 2.5�.
For the second case error amplitudes were increased to 10%,
and for the third case variable error magnitudes were
assumed, with a dependence on depth modeled on the
statistics of differences between the Smith and Sandwell
[1997] and ETOPO5 [National Geophysical Data Center,
1992] databases: H < 100 m: 25%; 100 m < H < 200 m:
15%; 200 m < H < 1000 m: 10%; 1000 m < H < 3000 m:
6%; H > 3000 m: 3%. For cases 2 and 3 the decorrelation
length scale of the bathymetric errors remained 2.5�. In each
case 10 perturbed bathymetric grids were generated, solu-
tions were calculated for each, and the global RMS eleva-
tion differences (relative to the standard 1/4� bathymetry
solution) were computed. We also computed the RMS
deviation in energy dissipation for each suite of perturbed
bathymetry models. Results are summarized in Table 3.
[32] It is difficult to assess the accuracy of the available

bathymetry. However, even if errors are only half the size of
the difference between the Smith and Sandwell and
ETOPO5 databases (an optimistic assessment, since the
two databases are not independent at small and large scales),
Table 3 suggests that in the open ocean errors in modeled
M2 tidal elevations exceeding 3 cm should be expected.
Given the other shortcomings in the numerical SWE model,
the 5 cm RMS error achieved by our 1/12� M2 global

Table 2. Dissipation for M2 (in TW) in Deep and Shallow Seas, Following the Division Given in Egbert and Ray [2001]a

TPXO.5 GOT99hf GOT99nf
0 ka 0 ka 20 ka 20 ka 20 ka 20 ka
IT no IT IT IT � .5 IT � .25 IT � 2

Shallow 1.63 1.72 1.88 2.10 2.65 2.45 2.59 3.54 1.88
Deep .81 .73 .57 .58 .06 1.51 1.50 1.04 1.82
Total 2.44 2.45 2.45 2.68 2.71 3.96 4.19 4.59 3.70

aTPXO.5, GOT99hf and GOT99nf are constrained by T/P data, the other six are purely numerical solutions discussed in the text.

Table 3. Root Mean Square Changes in M2 Tidal Elevations and

in Total Energy Dissipation, for Random Variations of Bathymetry

Case
Global RMS,

cm
Deep Ocean RMS,

cm
Work RMS,

TW

5% errors 3.23 2.69 0.037
10% errors 8.17 6.65 0.107
Variable errors 8.23 6.67 0.128
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solution is probably already close to the limit of accuracy
that can be achieved at present.
[33] The high sensitivity of model outputs to bathymetry

suggests that it will be difficult to model ocean tides accu-
rately in the distant past, since bathymetry seems unlikely
ever to be known well enough. On a more positive note, the
total dissipation in the numerical models is not so sensitive to
the small errors in bathymetry considered here. For all cases
considered RMS variations in dissipation were less than 5%
of the total. Thus for the recent past, where the gross geometry
of the ocean basins is reasonably well known, model esti-
mates of total dissipation should remain meaningful.

3.4. M2 Tides in the Last Glacial Maximum (LGM)

[34] With the hydrodynamic model tuned to model the
present-day ocean tides, we consider the effect of dropping
sea level to that inferred for the LGM. For these experi-
ments model bathymetry was modified using the 1� ICE-4G
model [Peltier, 1993, 1994] which provides ocean depth
and ice cover on a 1� grid for each millennium over the past
20 ka. For each epoch considered we first computed the
difference in ocean depth with the present-day (0 ka) ICE-
4G topography. The difference fields were then interpolated
onto our 1/8� nearly global grid, and added to the present-
day bathymetry. In this manner we made sea level adjust-
ments consistent with the resolution of ICE-4G, but retained
the higher resolution bathymetric details of the modern
topography. In Figure 6a we plot the RMS difference
between the present-day tidal elevations (as determined by
T/P), and the elevations computed for a series of times over
the past 20 ka. M2 elevations for the present-day and 20 ka
solutions are given in Figure 7. These results strongly
suggest that M2 tidal elevations in the LGM were indeed
significantly different.
[35] Figure 6b shows M2 tidal dissipation computed

using equation (10) for numerical solutions every 5 ka
over the past 20 ka. A large increase in dissipation, by
almost 50%, accompanies the drop in sea level which
exposed many of the shallow shelf areas where present-
day dissipation is greatest. Kinetic and potential energies,
also increased dramatically in the LGM numerical solu-
tions (Figure 6c), and Q almost doubles from around 15 at
0 ka to nearly 30 at 20 ka.

[36] For most of our LGM computations we used IT
drag coefficients estimated for the modern ocean. In fact,
the IT drag depends linearly on the abyssal buoyancy
frequency (N =

p
(gr0@z�r)) which could well have been

significantly different during the LGM [e.g., Adkins et al.,
2002; de Vernal et al., 2002]. The nature of these
variations is at present poorly constrained, so we must
content ourselves with tests of several rough hypothetical
scenarios, with increased and reduced stratification. To do
this we focus on the 20 ka bathymetry and simply
multiply the IT drag coefficients based on the modern
stratification by a spatially uniform scalar factor. For the
first two cases we reduce the IT drag coefficients by
factors of 2 and 4, corresponding to significant reductions
in the buoyancy frequency N. This results in further
significant changes in tidal elevations (Figure 6a), and
an increase in global M2 dissipation to over 4 TW
(Figure 6b; Table 2). Q is also increased dramatically
by a decrease in stratification, reaching a rather astound-
ing value of 50 for the IT/4 case (Table 1). For the third
case we increased the IT drag coefficient by a factor of 2,
corresponding to an increase in ocean stratification. In
this case total dissipation and Q are reduced (Tables 1
and 2), and elevations become more similar to those of
the present-day (Figure 6).
[37] In Figure 8 we plot vertically integrated M2 kinetic

energy densities for the 20 ka model solutions with IT drag
coefficients based on modern stratification, and reduced by
a factor of 4. Kinetic energy densities for the 20 ka solutions
are significantly larger in much of the ocean in both cases
(compare to Figure 3). Increases are especially great in the
North Atlantic. M2 elevations in the 20 ka model solution
exceed 3–4 m over much of the Labrador Sea, and off the
Atlantic coasts of Spain and North Africa (Figure 7).
Reducing the IT drag coefficient results in further increases
in tidal amplitudes throughout much of the Atlantic. With IT
drag based on modern stratification, tidal amplitudes in-
crease only modestly in the Pacific when sea level is
dropped. When IT drag is also reduced by a factor of
4 kinetic energies increase dramatically over much of the
Pacific, especially off the northeast coast of Australia and
around New Zealand. Thus tidal amplitudes in the Pacific
are relatively more strongly controlled by deep ocean

Figure 6. (a) RMS difference between M2 tidal elevations determined from T/P and those computed
with bathymetry adjusted using the ICE-4G model for selected epochs over the past 20 ka. (b) Work done
by the tidal potential in these numerical solutions. (c) Potential and kinetic energies, and Q. The symbols
at 20 ka in Figures 6a and 6b correspond to solutions computed with the linear IT drag coefficient
multiplied by scalar factors indicated in the legend for Figure 6a.
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Figure 7. M2 amplitude and phase for model solutions computed using bathymetry for (a) present-day
and (b) 20 ka. For both solutions IT drag parameters estimated from modern day stratification are used.
Note that the amplitude scale is nonlinear.

Figure 8. Map of vertically integrated M2 kinetic energy for two 20 ka bathymetry solutions (a) with IT
drag coefficients estimated from present-day stratification, and (b) with IT drag reduced by a factor of 4.
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dissipation (and hence stratification), while amplitudes in
the Atlantic are more directly sensitive to sea level.
[38] The division of tidal energy dissipation between

shallow and deep areas is given for the four 20 ka solutions
in Table 2, and dissipation maps for two of the 20 ka cases
are presented in Figure 9. Comparison to present-day
solutions (Table 2; Figure 4) reveal that dramatic changes
in the distribution of tidal dissipation result from the drop in
sea level during the LGM. Some of the major shallow sea
sinks in the present-day ocean are significantly reduced in
area, and as a result would dissipate little energy. These
include the Yellow Sea, the shelf off the northeast coast of
Brazil, and the Patagonian Shelf. Dissipation is also signif-
icantly reduced over the European shelf and in the Gulf of
Maine off the east coast of North America. However, at the
same time deep ocean dissipation is significantly increased
in the North Atlantic (especially over the mid-Atlantic
ridge, off the northwest coast of Africa, and over the
volcanic arc on the eastern edge of the Caribbean).
[39] Weakening stratification (which reduces the efficiency

of internal wave conversion; see (4)) results in less deep-sea
dissipation (Table 2). However, the reductions in IT drag
coefficients are counterbalanced by increases in tidal cur-
rents (Figures 3 and 8), so that reducing IT drag by a factor
of 4 result in deep ocean dissipation reduced by only a
factor of 1.5 (Table 2). In fact, reducing stratification
actually results in increases in deep ocean dissipation in
some parts of the North Atlantic, and in the South Pacific
around New Zealand and the Northeast coast of Australia
(Figure 9). The increases in tidal currents associated with
reductions in IT drag also result in increases in shallow sea

dissipation, especially in the North Atlantic, and in the Ross
and Weddell Seas, explaining the overall increase in total
dissipation with decreasing N.
[40] Dissipation is broken down by ocean basin for five

of the numerical solutions in Figure 10a. The fraction of
dissipation occurring in the deep part of each basin is given
in Figure 10b. Note that here the division between deep and
shallow ocean is defined by the 1000 m isobath. This differs
from the division used for Table 2, which follows the
division used by Egbert and Ray [2001] to allow direct
comparison with the empirical T/P estimates. For the
empirical estimates shallow sea boundaries were drawn
conservatively and well into the open ocean, to avoid
complex topography where errors in the empirical tidal
models were expected to be greatest. Deep ocean fractions
in Figure 10b are thus somewhat greater than those of
Table 2.
[41] For the present-day ocean basins the numerical

model with IT drag dissipates about 750 GW in the North
Atlantic, roughly consistent with the T/P estimates [Egbert
and Ray, 2001]. Only a bit over 10% of this dissipation
occurs in the deep ocean. When sea level is dropped to the
20 ka level (dashed lines) the fraction of dissipation in the
deep ocean increases to roughly 40% for the weakest
stratification (IT/4) case, and to nearly 60% for the case
of increased stratification (IT � 2) case. Total dissipation in
the North Atlantic is also increased dramatically by the drop
in sea level. For the case where stratification is weakest the
total dissipation in the model North Atlantic solution
increases by a factor of 3, to more than 2.2 TW, almost
equaling the M2 dissipation in the entire present-day ocean.

Figure 9. Dissipation maps computed for two of the 20 ka numerical solutions computed as the balance
between energy flux divergence and work terms. (a) 20 ka bathymetry with IT drag coefficients estimated
from present-day stratification, and (b) with IT drag reduced by a factor of 4.
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[42] Changes to dissipation in the other basins are gener-
ally more modest. In all scenarios considered dissipation is
reduced in the North Pacific, and increased in the South
Atlantic, South Pacific and Southern Ocean. The effect of
stratification also varies between basins, with stronger
stratification yielding higher dissipation in the South Atlan-
tic, Indian, and North Pacific Basins. Not surprisingly, the
percent of dissipation occurring in the deep ocean is always
greatest when stratification is strongest. For the total over all
basins almost 70% of the dissipation occurs in the deep
ocean for LGM sea levels under the increased stratification
scenario, and even with N reduced by a factor of 2 almost
50% of the dissipation is in the deep ocean. Only in the
Southern Ocean is the fraction of dissipation in shallow seas
increased under LGM conditions.
[43] Finally, we note that in our model runs the effect of

lowering sea level in the LGM was significantly different for
the diurnal constituent K1. For K1 there are still relatively
significant changes in modeled tidal elevations due to the
change in bathymetry. For example the RMS discrepancy
between the modern day T/P constrained elevations and the
model solution for this basin increases from 1.9 cm for the
0 ka run to 4 cm for the 20 ka run. However, dissipation
varies by only about 5%, with a small decrease in the LGM.
A complete exploration of this difference between semidi-
urnal and diurnal constituents is beyond the scope of this
paper. However, a major contributing factor is undoubtedly
the very different spatial distribution of dissipation for
diurnal and semidiurnal species. For diurnal constituents,
over half of the dissipation occurs in a small number of
marginal seas around the North Pacific (the Okhotsk, China
and Bering Seas [Egbert and Ray, 2003]). Aside from the
Bering Sea, most of these sinks are still present during the
LGM. In the North Atlantic, where the effects of dropping
sea level are most dramatic for M2, diurnal tides are very
weak and dissipate little energy in the modern ocean.

4. Discussion

[44] Our results show that a purely hydrodynamic baro-
tropic model of sufficiently high resolution can reproduce
present-day tidal elevations with an RMS error of roughly

5 cm in the deep ocean. The global total M2 tidal energy
dissipation in the numerical solution, and the spatial distri-
bution of this dissipation, are in reasonable agreement with
empirical estimates inferred from T/P altimeter data. Both a
rigorous self-consistent treatment of self-attraction/loading
and some sort of parameterization of barotropic/baroclinic
energy conversion are required to obtain solutions of this
accuracy.
[45] The quality of the tidal solution depends critically

on the accuracy of the bathymetry. Sensitivity tests with
randomly perturbed bathymetry suggest that uncertainties
in even the present-day bathymetry probably still limit our
ability to model tidal elevations to about the level we have
achieved here. This high sensitivity to details in the
bathymetry places severe limits on the accuracy of tidal
models for the distant past, in eras with poorly known
bathymetry. Our approximate linear theory for computing
IT drag is probably another major limitation on the
accuracy of our numerical model. Improvements in the
parameterization of IT drag may improve tidal models for
the present-day ocean somewhat. However, our efforts to
refine simple parameterizations which have been tried
previously by Jayne and St. Laurent [2001] had little
impact on the overall quality of the tidal solutions. The
need for an accurate representation of internal wave drag
presents further challenges to modeling of paleotides,
since ocean stratification in even the recent past is poorly
constrained.
[46] Our success with the present-day tides gives us some

hope for modeling tides in the LGM, when at least the
bathymetry is reasonably well constrained. Running our
numerical model with bathymetry appropriate to the LGM
results in significant changes in tidal fields with generally
larger amplitudes, especially in the North Atlantic. The total
global M2 dissipation in the model increases by up to 50%,
and the fraction of dissipation occurring in the deep ocean
increases significantly. However, details in the magnitude
and spatial pattern of these changes are sensitive to the
assumed IT drag, which depends on the poorly known
stratification. In general, reducing stratification increases
total dissipation, but this effect varies between ocean basins.
With reduced stratification and the LGM bathymetry, mod-

Figure 10. (a) Total energy dissipation in each ocean basin for five numerical solutions, including
modern bathymetry and stratification, and 20 ka bathymetry with different stratification assumptions.
(b) Fraction of dissipation in the deep ocean (H > 1000 m) for each basin, and the global total, for the five
models of Figure 10a.
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eled tidal dissipation in the North Atlantic increases to a
rather astonishing 2.2 TW.
[47] It is worth bearing in mind that all of the dissipation

in our model is an approximate parameterization of unre-
solved physics. These parameterizations are apparently
sufficiently representative of actual loss of energy from
resolved barotropic motions to allow quantitatively accurate
modeling of the M2 tide. However, it is not clear that our
parameterization would be as appropriate to conditions of
the LGM, particularly if tidal amplitudes were significantly
increased. Perhaps under these circumstances other dissipa-
tive processes would become important. Thus while the
general trends we have found are probably reliable, our
quantitative estimates for tidal energetics in the LGM
should not be taken too literally. Geological data that could
confirm or contradict the very large tidal amplitudes pre-
dicted by our model for the LGM would be most welcome.
[48] It may be counterintuitive that changes to the model

such as decreasing the area of shallow seas where most
dissipation is localized, or reducing IT drag coefficients,
actually lead to significant increases in total dissipation.
This result can be understood with reference to the
simple forced damped harmonic oscillator described by
the equation

@ttuþ uþ g@tu ¼ sinwt: ð11Þ

Here g is a linear damping coefficient and w the forcing
frequency. The rate of energy dissipation for the harmonic
oscillator of equation (11) is readily found to be

WH ¼ 1

2
< iw= 1� igw� w2

� �� �
ð12Þ

WH is contoured in Figure 11 as a function of w and g. Near
resonance (w = 1) dissipation increases as the damping
coefficient decreases. Far from resonance the dependence
on g is reversed. As is well know [e.g., Platzman et al.,
1981] there are a number of normal modes of the tidal

equations near the M2 frequency. Several of these modes are
predominantly localized in the North Atlantic, leading to
resonant amplification of semidiurnal tides in this basin.
Thus reducing the effective damping by exposing shallow
sea energy sinks (or reducing stratification) might actually
be expected to increase dissipation in this basin, as we find
in our model study.
[49] Resonance effects can also explain the amplification

of dissipation in the seas around New Zealand when
stratification is reduced in the 20 ka model. As discussed
in Platzman et al. [1981] the Kelvin wave around New
Zealand is nearly resonant at the semidiurnal period. This
wave dominates mode 38 (with a period of 10.8 hours) in
the Platzman et al. compilation of global normal modes. The
fact that dissipation in this area is increased significantly
only in the cases where stratification is reduced suggests
that this mode is primarily damped by dissipation in the
deep ocean due to IT radiation drag.
[50] Our results may also have broader implications for

the meridional overturning circulation (MOC). It is often
assumed that the strength of the MOC is controlled by the
downward convective arm of the circulation forced by
vertical density contrasts at high latitudes. However, as
summarized in Wunsch [2003], there are strong thermody-
namic and fluid-dynamical arguments that the MOC must
be mechanically driven, and hence controlled more directly
by the strength of diapycnal mixing at lower latitudes. It is
possible that the tides may provide half of the mechanical
energy required for this mixing [Munk and Wunsch, 1998;
Egbert and Ray, 2000], and thus variations in tidal ampli-
tudes might be expected to impact the MOC. Based pri-
marily on evidence from radiocarbon ages of North Atlantic
Deep Water, it is widely believed that the overturning
circulation in the North Atlantic was weaker in the LGM.
As discussed by Wunsch [2003] this conclusion is some-
what surprising, since there is evidence that winds were
stronger in the LGM. Stronger winds would be expected to
strengthen the wind-forced ocean circulation, and they
could possibly strengthen the wind-forced component of
vertical turbulent mixing (although recent simulations by
Schmittner et al. [2002] suggest otherwise). Wunsch [2003]
speculated that, regardless of the wind influence, tidally
induced mixing might have increased in the LGM, owing to
an increase in deep-ocean tidal dissipation when shallow-
sea energy sinks are removed by dropping sea levels. Our
modeling results support Wunsch’s suggestion. In all strat-
ification scenarios we have considered, globally averaged
barotropic tidal kinetic energies and deep ocean dissipation
were significantly greater for LGM bathymetries.
[51] It is worth bearing in mind, however, that effects of

dropping sea level vary significantly between ocean basins.
Areas where tides are near resonance (e.g., the North
Atlantic, around New Zealand for M2) are much more
sensitive to changes in sea level or stratification. Thus the
spatial distribution of tidally driven mixing may have been
very different in the LGM than it is in the present-day
ocean. There are of course many additional complications
which we have not even considered here. In particular, we
have focused on the energetics of the barotropic tides. How
this translates into vertical mixing is still not understood
even for the modern ocean. Presumably, the spatial pattern
of vertical mixing intensity will feed back to influence the

Figure 11. log10WH for the simple damped harmonic
oscillator contoured as a function of (nondimensional)
forcing frequency and damping coefficient (arbitrary units).
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MOC, and this in turn will affect stratification, and ulti-
mately tidally induced mixing. To address the possible role
of the tides in this dynamic system will require coupling of
models that resolve the long timescales of the MOC with
high resolution tidal models. To couple these models we
must first understand the physics of tidally induced mixing.
[52] Finally, we should emphasize that the challenges in

modeling even the modern day tides are considerable.
Accurate bathymetry, careful treatment of tidal loading
and ocean self-attraction, and a reasonable parameterization
of internal wave drag are required to achieve agreement
with altimetrically determined open ocean tidal elevations.
Accurate modeling of the LGM tides presents a significantly
greater challenge. With sea level dropped to LGM levels a
greater fraction of the model dissipation occurs in the deep
ocean by scattering into internal tides, and model results
become even more sensitive to the assumed stratification.
Thus even for the LGM, where we have reasonable knowl-
edge of the actual bathymetry but few good constraints on
stratification, there are significant uncertainties in our esti-
mates of tidal dissipation. For the more distant past, where
even the shape of the ocean basins is poorly known, direct
numerical modeling of the tides and tidal dissipation seems
likely to be of limited value.

Appendix A: Parameterization of Internal
Tide Drag

[53] Here we derive an approximation to the internal tide
radiation drag tensor. The internal tide is forced by the
barotropic component of vertical velocity [e.g., Baines,
1982] wBT(z) = u � rHz/H where �H � z � 0, and u is the
depth averaged horizontal velocity. Following Llewellyn
Smith and Young [2001], in the limit of small amplitude
bottom topography (and ignoring variations of stratification
and f with position) the baroclinic bottom pressure pBC(�H)
can be given as the convolution of a radially symmetric
Green’s function Gw(s) and the barotropic vertical velocity
at the bottom pBC(�H) = Gw * wBT(�H). Note that in our
notation the Green’s function gives the internal wave bottom
pressure as a function of distance from a ‘‘unit magnitude’’
point source forcing velocity profile (at frequency w) of the
form wBT(z) = �z/H. The Green’s function can be written in
terms of easily calculated vertical mode eigenvalues and
eigenvectors for an ocean of uniform depth and horizontally
uniform stratification. A slightly simplified version, based on
a WKB approximation to the vertical modes can be given
explicitly as

GwðxÞ ¼
w2 � f 2ð ÞNB

g

X
n

H0
2 np w2 � f 2

� ��1=2jxj=H �N
	 


; ðA1Þ

where �N and NB are the depth average and ocean bottom
buoyancy frequencies respectively, and H2

0 is the zero order
Hankel function of the second kind [Llewellyn Smith and
Young, 2001]. The barotropic/baroclinic energy conversion
at a fixed location is then given by

Ef ¼ wBT ð�HÞpBCð�HÞh i; ðA2Þ

where the brackets denote tidal cycle averages. Further
details, and exact expressions (without the WKB approx-
imation) are given in Llewellyn Smith and Young [2001].

[54] This theory allows an explicit formulation for the IT
drag which is rigorously justifiable for the case of small
amplitude bottom topography and laterally homogeneous
stratification. Writing the expression for energy conversion
more explicitly

Ef ¼ u � rH Gw* ðrH � uÞ½ �h i ¼ u � Rw* uh i; ðA3Þ

where

½Rw * u�ðxÞ ¼ rHðxÞ
Z Z

d2x0Gwðjx� x0jÞrHðx0Þ � uðx0Þ:

ðA4Þ

In terms of the dissipative stress F in equation (1) the
energy dissipated from the barotropic tide due to radiation
of internal wave energy should be u � F IT. Hence for a fixed
frequency w the IT drag component of dissipative stress can
be represented as

F IT ¼ Rw* u ¼ Rw *U=H : ðA5Þ

This is linear in the transportsU, but is nonlocal in space, and
because the kernel of the spatial convolution operator
depends on frequency, is also nonlocal in time. Direct use
of equation (A5) in a time stepping modeling code is thus
impractical, and some approximations must be made. First,
since we focus primarily on theM2 tide, we takew = 1.4052�
10�4s�1 as a constant. Second, we do the convolution in
space once, using the frequency domain barotropic tidal
velocity fields u from a numerical model to calculate Ef (x) as
a function of position using equation (A3). Then, we replace
convolution with Rw by multiplication with the 2 � 2
spatially varying drag tensor

RðxÞ ¼ Ef ðxÞ u � rHj j�2ðrHÞTrH : ðA6Þ

[55] The linear 2 � 2 drag tensor R results in energy
dissipation which agrees with the full convolution results
for the M2 tides provided the tidal velocities in the numer-
ical solution are exactly equal to the a priori assumed u in
equation (A6). For our calculation we computed u by
solving the SWE in a series of small overlapping rectangu-
lar areas, each 20� on a side, with grid resolution of 1/30�,
and open boundary conditions from the global inverse
solution TPXO.5. These local solutions are in fact quite
similar to TPXO.5. The resulting approximate drag tensors
R are thus most appropriate for tidal velocities of the
modern ocean.
[56] The iterative scheme used for the SAL convolution

suggests a possible refinement of this IT parameterization.
Given a solution at iteration n, the currents un could be
convolved with Rw to compute IT stress for each modeled
tidal constituent. These in turn could be added as extra
forcing terms for iteration n + 1. A modification, compara-
ble to that used for the SAL convolution, would be to
include the local linear drag tensor R in the model equa-
tions, and only add the deviation from this as a forcing. This
scheme would in principal allow for a frequency dependent,
spatially nonlocal parameterization for IT drag for tidal
modeling. Since iteration for the SAL correction is already
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required, this would probably not require additional runs of
the SWE solver. However, we did not test this refinement.

[57] Acknowledgments. This work was supported by the National
Aeronautics and Space Administration, and by National Science Founda-
tion grant OCE-9819518 to GDE.
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