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ABSTRACT

The generalized inverse of a regional model is used to estimate barotropic tidal dissipation along the
Hawaiian Ridge. The model, based on the linear shallow-water equations, incorporates parameterizations
for the dissipation of energy via friction in the bottom boundary layer and form drag due to internal waves
generated at topographic slopes. Sea surface height data from 364 orbit cycles of the Ocean Topography
Experiment (TOPEX)/Poseidon satellite mission are used to perform inversions at eight diurnal and
semidiurnal tidal frequencies. It is estimated that the barotropic M2 tide loses energy at a rate of 19 GW,
of which 88% is lost within 250 km of the ridge, presumably via conversion to the internal or baroclinic tide.
Uncertainty in the assumed model error and wave drag in the forward model suggest that M2 dissipation
values from 18 to 25 GW are consistent with the altimetric observations. Other barotropic tidal constituents
are estimated to lose a total of 5.7 GW. The spatial distribution of barotropic dissipation along the ridge is
similar to that inferred from three-dimensional primitive equation models, and it is largely insensitive to
details of assumed model and data errors. Dissipation at semidiurnal frequencies is most intense at the
French Frigate Shoals with lesser, but significant, contributions at other sites. Diurnal tidal dissipation is
concentrated to the east of the French Frigate Shoals, at the Gardner Pinnacles. Further work with three-
dimensional models will be necessary to determine the fate of the energy that is removed from the baro-
tropic tide.

1. Introduction

Prior to the era of satellite altimetry, it was believed
that the vast majority of tidal dissipation occurred in
shallow seas and coastal areas (Jeffreys 1920). A wide
variety of analyses of altimetry data now suggest that
70%–75% of the dissipation does indeed occur in shal-
low areas; however, that leaves 25%–30% to take place
in the deep ocean, primarily in association with major
bathymetric features (Egbert and Ray 2001). This re-
sult has had broad significance because the deep-ocean
tidal dissipation may provide as much as one-half of the
mechanical energy necessary to maintain the global
thermohaline circulation (Munk and Wunsch 1998).

The Hawaii Ocean Mixing Experiment (HOME) has
sought to elucidate the pathways that link the baro-
tropic surface tide to small-scale turbulence and mixing
(Rudnick et al. 2003). The observational components of
the experiment include measurements along the ridge
at hot spots of active mixing and baroclinic conversion

(the so-called Nearfield), as well as measurements at
some distance from the ridge (the Farfield). By devel-
oping a better understanding of the linkage between
the Nearfield sources of baroclinic energy and the
Farfield propagation and dissipation of this energy, an
energetically consistent understanding of deep-ocean
mixing may be obtained.

The overall characterization of the tidal energy bud-
get surrounding the ridge may conceptually be divided
into three components: the energy flux convergence of
the barotropic surface tide (the barotropic tidal dissi-
pation, hereinafter), the energy flux divergence of the
baroclinic tide, and turbulent dissipation. The barotro-
pic tidal dissipation is primarily a consequence of two
processes: the nonlinear transfer of energy to turbu-
lence in the bottom boundary layer and the linear trans-
fer of energy to internal waves (baroclinic conversion).
At open-ocean sites with significant cross-isobath flows,
such as are found along the Hawaiian Ridge, the pro-
cess of baroclinic conversion is dominant, and turbu-
lence plays a lesser role. The energy flux divergence of
the baroclinic tide is also the consequence of the same
processes, baroclinic conversion and turbulence; how-
ever, the nonlinear cascade of energy to smaller scales
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may be local in space (where shear-driven turbulence
occurs) or nonlocal (where parametric subharmonic in-
stability and induced diffusion take place).

While the observational program of HOME has
made direct observations of the localized turbulent dis-
sipation and internal waves (Rudnick et al. 2003), direct
measurements of the barotropic tidal dissipation are
exceedingly difficult because of the vast length scale of
the barotropic tide. In the present study we use satellite
data, together with a model based on the Laplace tidal
equations, to refine estimates of barotropic tidal dissi-
pation around the Hawaiian Ridge and relate the pat-
tern of dissipation to other modeling and observational
studies in HOME.

As mentioned above, the dissipation of barotropic
surface tides may take place via bottom drag or baro-
clinic conversion, which is a type of form drag. The
former results in the direct production of turbulence,
while the latter results in internal waves that either ra-
diate away from the site of genesis or dissipate locally
(St. Laurent and Garrett 2002). Linear theories of baro-
clinic conversion predict that barotropic tidal flow over
topography will lose energy at a rate given by

C � �0NBU2�1 �
f 2

�2T, �W� �1�

where �0 is the density of seawater, NB is the buoyancy
frequency at the ocean bottom, U is the magnitude of
the barotropic transport (m2 s�1), f is the Coriolis pa-
rameter, � is the tidal frequency, and T (having units of
area) is related to the power spectrum of the bottom
topography and the orientation of the barotropic flow
(Llewellyn Smith and Young 2002). Perturbation tech-
niques have been applied to study the tidal flow in the
limit of small-amplitude, subcritical topography (Bell
1975; Balmforth et al. 2002). There have also been ex-
tensions of these analyses to finite-amplitude, super-
critical topography (St. Laurent et al. 2003; Petrelis et
al. 2003), which generally amount to first-order correc-
tions to the linear theory and less than order-of-
magnitude changes in computed conversion rates.
Three-dimensional models, which explicitly model the
internal waves, reveal baroclinic conversion at topo-
graphic sites that is at least in qualitative agreement
with the analytical predictions (Kang et al. 2000; Mer-
rifield and Holloway 2002; Khatiwala 2003; Simmons et
al. 2004; Di Lorenzo et al. 2006).

The intensification of barotropic tidal energy dissipa-
tion near topographic features in the open ocean, which
has been inferred from data-assimilative tidal models, is
broadly consistent with the theory of baroclinic conver-
sion (Egbert and Ray 2001). Because these models

have been run at relatively coarse resolution, quantita-
tive comparisons with theory or measurement at spe-
cific topographic features is problematic. Here, we look
at the Hawaiian Ridge in some detail to see if the dis-
sipation can be localized and constraints on its total
value refined. Although we emphasize the dominant
constituent, M2, dissipation at seven other diurnal and
semidiurnal frequencies is also estimated. Our central
tool shall be the generalized inverse of a shallow-water
model, the Oregon State University tidal inversion soft-
ware (OTIS; Egbert and Erofeeva 2002).

This paper is organized as follows. Section 2 summa-
rizes the unique aspects of regional open-ocean tidal
modeling and briefly reviews the principles of general-
ized inversion. In section 3 we present dissipation esti-
mates in the vicinity of the Hawaiian Ridge inferred
from a large set of altimetric data. Sensitivity to various
assumptions is examined in section 4. The last section
briefly summarizes our quantitative results and suggests
further steps for research.

2. Methods

The problem of regional, open-ocean, barotropic
tidal inversion is to find that set of tidal fields, namely,
surface elevation � and volume transport U, that are
consistent with both a dynamical model and a set of
data. Here, the dynamical model is based on the
Laplace tidal equations, together with boundary condi-
tions, while the data are altimeter measurements of sur-
face elevation at the tidal frequencies. The information
from the model and data are combined to produce an
optimal estimate of the tidal fields using the generalized
inverse methods developed previously by Egbert et al.
(1994) and Egbert and Erofeeva (2002). Here, we sum-
marize the method and provide details specific to our
application.

a. Dynamical model

We assume that the barotropic tide is governed ap-
proximately by the Laplace tidal equations, extended to
include the effects of self-attraction and loading (SAL),
and frictional or dissipative stress:

�U
�t

� f k 	 U � �gH��� � �EQ � �SAL� � F �2�

and

��

�t
� �� · U. �3�

The symbols are used here in conformance with Egbert
and Ray (2001); f is the Coriolis parameter, g is gravi-
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tational acceleration, H is the bottom depth, �EQ is the
equilibrium tidal potential corrected for the body tide,
and �SAL is the correction to the tidal potential that
accounts for the effects of solid earth loading and ocean
self-attraction. The normal component of the transport,
U · n, is specified on open boundaries, with boundary
data supplied by a larger-scale data-assimilative model,
and no-normal-flow is specified on coastlines. The di-
vergence and gradient operators are two-dimensional
on the surface of the sphere. The body force associated
with dissipative effects, F, is represented as a sum of
two terms,

F � FB � FBC, �4�

where FB is the vertically integrated turbulent stress
caused by the bottom boundary layer, and FBC is the
form drag caused by the baroclinic flow. These terms
are discussed in more detail below.

To facilitate the solution of Eqs. (2) and (3) in the
frequency domain, a linear drag law is used to param-
eterize the bottom boundary layer stress, namely,

FB �
cd�f

H
U, �5�

with nondimensional drag coefficient, cd � 0.003, and
friction velocity 
f � 0.1 m s�1. The standard quadratic
drag law can be linearized around a tidal solution to
improve the accuracy of the model in shallow seas and
coastal areas (Egbert and Erofeeva 2002); however, so-
lutions to the tidal equations in our regional domain are
insensitive to the form of the bottom drag. Thus, we use
Eq. (5) for its simplicity. In all of our solutions, the
bottom drag dissipates about 0.5 GW (summed over all
constituents) along the Hawaiian Ridge, a negligible
fraction of the total.

The form drag is also parameterized by a linear drag
law in which the drag coefficient is explicitly propor-
tional to the square of the topographic slope,

FBC � cBC

NB��H�2

�H
U, �6�

where cBC is a nondimensional constant, � is the wave-
number of the first internal mode at the M2 tidal fre-
quency, N is the buoyancy frequency, and NB is its
value at the ocean bottom; that is, NB � N(�H). This
expression for FBC is based on a Wentzel–Kramers–
Brillouin approximation for the energy conversion in
the linear weak-topography approximation (Llewellyn
Smith and Young 2002). The ��1(�H)2 term in Eq. (6)
approximates an expression involving the power spec-
trum of the topography. To apply Eq. (6) we assume
that N(z) � N0ez/L, with N0 � 5.24 	 10�3 s�1 and L �

1300 m. This model of drag due to internal waves con-
tains the free parameter, cBC; more is said about the
value of this constant below.

Equation (6) should be regarded as a scale relation
for the dissipation and not as a definitive representation
of a Reynolds stress. This parameterization is similar in
form to those used in previous studies. Jayne and St.
Laurent (2001) used (1/2)��h2
NBU/H, in which wave-
number � is a tunable parameter and �h2
 is estimated
from subgrid-scale topographic roughness. Two other
parameterizations of the internal wave drag were
treated by Egbert et al. (2004). In the first scheme the
ocean bottom is approximated as a set of rectangular
prisms, each of which independently scatters the baro-
tropic tide into internal waves (Gustafson 2001; Sjöberg
and Stigebrandt 1992). This approximation is known to
produce resolution-dependent drag (St. Laurent et al.
2003), but it results in an expression dimensionally simi-
lar to Eq. (6). The second was based on the computa-
tion of tidal conversion due to barotropic cross-isobath
flow under a small-amplitude approximation. The re-
sult, which provides a good fit to the observations with-
out any free parameters, expresses the internal wave
drag as a convolution over both space and time and,
hence, requires some additional simplification for com-
putational practicality. Egbert et al. (2004) found that,
after tuning, all schemes yielded similar improvements
in solution accuracy; hence, we chose to retain Eq. (6)
for its simplicity. Indeed, as mentioned in the introduc-
tion, theoretically derived estimates of baroclinic con-
version differ by O(1) factors depending on the as-
sumed water depth, bottom slope, stratification, and
boundary conditions (e.g., Llewellyn Smith and Young
2002; St. Laurent et al. 2003).

b. Performance of the forward model

The data-assimilation procedure requires that we es-
timate errors in the model. Therefore, it is worthwhile
to compare the solution of the forward model with the
altimeter data. That is, how well does the model actu-
ally predict the altimetric observations? In particular,
this comparison permits one to assess the impact of the
baroclinic conversion parameterization on the model.

Note that the forward model already indirectly incor-
porates tidal elevation measurements via the boundary
conditions, which are taken from a data-assimilative
tidal model of the North Pacific (PAC6). The PAC6
model is a 1⁄6°-resolution, basin-scale refinement of the
1⁄2°-resolution, global, data-assimilative model TPXO.5
(Egbert and Ray 2003). Both the TPXO.5 and PAC6
solutions predict about 25 GW (1 GW � 109 W) of
barotropic dissipation, integrated over the rectangular
domain of the regional model. Note that this value does
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not contradict the estimated 18 GW of barotropic dis-
sipation that was published previously (Egbert and Ray
2001) for a smaller patch of ocean around the Hawaiian
Ridge (see Fig. 4).

Figure 1 illustrates the discrepancy between the
model solution and harmonically analyzed complex al-
timetric data along both ascending and descending
tracks. These residuals make evident several properties
of the model and the data. First, the data contain small-
scale noise that is uncorrelated along the altimeter
tracks. This noise has three sources: 1) there is instru-
mental noise in the raw altimetric time series; 2) there
is noise caused by aliasing of the tidal signal and spec-
tral leakage; and 3) there is noise caused by unknown
variations in the phase of the tidal signal. Taken to-
gether, these sources generate noise with an amplitude
of roughly 0.4 cm. Second, the figure illustrates the sur-
face expression of the internal tide, evident as the 150-

km wavelength signal along the tracks with amplitude
generally near 3 cm (Ray and Mitchum 1996).

Last, the figure shows the larger-scale discrepancy
between the model and data, which consists of a sys-
tematic offset of perhaps 2 cm between the northeast
and southwest sides of the ridge. Because the shallow-
water equations contain no physics to generate the sig-
nal associated with the internal tide, the impact of the
data assimilation will be to adjust this large-scale offset
across the ridge.

In the model–data comparison shown in Fig. 1, the
root-mean-square (rms) misfit of the model and the
observations is 1.36 cm. For comparison, the rms M2

tidal signal in the altimeter data is 13.4 cm. Thus, this
model explains about 99.0% of the M2 tidal variance.
When the explained variance is used as a measure of
success, it is apparent that the open-ocean tide is well
described by Eqs. (2) and (3).

Because the performance of the prior model essen-
tially reflects the accuracy of the boundary conditions
(obtained from the PAC6 solution), the actual value of
cBC has only a modest impact on the predictions of the
regional model. The value of cBC used above was cho-
sen to yield the same dissipation as the PAC6 and
TPXO.5 solutions in this domain (the numerical value,
cBC � 1.51, is of no particular significance). When cBC

is set to zero, that is, when no baroclinic conversion
occurs, the model still explains 98.5% of the M2 vari-
ance. A visual comparison of the predicted and mea-
sured surface elevation (not shown) is virtually indis-
tinguishable from that shown in Fig. 1.

In contrast to what has been found with the global
models (e.g., Jayne and St. Laurent 2001), we find that
it is not possible to constrain the value of cBC by mini-
mizing the misfit of the prior model in a highly accurate
regional model such as this. Based on this metric (i.e.,
the squared misfit of the modeled and observed tidal
elevations), the optimal value for cBC is about 2.4; how-
ever, this yields approximately 32 GW of barotropic
dissipation via baroclinic conversion, a value that is un-
supported by any other evidence and is, indeed, con-
tradicted by our results discussed below.

Because the numerical value of cBC is a free param-
eter, and its role in improving the model is quite neg-
ligible, we chose to set cBC to zero in the prior model.
An estimate of the internal wave drag based on Eq. (6)
is used only to scale the model error, as discussed be-
low. The benefit of this approach is that the barotropic
dissipation estimates presented in section 3 are not bi-
ased to high values by the prior model. Essentially all of
the barotropic dissipation is a consequence of the data–
assimilation; it does not arise from a particular choice of
cBC in the prior model.

FIG. 1. The panels show the difference between the T/P obser-
vations and the prior solution at the M2 frequency. The prior
solution solves Eqs. (2) and (3) exactly, with boundary conditions
on the volume transport taken from a larger-scale data-assimi-
lative model (PAC6, described in the text). The real part of the
complex tidal amplitude is shown. Comparison with Fig. 7 shows
that the data-assimilative solution makes a very modest correction
to the tidal elevation field.
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c. Data assimilation

The data-assimilation method is based on minimizing
a quadratic penalty functional,

J�u, �� � �Lu � d�†�e
�1 �Lu � d�

� ��Su � f�†�f
�1 �Su � f�, �7�

which is the squared weighted sum of data and model
misfits. As in Egbert and Erofeeva (2002), the tidal
state, model, and measurement operators are repre-
sented with a terse notation. Specifically, u represents
the tidal state (U and � fields), S denotes the dynamical
operators [Eqs. (2) and (3), together with boundary
conditions], f represents the model inhomogeneities
(astronomical forcing, SAL corrections, and the normal
transport at the boundaries), L represents the measure-
ment functionals, and d is a vector of data; �e and �f are
the covariances for the data and dynamical errors, re-
spectively.

The scalar � is introduced here as a regularization
parameter that controls the relative fit to the data and
the dynamics. If the model and data errors are normally
distributed and their covariances are known, then the
minimizer u � û of J[u, 1] is the maximum likelihood
estimate for the tidal state. However, for tidal estima-
tion, we cannot pretend to satisfy the prerequisites of
true statistical estimation, and � provides a single pa-
rameter for adjusting the relative scale of the model
and data errors. The value of � is estimated using gen-
eralized cross validation (Wahba 1990), described in
more detail in the appendix.

1) DATA ERRORS

The residual data shown in Fig. 1 have been com-
puted from nearly 10 years (364 orbit cycles) of Ocean
Topography Experiment (TOPEX)/Poseidon (T/P) al-
timetry data collected from 1992 to 2002. These data
consist of over 2 million individual measurements at
7281 sites within the model domain.

The precision of the altimetric data may be estimated
from the nontidal variance of the time series. For the
M2 frequency, this precision is approximately 0.16
(cm)2. This is the variance of the smallest-scale noise in
the along-track data presented in Fig. 1. Unfortunately,
this estimate of the precision is not the same as the data
error variance. As is apparent from the figure, the al-
timeter data contains a signal due to the surface expres-
sion of the internal tide, which has an amplitude of 2–4
cm, correlated over a scale of 100 km (Ray and
Mitchum 1996; Dushaw 2002). As the tidal model con-
sidered here does not contain the dynamics sufficient to
generate these features, they must be regarded as error
in the data. Evidently, this “error of representation”

has variance roughly a factor of 10 larger than the basic
precision estimate would suggest, and it is correlated
along track.

It is not obvious how to account for the structure of
the data errors in this context. The so-called error is, in
fact, the signature of a deterministic process. If one
were to use a covariance to describe the error, it would
be inhomogeneous in both magnitude and correlation
scale across the model domain. Equivalently, one might
attempt to low-pass filter the data because of the scale
separation between the baroclinic and barotropic
waves. In fact, near bathymetric features like the Ha-
waiian Ridge, the scale separation between baroclinic
and barotropic signals does not obtain: bathymetric fea-
tures on the same length scale as the baroclinic waves
can cause small-scale features in the barotropic tide. It
is possible that an a posteriori analysis of the residuals
could be used to find a data error covariance structure
function (or, equivalently, an along-track smoothing
kernel), but we have not attempted this.

For simplicity, we have decided to assume that the
data errors are uncorrelated and allow changes in the
variance scale via the regularization parameter �.
Based on this approach, one can make an a priori esti-
mate of the regularization parameter. The along-track
spacing of the measurements is about 7 km, and the
decorrelation scale is on the order of 70 km. Thus, these
serial correlations suggest that the data should be de-
weighted by a factor of 10. Likewise, the variance due
to the internal tide is about 10 times the precision es-
timate, which suggests a further de-weighting of the
data by another factor of 10. When �e in Eq. (7) is
based on the data precision, this heuristic argument
suggests that the optimal value of � should be near 100.
Indeed, this crude estimate is consistent with results
obtained from the generalized cross validation dis-
cussed below.

2) MODEL ERRORS

The tidal fields should not be expected to satisfy the
model equations exactly for various reasons. The ef-
fects of the elastic earth, gravitational self-attraction,
and the stresses modeled by F are approximated, and
there is uncertainty in the bathymetry itself. In this
study, we estimate the spatially varying magnitude of
errors in the model by taking simple percentages of the
terms in the momentum equations, following Egbert et
al. (1994). For example, an uncertainty of 5% in the
bathymetry data suggests a 5% error in the pressure
gradient, and the error in the bottom drag is assumed to
be 50%. An exception to this simple approach concerns
errors due to baroclinic conversion. The magnitude of
the error in FBC is assumed to be
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FBC � cBC

NB��H�2

�H
U0, �8�

where U0 is the amplitude of the transport in the for-
ward model solution [i.e., the solution to Eqs. (2) and
(3) computed with cBC � 0]. The parameter cBC is set to
1.51, which yielded the same nominal dissipation as
found in the PAC6 and TPXO.5 solutions. Each source
of error in the momentum equations is assumed to be
independent, so the magnitude of each can be simply
squared and summed to obtain the total assumed model
error variance. The small-scale features in this error
variance field are smoothed by convolution with a bell-
shaped (Gaussian) kernel with a 50-km correlation
scale. As an example, the variance of errors in the zonal
momentum equation is plotted in Fig. 2. It may be seen
that the error is amplified over topographic features
where baroclinic effects are likely prominent. The
model errors are assumed to be spatially correlated
with a constant e-folding scale of 50 km, isotropic on the
sphere.

Errors in the boundary conditions, which are as-
sumed to be spatially correlated and inhomogeneous,
have been computed from a suite of 60 Monte Carlo
simulations with the PAC6 model. Each simulation
consisted of a complete inversion of synthetic altimeter
data in which representative noise was added to the
model and synthetic data, following the method de-
scribed in Egbert and Erofeeva (2002). Based on these
simulations, the open boundary data (normal compo-
nent of volume transport) are estimated to be accurate
to within 1%–5% of their magnitude. Near submarine
topographic features (i.e., in the northwest corner of
the domain), the boundary condition uncertainty rises
to as much as 10%.

d. Regularization parameter

The value of � has been determined by generalized
cross validation (Wahba 1990). This procedure, which is
explained in the appendix, is carried out using the sin-
gular value decomposition of matrices that are created
during the generalized inversion. The inversion for
each constituent is performed separately, so an inde-
pendent cross validation is performed to determine the
value of � at each tidal frequency.

The cross validation yields unambiguous results for
the major semidiurnal constituents, M2 and S2. Figure 3
plots the generalized cross-validation function,
VGCV(�), for the M2 constituent. This function is the
scaled predictive error of the inverse solution. The
minimum value of VGCV(�) is obtained when � is about
10, and this was also obtained for the S2 constituent.
The generalized cross-validation function for the other
semidiurnal constituents is nearly flat, which suggests
that there is little signal to fit, but the value � � 10 was
used for these cases as well.

Among the diurnal species, only the K1 constituent
had a convex generalized cross-validation function. The
optimal value of � was 100. Presumably, the larger
value of � is a consequence of the larger correlation
scale of the internal tidal signal in the data. This same
value of � was used for all of the diurnal constituents.

3. Dissipation estimates

The generalized inversion of Eqs. (2) and (3), to-
gether with boundary conditions and data, was accom-
plished using OTIS (Egbert and Erofeeva 2002). The

FIG. 2. The assumed model error variance for the zonal mo-
mentum equation is shown [(m s�1)4 	 109]. Note that the con-
tours are evenly spaced on a logarithmic scale.

FIG. 3. The generalized cross-validation function is plotted as �,
the regularization parameter, is varied. Evidently, values of �
between about 1 and 100 are equally plausible.
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equations were solved on a 1⁄15° finite-difference grid
with bottom depth H obtained from the ETOPO2 da-
tabase (Smith and Sandwell 1997). The tidal potential,
self-attraction, and loading were computed as described
in Egbert and Ray (2001), with �SAL computed from the
TPXO.5 solution.

Previous estimates of barotropic M2 tidal dissipation
obtained from global-scale models range from 18 to 22
GW along the Hawaiian Ridge (Egbert and Ray 2001).
Figure 4 shows the results of a more recent calculation,
TPXO.5, which is a global, coarse-resolution (1⁄2°),
data-assimilative model (Egbert and Ray 2003). Hawaii
is hardly resolved, and the dissipation occurs in general
association with the ridge. Note that the color scale of
this figure, which is different from that used below,
emphasizes the small dissipation, 5–10 mW m�2, which
occurs over a vast area. Only about 35% of the baro-
tropic dissipation in this estimate occurs within 250 km
of the ridge axis. The energy dissipation via bottom
drag is quite negligible at the Hawaiian Ridge, so it is
presumed that the vast majority of the barotropic dis-
sipation should occur in close association with bathy-

metric features via baroclinic conversion. Hence, the
small fraction of the dissipation that does occur near
the ridge is taken as evidence that the resolution of this
model is insufficient for detailed open-ocean regional
studies.

The dissipation in the area around Hawaii computed
from the 1⁄6°-resolution North Pacific basin model
(PAC6), which provides the boundary conditions for
the regional model, is shown in Fig. 5. Dissipation in
this higher-resolution inverse solution is largely con-
fined to the ridge and is most intense near French Frig-
ate Shoals. Note that the PAC6 and TPXO.5 models
included no parameterization for baroclinic conversion.
Hence, the barotropic dissipation inferred from the
data-assimilative runs is entirely a consequence of the
data assimilation.

The estimate of the barotropic M2 tidal dissipation
around Hawaii, obtained from the regional data-assimi-
lative model with parameters as described above, is
shown in Fig. 6. In this solution, the total barotropic
dissipation in the model domain is 18.9 GW, of which
18.4 GW is converted to the internal tide. Note that the

FIG. 4. The TPXO.5 calculations were performed on a global grid at 1⁄2° resolution using a model that
included the effects of the turbulent bottom boundary layer but not baroclinic conversion. As such, the
barotropic dissipation shown here is entirely a consequence of the data assimilation (the effects of
bottom friction are confined to a small number of very shallow passages along the Hawaiian Ridge).
Because the vast majority of the barotropic dissipation is believed to occur via baroclinic conversion in
association with bathymetric features, the spatial distribution of the barotropic dissipation in the figure
is unrealistic—only 35% of the dissipation occurs within 250 km of the ridge. Note that the smaller value
of dissipation along the ridge, 18 GW, published previously by Egbert and Ray (2001), was obtained by
integrating over the area within the dashed curve.
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prior model used cBC � 0, so this 18.4 GW of baroclinic
conversion results entirely from the data assimilation.
The data assimilation procedure has added the forcing
necessary to the right-hand side of Eq. (2) to bring the
surface elevation into agreement with the observed
data. This extra forcing, the model forcing residual, ob-
tains its maximum amplitude along the ridge axis. The
barotropic dissipation shown in Fig. 6 reveals that the
model residual is arranged so that it extracts work from
the barotropic flow almost everywhere; that is, it has
added an energetic sink to the model, in conformance
with our expectations for the direction of energy trans-
fer via baroclinic conversion. In other words, the data
assimilation has allowed us to estimate the form drag in
the momentum equations necessary to reconcile the
model with the large-scale features in the data.

Figure 7 compares the inverse solution with the T/P
data (cf. Fig. 1). The model forcing residual, which is an
estimate of the form drag, has produced a large-scale
adjustment on the northeast and southwest sides of the
ridge, which has reduced the spatially correlated errors
in these regions. The residuals clearly show the signal of
the baroclinic internal tide, with maximum amplitude
near the ridge between 190° and 195°E. Because the

model equations do not contain the physics capable of
reproducing the baroclinic waves in the data, the re-
sidual data in Fig. 7 are an estimate of just the baro-
clinic waves. A comparison of Figs. 6 and 7 shows that
the region of maximum barotropic dissipation is
roughly coincident with the area of the largest internal-
tidal signal. This bolsters our confidence that the baro-
tropic dissipation we have estimated is an accurate es-
timate of the actual baroclinic conversion.

It is important to reiterate that the barotropic dissi-
pation presented in the figures is the sum of actual
turbulent dissipation in the bottom boundary layer and
dissipation via (nonturbulent) baroclinic conversion at
bathymetric features. Furthermore, the barotropic dis-
sipation in Fig. 6 results from the sum of the explicitly
modeled drag forces (FB and FBC) and the model forc-
ing residual that the data-assimilation procedure pro-
vides. In order not to bias the dissipation estimates to-
ward any particular numerical value, the explicitly
modeled wave drag (FBC) was set to zero in the prior
model (i.e., cBC � 0 in the prior model). In essence, the
purpose of the FBC term (with nonzero cBC) was solely
to provide a scale estimate for the variance of the
model forcing residual. The sensitivity of our results to

FIG. 5. The inverse solution from the 1⁄6° resolution North Pacific basin model (PAC6), which provides
boundary conditions to the regional model of the Hawaiian Ridge, shows a large elevation in dissipation
levels at French Frigate Shoals. Note that, as above, the original model contained no representation of
the baroclinic conversion process. The barotropic dissipation presented in the figure is entirely a con-
sequence of the data assimilation. When one adds a forcing to the momentum equations, which corre-
sponds to the pictured dissipation, the surface elevation predicted by the model is a least squares best
fit to the altimeter observations.
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the particular value of cBC in the prior model is ana-
lyzed in the next section, below.

The spatial distribution of the barotropic M2 dissipa-
tion within 250 km of the ridge is shown in Fig. 8a.
Approximately 88% of the energy loss occurs within
250 km of the ridge axis, with the majority occurring in
the region between the Gardner Pinnacles and French
Frigate Shoals. Three other sites are also significant:
Mara Reef, Nihoa Island, and Kauai Channel. If one
assumes that 100% of the energy lost from the baro-
tropic tide is converted to baroclinic energy and radi-
ated as a coherent beam of internal waves oriented
normal to the ridge, one would see a peak wave energy
flux of 15 kW m�1 to both the northeast and southwest
near French Frigate Shoals. Other sites of dissipation
could radiate as much as 5–7 kW m�1.

Barotropic dissipation estimates were also made
from inversions at seven other tidal frequencies: S2, N2,
K2, K1, O1, P1, and Q1. Table 1 shows the total dissi-
pation at these frequencies, as well as the percentage
that occurs within 250 km of the ridge. The non-M2

constituents lose approximately an additional 5.7 GW
total. The ratio of barotropic dissipation to squared
equilibrium tidal amplitude for the diurnal constituents
is uniformly less than 25% of a similar ratio for the
semidiurnal constituents. This is consistent with the ob-
servation from global models that the diurnal tides lose

a larger fraction of their energy in marginal seas than
the semidiurnal tides (Egbert and Ray 2003).

The spatial distribution of barotropic dissipation
along the ridge is similar for all of the semidiurnal spe-
cies. In every case, the dissipation is maximum along
the topographic features from the Gardner Pinnacles to
French Frigate Shoals. In contrast, the diurnal species
all have a sharp peak at the Gardner Pinnacles, with
little dissipation at French Frigate Shoals or elsewhere.
These results are robust to changes in the regularization
parameter and the model forcing error covariance. It
must be acknowledged that the N2, K2, O1, P1, and Q1

constituents have a low signal-to-noise ratio in compari-
son with the M2 signal. Also, the S2 tide certainly con-
tains a component that is driven by daily insolation-
induced atmospheric pressure variations (Cartwright
and Ray 1994), and the K1 data contain some aliased
semiannual signal (Andersen and Knudsen 1997). For
these reasons, a complete sensitivity analysis of the dis-
sipation was performed only for the M2 constituent.

4. Sensitivity to assumptions

The estimated barotropic dissipation and tidal fields
depend on assumptions regarding the forward tidal
model and its errors. We have verified that the results
are completely insensitive to reasonable changes in the

FIG. 6. The barotropic dissipation inferred from the generalized inverse of the tidal model and the T/P
altimeter data. The dissipation results from a combination of the explicitly modeled bottom friction (0.5
GW) and the model forcing residual, which is interpreted as conversion to baroclinic tidal motion (18.4
GW). Virtually all of the inferred dissipation is a result of assimilating the altimeter data.
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friction velocity, 
f, and to changes in the assumed error
of the no-normal-flow condition at coastlines. Changes
to the open boundary condition error covariance results
in approcimately �1 GW changes in dissipation for the
M2 constituent.

Three parameters lead to more significant uncer-
tainty in the dissipation, and we now discuss these in
more detail. These parameters are

1) the level of baroclinic conversion in the prior model,
that is, the value of cBC;

2) the correlation length scale of the assumed model
error; and

3) the ratio of the assumed model and data errors, as
controlled by the regularization parameter �.

Experiments were conducted varying cBC in the prior
model from 0 (no conversion) to 3.62 (40-GW conver-
sion). Figure 9 shows that the dissipation computed
from the inverse solution is remarkably insensitive to
the value of cBC in the forward model. Over this entire
range, the inverse dissipation only varied from approxi-
mately 19 to 28 GW. It is encouraging to see that the

inverse estimate of dissipation is relatively insensitive
to the value of cBC; nonetheless, this analysis provides
no basis for rejecting an M2 dissipation level as high as
25 GW. Dissipation values above this would require a
prior model that dissipates some 30 GW or more, which
we reject a priori. These higher levels of dissipation, if
they occur, are simply not observable by the altimetry
using the present formalism.

The e-folding scale of the correlation structure func-
tion for the assumed model errors was 50 km. While
there is no rigorous justification for this scale, it is com-
parable to the length scale observed in the inferred
dissipation. To test the sensitivity of the dissipation es-
timates to this length scale, several experiments were
conducted using a 200-km correlation scale; Fig. 10
shows the pattern of dissipation. There is 1.6 GW more
dissipation than the nominal best case shown in Fig. 6.
There is less nonphysical negative dissipation in com-
parison with the standard case, and the dissipation is
still localized along the ridge.

The dissipation estimates depend weakly on the
regularization parameter �. This parameter controls
the trade-off between a perfect fit to the prior forward
model (� → �) and a perfect fit to the data (� → 0).
Figure 3 suggests that a range of � values between 1 and
100 are equally justified; however, the generalized
cross-validation procedure tends to overfit the data
when the data errors are correlated (Wahba 1990), as is
the case here. Inspection of the actual tidal fields sug-
gests that � ∈ [10, 100] is the plausible range. Varying
� over this range changes the dissipation by 2 GW.

A more limited series of experiments were conducted
to assess the sensitivity of the non-M2 dissipation esti-
mates to the aforementioned factors. These constitu-
ents were found to have a sensitivity proportional to the
M2 case.

Figure 8 summarizes the above considerations and
presents a detailed view of the barotropic M2 dissipa-
tion along the Hawaiian Ridge. The dissipation has
been integrated across a 500-km swath centered on the
ridge axis. The heavy solid line in Fig. 8b corresponds to
the nominal best estimate in Fig. 6. The sensitivity to
the three factors considered above is indicated by the
shaded gray band, which shows the range of dissipation
values obtained in all of the sensitivity experiments.
The distribution of the dissipation is remarkably insen-
sitive to reasonable changes in these parameters. The
highest dissipation level is found at French Frigate
Shoals with other local maxima occurring at Kauai
Channel, Nihoa Island, Gardner Pinnacles, and Maru
Reef. Overall, 88% � 1% of the total dissipation occurs
within 250 km of the ridge axis.

FIG. 7. The difference between the T/P observations and the
inverse solution for the M2 constituent. The primary effect of the
inversion has been to introduce a large-scale tilt amounting to a
2-cm change in the surface elevation across the domain.
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Estimating the uncertainty in our estimate of the to-
tal barotropic dissipation is a subjective exercise. Based
on the sensitivity analysis for M2, we conclude that the
range of values from 17.5 to 25.0 GW cannot be re-
jected. Uncertainty in just the size and correlation of
the model forcing errors would lead to a narrower es-
timate of 19 � 1.5 GW, and our preferred estimate is 19
GW; however, an unbiased view, which a priori accepts
dissipation from 0 to 30 GW, leads to the possibility of
25.0 GW as the upper extreme.

5. Discussion

Our estimates for the barotropic dissipation of tidal
energy along the Hawaiian Ridge are a refinement of
previous efforts. When all of the constituents are in-
cluded, nearly 25 GW of power is available to drive
internal waves and mixing over the model domain. Of
this, 19 GW is attributed to the M2 tide. The majority of
the remaining 5.7 GW is due to the S2, K1, and N2

constituents. Approximately 88% of the total, or 22
GW, is lost from the barotropic tide within 250 km of
the ridge. Presumably, this means that 22 GW of energy

is pumped into the baroclinic wave field at the ridge;
some unknown fraction of this energy is used to drive
local turbulence, while the remainder radiates into
the deep ocean where it may provide energy for tur-
bulence in the main thermocline. It must be empha-
sized that our use of the term “barotropic dissipation”
refers to the rate of energy loss from the barotropic
flow: The vast majority of this energy directly forces the
internal tidal field, and only a small fraction of the of
barotropic kinetic energy is lost directly to turbulent
dissipation.

TABLE 1. Dissipation summary.

Constituent Dissipation (GW) Fraction on ridge (%)

M2 19 88
S2 3.1 91
N2 0.50 88
K2 0.33 92
K1 1.4 85
O1 0.32 85
P1 3.0 	 10�2 98
Q1 6.1 	 10�3 10

FIG. 8. (a) The model bathymetry. (b) The estimated barotropic dissipation integrated across a 500-km
strip, centered on the Hawaiian Ridge. The following geographic sites are noted: Maru Reef (MR),
Gardner Pinnacles (GP), French Frigate Shoals (FFS), Necker Island (NeI), Nihoa Island (NiI), and
Kauai Channel (KC). The heavy curve shows the best estimate of the dissipation, while the gray band
indicates the range of values computed during the sensitivity tests. Variations of the regularization
parameter �, the value of cBC in the forward model, and the correlation length scale of the assumed
model errors all result in dissipation estimates contained in the gray band.
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The uncertainty in our estimate of barotropic dissi-
pation is due to a lack of knowledge regarding the
structure of the errors in the tidal model. Plausible
variations in the assumed model forcing error yield dis-
sipation estimates that differ by as much as 3 GW. In
addition, baroclinic conversion may occur at scales too
small to be constrained by the altimetric observing ar-
ray. Consequently, barotropic M2 dissipation values of
up to 25 GW are not inconsistent with the data.

The high-resolution regional model has made it pos-
sible to identify specific sites of barotropic dissipation
along the ridge. The semidiurnal species lose most of
their energy over the topography between the Gardner
Pinnacles and French Frigate Shoals. The diurnal dis-
sipation is mostly confined to Gardner Pinnacles. These
are areas with strong cross-isobath flows and are good
candidates for sites of baroclinic conversion.

In fact, the complete energy budget at tidal frequen-
cies includes a number of processes. First, there is the
work done by form drag, which we have been calling
baroclinic conversion, and it is assumed that this ac-
counts for much of the barotropic dissipation shown in
Fig. 6. Then, there are the truly dissipative processes:
small-scale turbulent mixing and boundary layer mixing
at the ocean surface and bottom. There are also non-
linear energy exchanges that occur among internal
waves of different frequencies.

There are direct measurements of turbulent dissipa-
tion at a number of sites along the Hawaiian Ridge.
Klymak et al. (2006) extrapolate data from French Frig-

ate Shoals (FFS), Necker Island (NeI), Nihoa Island
(NiI), and Kauai Channel (KC) to estimate 4–10 GW of
turbulent dissipation for the entire ridge. There is a
general qualitative agreement between these observa-
tions and our estimates; for example, both indicate that
there is less dissipation at NeI than the other sites.
However, the significant difference in barotropic dissi-
pation rates between FFS and KC (see Fig. 8b) is not
seen in the turbulence data. In the relationship between
turbulent dissipation and tidal kinetic energy postu-
lated by Klymak et al. (2006), sites with high tidal ki-
netic energy will dissipate proportionally less energy as
local turbulence, so it may be that FFS actually radiates
much more energy than KC. Klymak et al. (2006) esti-
mate maximum turbulent dissipation rates of about 5
kW m�1, peak, at FFS, NiI, and KC. Subtracting one-
half of this value from our M2 ridge-normal energy flux
yields wave energy fluxes of roughly 12, 3, and 3 kW
m�1 emanating from FFS, NiI, and KC, respectively.

A limited number of in situ measurements of the
baroclinic wave energy flux have been made (Rudnick
et al. 2003). At FFS these fluxes range from 4 to 15 kW
m�1 normal to the ridge. At NiI and KC the observed
fluxes span a large range with a maximum ridge-normal
flux of 11 kW m�1. Much smaller flux was observed at
NeI. These data, which are each representative of the
flux averaged over a single semidiurnal period, are in
the same range as wave energy flux inferred from our
own estimates of barotropic tidal dissipation.

In the absence of more extensive baroclimc wave flux
measurements, comparison with a numerical model is
instructive. Figure 11 compares the pattern of baro-
tropic M2 dissipation found in this study with the diver-
gence of M2 internal wave energy diagnosed from a
three-dimensional primitive equation model (Merri-
field and Holloway 2002). What has been plotted as
“model dissipation” is, in fact, the difference of baro-
clinic conversion and turbulent dissipation, so it is
strictly less than the barotropic dissipation plotted in
the top panel. Nonetheless, there is encouraging agree-
ment as to the sites of significant energy flux diver-
gence. The bottom panel of the figure shows a coinci-
dence of the major peaks of ridge-normal energy flux,
except at Maru Reef (which, unfortunately, is located at
the edge of one of the numerical model’s subdomains).
Subtracting 7 GW [the along-ridge dissipation estimate
of Klymak et al. (2006)] from 22 GW (the total baro-
clinic conversion found within 250 km of the ridge at
eight tidal frequencies in the present study), leaves a
total of 15 GW to be radiated as internal waves. The M2

calculations of Merrifield and Holloway (2002) find
about 60% of this amount. It should be noted that both

FIG. 9. Sensitivity of the estimated dissipation to cBC: The
dashed line indicates the amount of baroclinic conversion in the
forward model, and the solid line shows the dissipation in the
generalized inverse. As can be seen, the inverse estimate of the
dissipation is relatively insensitive to the assumed level of baro-
clinic conversion in the prior model.
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of these estimates greatly exceed the energy radiated by
coherent low-mode internal waves as inferred from al-
timetry (Ray and Cartwright 2001; Dushaw 2002). We
eagerly await the results of more in situ measurements
of the internal wave energy flux.

A principal limitation of this study is that the free-
surface expression of the internal tides, which is present
in the altimeter measurements, must be regarded as an
error of representativeness in the data. Work is cur-
rently under way to develop the generalized inverse of
a three-dimensional primitive equation model. With
this new tool it will be possible to more directly model
the baroclinic conversion process and to map the re-
sulting tidal internal wave field in a dynamically con-
sistent manner. Sources and sinks of internal tidal en-
ergy can be diagnosed, and it should be possible to
further improve the constraints on the tidal energy bud-
get.
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APPENDIX

Generalized Cross Validation on the
Reduced Subspace

The numerical value of the regularization parameter
� is found by using a generalized cross-validation
method. Because the cross validation is performed us-
ing a subset of the data vector after several transfor-
mations, it is useful to explain the transformations and
inversion procedure in some detail. This section essen-
tially repeats the explanation in Egbert and Erofeeva
(2002) with special emphasis on the points of relevance
to the determination of �.

The original time series data vector is transformed
into a reduced data vector by harmonic analysis of the
original time series. This transformation simply projects
the data vector into a subspace spanned by the tidal
frequency of interest. Next, the reduced data vector and
the representer coefficients undergo a rotation that fa-
cilitates the solution of the Euler–Lagrange equations
on the reduced basis. Last, this reduced and rotated
data vector is projected into the subspace spanned by
the reduced representer basis. The generalized cross-
validation procedure described below is standard, but it
is performed on this twice-projected and rotated data
vector.

FIG. 10. The plot shows the dissipation when a 200-km correlation scale is assumed for the model
errors. The pattern of dissipation is very similar to that found with a 50-km correlation scale. The tidal
fields (not shown) are also very similar (surface elevations agree to within 2 mm over most of the
domain).
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The time series data are related to a vector z of har-
monic constants by

d � Az � �. �A1�

The vector d contains the time series of altimeter data
at every site; it is of dimension Nd � 2 	 106. The vector
z contains two entries for each measurement site, the
real and imaginary parts of the harmonic constants for
the frequency of interest. The dimension of z is Nz � 2
	 7281. The vector � contains both measurement error
and the nontidal component of the data vector. The
matrix A is defined in Egbert and Erofeeva (2002); it
depends in a straightforward way on the times of the
satellite measurements.

The QR decomposition of A is used to define the
reduced data vector. Let A � QB be the QR decompo-
sition of A (Golub and Van Loan 1989), where Q is an

Nd 	 Nz orthogonal matrix (i.e., QTQ � I, the Nz 	 Nz

identity matrix), and B is an Nz 	 Nz upper-triangular
matrix. The reduced data vector is given by

d̃ � QTd � Bz � QT�. �A2�

The least squares estimates of the real and imaginary
parts of the harmonic constants at the data sites are
given by

z � B�1d̃. �A3�

To project the reduced data vector into the reduced
representer subspace, the representer subspace must be
defined. First, the minimizer of J[u, �] is written as

û � u0 � �
k�1

Nz

	krk, �A4�

where u0 � S�1f0 is the exact solution of the forward
model, and the rk are the representer functions, k �

FIG. 11. (top) The M2 barotropic tidal dissipation in a 500-km-wide swath centered on the Hawaiian
Ridge. (middle) The divergence of baroclinic wave energy flux diagnosed from the model of Merrifield
and Holloway (2002), which is a balance of baroclinic conversion and turbulent dissipation. The color
scales are identical, but reversed in sign; i.e., red denotes energy loss in the top panel, while red denotes
energy gain in the middle panel. (bottom) Comparisons of the nominal ridge-normal energy flux inferred
from the present study (dashed) and the ridge-normal baroclinic wave flux diagnosed from the model
(solid).
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1, . . . , Nz. The representer functions are obtained by
first solving for �k,

S†
k � �k, �A5�

(where �k is the kernel for the data functional Lk), and
then solving for rk,

Srk � �f 
k. �A6�

In the reduced basis approach (Parker and Shure 1982;
Egbert et al. 1994) a representative subset of the rep-
resenters is used,

û � u0 � �
k�1

N

	krk, �A7�

where N � Nz. It has been assumed, without loss of
generality, that the Nz representers are indexed so that
only the first N are taken as the reduced basis. Let P be
the Nz 	 N matrix, which is constructed by applying all
Nz measurement operators to each of the N represent-
ers in the reduced basis, Pij � Lirj; and let R be the N
	 N matrix consisting of just the first N rows of P, that
is, Rij � Pij for 1 � i � N and 1 � j � N. The penalty
functional may now be written

J��, �� � �d � Qd̃�T�e
�1 �d � Qd̃�

� �BP� � d̃��T�e
�1 �BP� � d̃�� � ��TR�,

�A8�

where � � [�1, . . . , �N] is the vector of representer
coefficients, and d̃� � d̃ � BLu0. The penalty functional
is the sum of three terms: 1) a nontidal data term, 2) a
tidal data error term, and 3) a model error term. Note
that the nontidal data term, which is independent of �,
is simply a constant and cannot be reduced. Also, as a
consequence of the representer expansion, the penalty
functional (a functional of the infinite-dimensional field
u) is now simply a penalty function (a function of the
vector �).

Before completing the final projection of d̃� into the
space spanned by the reduced basis, it is convenient to
nondimensionalize the reduced data vector and the rep-
resenter coefficients with the transformations

d̂ � �e
�1
2 d̃� �A9�

and

c � R1
2�. �A10�

In terms of these variables, the penalty function be-
comes

J�c, �� � �d � Qd̃�T�e
�1 �d � Qd̃�

� �n�1
N ���e

�1
2BPR�1
2c�n � d̂n�2 � � �
n�1

N

cn
2,

�A11�

where it is understood that the nth element of a vector
is indicated by the subscript n.

Let c� denote the value of c that minimizes J[c, �],
keeping � fixed. The strategy outlined in Egbert and
Erofeeva (2002) provides an efficient algorithm for ob-
taining c�. Let the QR decomposition of ��1/2

e BPR�1/2

be given by WFQF, where WF is an Nz 	 N orthogonal
matrix and QF is an N 	 N upper-triangular matrix. Let
d be defined by projecting the data vector, d̂, into the
space spanned by the reduced representer basis, d �
WT

F d̂. In terms of these variables, the penalty function
may be written

J�c, �� � �d � Qd̃�T�e
�1 �d � Qd̃� � �d̂ � WFd�T�d̂ � WFd�

� �
n�1

N

��QFc�n � dn�2 � � �
n�1

N

cn
2. �A12�

If we let the singular value decomposition (SVD) of QF

be given by

QF � W�UT, �A13�

where W and U are orthogonal matrices and � is the
diagonal matrix of singular values of QF, then J is mini-
mized by c � c�, where

c� � U��2 � �I��1�WTd. �A14�

An ordinary cross-validation function may be defined
in terms of the twice-reduced and rotated data vector,
d. The ordinary (leaving out one) cross-validation func-
tion corresponding to this observable tidal data error in
Eq. (A12) is

V0��� �
1
N �

k�1

N

�Mkc�
�k� � dk�2, �A15�

where Mk is the kth row of QF, and c � c[k]
� is the

minimizer of the penalty function

J�c, �, k� � �
n�1,n�k

N

��QFc�n � dn�2 � � �
n�1

N

cn
2.

�A16�
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The “leaving-out-one” lemma (Craven and Wahba
1979) shows that the ordinary cross-validation function
may be written in terms of c� as

V0��� �
1
N �

k�1

N
�Mkc� � dk�2

�1 � Akk����2 , �A17�

where

Akk �
�Mkc�

�dk

are the diagonal elements of the so-called influence ma-
trix, A:

A � W��2 � �I��1�2WT. �A18�

The importance of Eq. (A17) is that it allows one to
evaluate the ordinary cross-validation function without
having to calculate each value of c[k]

� , for k � 1, . . . , N.
The generalized cross-validation function is indepen-

dent of rotational transformations of the data vector
and, consequently, it is more stable than the ordinary
cross-validation function for estimating the predictive
error of c�. The generalized cross-validation function is
given by

VGCV��� �
1
N �

k�1

N
�Mkc� � dk�2

�1 � �1����2 , �A19�

where �1(�) � N�1Tr(A). By using the SVD of QF,
defined above, the generalized cross-validation func-
tion may be written

VGCV��� �
1
N �

k�1

N
����k

2 � ���1�WT d�k�2

�1 � �1����2 ,

�A20�

where �k is the kth element on the diagonal of �, and

�1��� �
1
N �

k�1

N
�k

2

�k
2 � �

. �A21�

Figure 3 shows how the predictive error of the M2

inverse solution depends on the regularization param-
eter, �. For values of � above 100, the penalty func-
tional assigns the model too much weight, and the in-
verse solution oversmoothes the data. For � less than 1,
the penalty functional assigns the data too much
weight, and the inverse solution overfits the data. That
is to say, the predictive error increases as � → 0 because
the inverse solution is interpolating measurement error
in this limit. The predictive error is evidently minimum
near � � 10, which is used to produce the nominal best
estimate in the text.
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