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ABSTRACT

Direct numerical simulations (DNS) of a shear layer with salt-fingering-favorable stratification have been

performed for different Richardson numbers Ri and density ratios Rr. In the absence of shear (Ri 5 ‘), the

primary instability is square planform salt fingering, alternating cells of rising and sinking fluid. In the pres-

ence of shear, salt fingering takes the form of salt sheets, planar regions of rising and sinking fluid, aligned

parallel to the sheared flow. After the onset of secondary instability, the flow becomes turbulent. The con-

tinued influence of the primary instability distorts the late-stage structure and hence biases isotropic estimates

of the turbulent kinetic energy dissipation rate �. In contrast, thermal and saline gradients evolve to become

more isotropic than velocity gradients at their dissipation scales. Thus, the standard observational method-

ology of estimating the turbulent kinetic energy dissipation rate � from vertical profiles of microscale gradients

and assuming isotropy can underestimate its true value by a factor of 2–3, whereas estimates of thermal and

saline dissipation rates using this approach are relatively accurate. Likewise, estimates of G from vertical

profiles overestimate the true G by roughly a factor of 2. Salt sheets are ineffective at transporting momentum.

Thermal and saline effective diffusivities decrease with decreasing Ri, despite the added energy source

provided by background shear. After the transition to turbulence, the thermal to saline flux ratio and the

effective Schmidt number remain close to the values predicted by linear theory.

1. Introduction

Salt-fingering-favorable stratification occurs when a

gravitationally unstable vertical gradient of salinity is

stabilized by that of temperature. In such conditions, the

faster diffusion of heat relative to salt can generate cells

of rising and sinking fluid known as salt fingers. Salt-

fingering-favorable stratification is found in much of the

tropical and subtropical pycnocline (You 2002). The most

striking signatures are in thermohaline staircases, stacked

layers of different water types separated by sharp thermal

and saline gradient interfaces. These are found at several

locations, such as in the subtropical confluence east of

Barbados, under the Mediterranean and Red Sea salt

tongues, and in the Tyrrhenian Sea (Tait and Howe

1968; Lambert and Sturges 1977; Schmitt 1994).

Salt-fingering-favorable conditions can be created by

large-scale vertical shears associated with the subinertial

circulation (Schmitt 1990). Zhang et al. (1998) found a sig-

nificant relationship between the formation of fingering-

favorable conditions and large-scale vertical shear in a

model of the North Atlantic.

In the presence of finescale shear such as that due to

high-wavenumber near-inertial waves in the ocean, salt-

fingering instability is supplanted by salt-sheet instability,

alternating planar regions of rising and sinking fluid,

aligned parallel to the sheared flow (Linden 1974). Al-

though theories for the initial growth of salt-fingering and

salt-sheet instabilities are well established (Stern 1960;

Linden 1974; Schmitt 1979b; Kunze 2003; Smyth and

Kimura 2007), the vertical fluxes of momentum, heat, and

salt in the nonlinear regime are not well understood.

Dissipation rates of property variances in turbulent salt

fingering can be measured in the ocean by microstructure
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profilers, but interpretation of these results has histori-

cally relied on Kolmogorov’s hypothesis of isotropic tur-

bulence (Gregg and Sanford 1987; Lueck 1987; Hamilton

et al. 1989; St. Laurent and Schmitt 1999; Inoue et al.

2008). Kolmogorov (1941) proposed that small-scale tur-

bulence statistics are universal in the limit of high Reynolds

number. According to this hypothesis, anisotropy of the

energy-containing scales is lost in the turbulent energy

cascade so that the small scales, where energy is finally

dissipated, are statistically isotropic. The assumption of

small-scale isotropy greatly simplifies both the theory and

modeling of turbulence, as well as interpretation of mi-

crostructure measurements. Because the Reynolds num-

ber in oceanic salt-fingering systems is O(10) (McDougall

and Taylor 1984), the validity of this assumption is ques-

tionable. We will examine both mixing rates and the isot-

ropy of the dissipation range in turbulent salt fingering

by means of direct numerical simulations of diffusively

unstable shear layers.

Estimates of dissipation rates, combined with the Osborn

and Cox (1972) diffusivity model, furnish estimates of the

effective diffusivities of heat, salt, and momentum. Ef-

fective diffusivities are used to parameterize turbulent

fluxes in models of large-scale phenomena, ranging from

finescale thermohaline intrusions (e.g., Toole and Georgi

1981; Walsh and Ruddick 1995; Smyth and Ruddick

2010) to basin-scale circulations (e.g., Zhang et al. 1998;

Merryfield et al. 1999).

Effective diffusivities can be calculated directly from

direct numerical simulations (DNS). Thermal and saline

effective diffusivities for two-dimensional (2D) salt fin-

gering have been computed in previous studies (W. J.

Merryfield and M. Grinder 2000, personal communica-

tion; Stern et al. 2001; Yoshida and Nagashima 2003;

Shen 1995). The effective diffusivities for 3D sheared

salt fingering were first calculated by Kimura and Smyth

(2007) for a single initial state.

In this paper and the companion paper (Smyth and

Kimura 2011), we extend Kimura and Smyth (2007)

to cover a range of oceanographically relevant initial

background states. We focus on the case for which the

Richardson number Ri exceeds the critical value 1/4: that

is, shear is too weak to produce Kelvin–Helmholtz in-

stability (Miles 1961). The case Ri , 1/4 is addressed

separately (Smyth and Kimura 2011). Although oceanic

salt fingering does not always lead to staircases; that is the

regime we focus on here as it is most amenable to direct

simulation.

In section 2, we describe our DNS model and initial

conditions. An overview of salt-sheet evolution is given in

section 3. Section 4 discusses the nature of anisotropy at

dissipation scales and its implications for interpreting pro-

filer measurements. In section 5, we discuss the effective

diffusivities of momentum, heat, and salt and suggest a

parameterization in terms of ambient property gradi-

ents. Our conclusions are summarized in section 6.

2. Methodology

We employ the three-dimensional incompressible

Navier–Stokes equations with the Boussinesq approxi-

mation. The evolution equations for the velocity field,

u(x, y, z, t) 5 (u, y, w), in a nonrotating, Cartesian co-

ordinate system (x, y, z) are

D

Dt
� n=2

� �
u 5�$p 1 bk 1 n=2u

$ � u 5 0. (1)

Here, D/Dt 5 ›/›t 1 u � $ and n are the material de-

rivative and kinematic viscosity, respectively. The vari-

able p represents the reduced pressure (pressure scaled

by the uniform density r0). The total buoyancy is defined

as b 5 2g(r 2 r0)/r0, where g is the acceleration due

to gravity. Buoyancy acts in the vertical direction, as

indicated by the vertical unit vector k. We assume that

the equation of state is linear, and therefore the total

buoyancy is the sum of thermal and saline buoyancy

components (bT and bS), each governed by an advection–

diffusion equation,

b 5 b
T

1 b
S
;

Db
T

Dt
5 k

T
=2b

T
; and (2)

Db
S

Dt
5 k

S
=2b

S
. (3)

Molecular diffusivities of heat and salt are denoted by kT

and kS, respectively.

Periodicity intervals in streamwise x and spanwise y

directions are Lx and Ly. The variable Lz represents the

vertical domain length. Upper and lower boundaries,

located at z 5 2Lz/2 and z 5 Lz/2, are impermeable (w 5

0), stress free (›u/›z 5 ›y/›z 5 0), and insulating with

respect to both heat and salt (›bT /›z 5 ›bS/›z 5 0).

To represent mixing in the high-gradient interface of a

thermohaline staircase, we initialize the model with a

stratified shear layer in which shear and stratification are

concentrated at the center of the vertical domain with

a half-layer thickness of h,

u

Du
5

b
T

DB
T

5
b

S

DB
S

5 tanh
z

h

� �
.

The constants Du, DBT, and DBS represent the change

in streamwise velocity, thermal buoyancy, and saline
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buoyancy across the half-layer thickness of h. For com-

putational economy, we set h 5 0.3 m, which is larger

than the maximum finger height predicted by Kunze

(1987). This is at the low end of the range of observed

layer thickness (e.g., Gregg and Sanford 1987; Kunze

1994). The change in the total buoyancy is DB 5 DBT 1

DBS. In all the DNS experiments, the initial interface

buoyancy frequency
ffiffiffiffiffiffiffiffiffiffiffi
DB/h
p

is fixed at 1.5 3 1022 rad s21,

a value typical of the thermohaline staircase east of

Barbados (Gregg and Sanford 1987). These constants

can be combined with the fluid parameters n, kT, and

kS to form the following nondimensional parameters,

which characterize the flow at t 5 0:

Ri5
DBh

Du2
;

R
r
5�

DB
T

DB
S

;

Pr 5
n

k
T

; and

t 5
k

S

k
T

.

We have done seven experiments with different Ri and

Rr (Table 1). The bulk Richardson number Ri measures

the relative importance of stratification and shear. If

Ri , 0.25, the initial flow is subjected to shear insta-

bilities (Miles 1961; Howard 1961; Hazel 1972; Smyth and

Kimura 2011). Here, we chose high enough Ri to ensure

that shear instabilities do not disrupt the growth of salt-

fingering modes. A typical range of Ri in a sheared ther-

mohaline staircase is ;(3–100) (Gregg and Sanford 1987;

Kunze 1994). The Reynolds number based on the half-

layer thickness and the half change in streamwise velocity

is given by Re 5 hDu/v. Because DB and h are kept

constant in our simulations, Re and Ri are not in-

dependent: Re 5 1354Ri21/2 with Re 5 0 and Ri 5 ‘,

representing a single unsheared case that was included

for comparison.

The density ratio Rr quantifies the stabilizing effect of

thermal to destabilizing effect of saline buoyancy com-

ponents; salt fingering grows more rapidly as Rr ap-

proaches unity. The value Rr ’ 2 is characteristic of the

main thermocline in the subtropical gyres (Schmitt et al.

1987; Schmitt 2003). Thermohaline staircases form when

Rr is less than 1.7 (Schmitt et al. 1987), and values as low

as 1.15 have been reported (Molcard and Tait 1977). To

cover this range of fingering regimes, we use the values

2, 1.6, and 1.2. The Prandtl number Pr and diffusivity

ratio t represent ratios of the molecular diffusivities of

momentum, heat, and salt. The Prandtl number was set

to 7, which is typical for seawater. The diffusivity ratio in

the ocean is 0.01: that is, the heat diffuses two orders of

magnitude faster than salt. The vast difference in diffu-

sivity requires DNS to resolve a wide range of spatial

scales, making it computationally expensive. In previous

DNS of seawater, t has been artificially increased to reduce

computational expense (e.g., Stern et al. 2001; Gargett

et al. 2003; Smyth et al. 2005). Kimura and Smyth (2007)

conducted the first 3D simulation with t 5 0.01 and

found that increasing t from 0.01 to 0.04 reduced ther-

mal and saline effective diffusivities by one-half. In the

cases presented here, we set t to 0.04 to allow extended

exploration of the Ri and Rr dependence.

The fastest-growing salt-sheet wavelength predicted by

linear stability analysis is lfg 5 2p(vkT2h/DB)1/4 (Stern

1975; Schmitt 1979b). Our value of lfg 5 0.032 m is sim-

ilar to the observed wavelength (Gregg and Sanford 1987;

Lueck 1987). We accommodate four wavelengths of

the fastest-growing primary instability in the spanwise

TABLE 1. Relevant parameters used in our DNS experiments. The wavenumber of the fastest-growing salt-fingering instability is

determined by the magnitude of wavenumber, k2 1 l2, where k and l represent the streamwise and spanwise wavenumbers. In the case of

salt sheets (all cases except DNS5), there is not streamwise dependence (k 5 0), where the salt-fingering case (DNS5) has k 5 l. In our

DNS experiments, k2 1 l2 is kept constant.

Case 1 2 3 4 5 6 7

Ri 0.5 2 6 20 ‘ 6 6

Rr 1.6 1.6 1.6 1.6 1.6 1.2 2.0

Pr 7 7 7 7 7 7 7

Re 1914 957 553 302 0 553 553

t 0.04 0.04 0.04 0.04 0.04 0.04 0.04

lfg (m) 0.031 0.031 0.031 0.031 0.031 0.031 0.031

Lx (m) 0.9 0.9 0.9 0.9 1.2 0.9 0.9

Ly (m) 0.12 0.12 0.12 0.12 0.18 0.12 0.12

Lz (m) 1.8 1.8 1.8 1.8 1.8 1.8 1.8

nx 1024 1024 1024 1024 1024 1024 1024

ny 144 144 144 144 144 144 144

nz 2048 2048 2048 2048 1538 2048 2048
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direction, Ly 5 4lfg. The vertical domain length Lz was

chosen such that vertically propagating plumes reach

statistical equilibrium; we found that Lz equal to 6 times

h was sufficient. Here, Lx was chosen to be large enough

to accommodate subsequent secondary instabilities.

After sensitivity tests, we chose Lx 5 28lfg.

The primary instability was seeded by adding an initial

disturbance proportional to the fastest-growing mode of

linear theory, computed numerically as described in

Smyth and Kimura (2007). We seed square planforms for

the unsheared case and sheets in the presence of shear.

The vertical displacement amplitude is set to 0.02h, and

a random noise is added to the initial velocity field with

an amplitude of 1 3 1022 hsfg to seed secondary insta-

bilities. The variable sfg indicates the growth rate of the

fastest-growing linear normal mode.

The numerical code used to solve (1)–(3) is described

by Winters et al. (2004). The code uses Fourier pseudo-

spectral discretization in all three directions and time in-

tegration using a third-order Adams–Bashforth operator.

A time step is determined by a Courant–Friedrichs–Lewy

(CFL) stability condition. The CFL number is maintained

below 0.21 for DNS experiments presented here. The

code was modified by Smyth et al. (2005) to accommodate

a second active scalar, which is resolved on a fine grid with

spacing equal to ½ the spacing used to resolve the other

fields. The fine grid is used to resolve salinity. The fine-

grid spacing is equal to 0.15lfg

ffiffiffi
t
p

in all three directions, as

suggested by Stern et al. (2001).

3. Simulation overview

Figure 1 shows the saline buoyancy field for the case

Ri 5 6, Rr 5 1.6 at selected times. The time is scaled by

the linear normal growth rate of salt sheets sfg described

by Smyth and Kimura (2007). Figure 1a shows the salt-

sheet instability: the planar regions of vertical motions

oriented parallel to the background shear flow. Rising and

sinking fluid appear in green and blue, respectively.

When the salt sheets reach the edges of the interface

(indicated by purple and red), they start to undulate in

the spanwise direction (Fig. 1b). At the same time, the

FIG. 1. Evolution of saline buoyancy field for Ri 5 6, Rr 5 1.6 in an interface sandwiched between two homo-

geneous layers: sfst 5 (a) 3.1, (b) 5, and (c) 8.7. Inside the interface, the lowest (27.15 3 1025 m2 s21) and highest

(7.15 3 1025 m2 s21) saline buoyancy are indicated by purple and red, respectively. Homogeneous regions above and

below the high-gradient layer are transparent.
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salt sheets develop streamwise dependence at the edges

and center of the interface. At the edges of the interface,

the streamwise dependence appears as ripples. At the

center, tilted laminae are evident, reminiscent of those

seen in shadowgraph images of optical microstructure

(Kunze 1987, 1990; St. Laurent and Schmitt 1999). After

the salt sheets are disrupted, the flow evolves into tur-

bulent salt fingering (Fig. 1c).

4. Dissipation rates and isotropy

In this section, we explore the geometry of scalar

(thermal and saline buoyancy) and velocity gradient

fields. The isotropy of scalar fields is diagnosed in terms

of the thermal and saline buoyancy variance dissipation

rates,

x
T

5 2k
T
h $b

T
9

�� ��2i; x
S

5 2k
S
h $b

S
9

�� ��2i. (4)

Variables, b9T and b9S are thermal and saline buoyancy

perturbations,

b
T
9(x, y, z, t) 5 b

T
(x, y, z, t)� B

T
(z, t) and

b
S
9(x, y, z, t) 5 b

S
(x, y, z, t)� B

S
(z, t),

where BT and BS are horizontally averaged bT and bS,

respectively. The angle brackets indicate averaging over

volume between 22h , z , 2h, where turbulent salt

fingering is most active.

Turbulent kinetic energy dissipation rate is given by

�5
n

2

›u
i
9

›x
j

1
›u

j
9

›x
i

 !2* +
.

The primes indicate the perturbation velocity fields,

u9(x, y, z, t) 5 u(x, y, z, t)� [U(z, t), 0, 0], (5)

where U(z, t) is the streamwise velocity averaged over

horizontal directions.

In shear-driven turbulence, the degree of isotropy is

predicted by the buoyancy Reynolds number, Reb 5

�/vN2, where N2 5 hBT,z 1 BS,zi. Subscripts preceded by

commas indicate partial differentiation. As Reb increases,

the dissipation range separates from the energy-containing

scales and become increasingly isotropic. Gargett et al.

(1984) concluded from observations of shear-driven

turbulence that � can be accurately estimated based on

isotropy when Reb . 2 3 102. Itsweire et al. (1993) found

that the assumption of isotropy is invalid for Reb , 102

using DNS of a uniformly stratified shear flow. A sim-

ilar result holds in DNS of a localized stratified shear

layer (Smyth and Moum 2000). The skill of Reb as a

predictor of isotropy in turbulent salt fingering remains

to be assessed.

In fingering-favorable stratification with turbulence,

laboratory experiments have shown that finger structures

have Reb ; O(10) for Rr , 2 (McDougall and Taylor

1984). Oceanic observations also suggest that Reb ;

O(10) (St. Laurent and Schmitt 1999; Inoue et al. 2008).

The Reb from our simulation increases until salt sheets

start to break up (sfgt ’ 5) and reaches a maximum value

of Reb 5 10.8 at sfgt 5 8 (Fig. 2). After sfgt . 8, the flow

becomes quasi steady with Reb ’ 10.

In our DNS, Reb is comparable to the observed values

quoted above; therefore, we may use our results to quan-

tify the bias inherent in one-dimensional observational

estimates of dissipation rates. Although the criterion found

for shear-driven turbulence that dissipation-scale isotropy

occurs above Reb ; 200 does not apply directly to tur-

bulent salt fingering, the relatively small value for Reb

found in both DNS and observations suggests that the

dissipation scales could be significantly anisotropic.

a. Isotropic approximations for xS and xT

Most oceanographic microstructure measurements are

one dimensional, either in the vertical or horizontal, and

assume isotropy in estimating dissipation rates. The

validity of this assumption is tested here for turbulent

salt fingering. The saline and thermal variance dissipa-

tion rates can be expressed in three different forms as

FIG. 2. Evolution of volume-averaged Reb for Ri 5 6, Rr 5 1.6. After initial roughly

exponential growth, Reb reaches a statistical steady state after sfgt ; 5.

1148 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 41



x
S

i
5 6k

S

›b
S
9

›x
i

� 	2* +
and (6)

x
T

i

5 6k
T

›b
T
9

›x
i

� 	2* +
, (7)

where i ranges from 1 to 3 and is not summed over. Each

of three different forms has the same magnitude for

isotropic turbulence (e.g., xS 5 xS1
5 xS2

5 x
S3

). Despite

Reb ; O(10) for observed salt fingering, observations

and numerical simulations support the thermal buoy-

ancy field being nearly isotropic. Two-dimensional nu-

merical simulations of Shen (1995) showed that the

thermal spectral variance is distributed approximately

equally in both vertical and horizontal wavenumbers.

Lueck (1987) found that the magnitude of the vertical

thermal buoyancy gradient was similar to the horizontal

gradient in a thermocline staircase east of Barbados.

Because the measurements were taken at sites with Ri ;

10 and never less than unity, Lueck (1987) argued that

the isotropic structure is not likely the result of shear-

driven turbulence. Shadowgraph images of salt fingering

showed coherent tilted laminae (Kunze 1987). Because

shadowgraph images tend to emphasize the dissipative

scales of the salinity field, the shadowgraph images are

thought to reflect anisotropic salinity structures at the

salinity Batchelor scale (Kunze 1987, 1990; St. Laurent

and Schmitt 1999).

In our simulations, signatures of salt-sheet anisotropy

decrease with time in both saline and thermal buoyancy

fields (Figs. 3a,b). In the linear regime (0 , sfgt , 3),

virtually all salinity and thermal buoyancy variance

dissipation comes from spanwise derivatives (indicated

by solid lines in Figs. 3a,b), consistent with the geometry

of salt sheets. With the onset of secondary instability,

contributions from streamwise and vertical derivatives

increase. The ratios xSi
/xS and xTi

/xT become quasi

steady in the turbulent regime (sfgt . 8), by which

time temperature and salinity structure are nearly

isotropic. The slight (;10%) anisotropy that remains

in the turbulent state is consistent with that of the

initial instability, with the contribution from the span-

wise derivative being the largest. Even after transition,

salt-fingering-favorable mean stratification is maintained

and salt-sheet instability continues to influence small-

scale anisotropy.

We now turn to the effects of Ri and Rr on isotropy,

focusing on the thermal buoyancy because it is easiest to

measure in the ocean. Time averages of the ratios x
Ti

over sfgt . 8 succinctly represent the Ri and Rr de-

pendences of anisotropy in the turbulent state (Fig. 4).

As in Fig. 3, anisotropy characteristics of the linear in-

stability are evident in the turbulent regime (Fig. 4a). In

the unsheared case Ri 5 ‘, the contributions from the

horizontal derivatives are approximately equal (xT1
’

xT2
), indicating that the thermal buoyancy gradient is

statistically axisymmetric about the vertical. As Ri de-

creases (i.e., as background shear is increased from zero),

the contribution from x
T2

increases, whereas that from

xT1
decreases. The contribution from xT3

to xT increases

with decreasing Ri, resembling the characteristics of

FIG. 3. (a) Saline and (b) thermal buoyancy variance dissipation rates computed from in-

dividual derivatives (xSi
and x

Ti
) represented as fractions of the true value (xS and xT) for the

case Ri 5 6, Rr 5 1.6. The solid horizontal lines indicate unity (the ratio for isotropic turbulence).
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shear-driven turbulence (Itsweire et al. 1993; Smyth and

Moum 2000).

As Rr increases, the geometric characteristics of salt

sheets dominate (Fig. 4b); that is, the contribution from

xT2
increases with increasing Rr, whereas the contri-

bution from xT 1 decreases. Salt sheets become more

horizontally isotropic ( xT1
’ xT2

) with decreasing Rr

(Fig. 4b), as observed in laboratory salt-fingering ex-

periments (Taylor 1992). Furthermore, isotropy ap-

proximations become more accurate with decreasing

Rr (Figs. 4a–c), which also holds in DNS of three-

dimensional unbounded salt fingers (Caplan 2008).

b. Isotropic approximations for �

In isotropic turbulence, � can be represented by any

one of the nine expressions,

�5
15n

2� d
ij

›u9
i

›x
j

 !2* +
, (8)

with no summation over i or j (Taylor 1935). The vari-

able dij represents the Kronecker delta function. In

general, these expressions are unequal, and their dif-

ferences reflect the degree of anisotropy of the velocity

gradients at dissipation scales.

We look first at expressions involving the three deriva-

tives of the vertical velocity, because these will prove to

dominate. In the unsheared case (Fig. 5a), the contribution

from w9,y
2 and w92

,x are the same, reflecting the geometry of

salt-fingering instability. In the sheared case (Fig. 5b), the

contributions from cross-sheet w92
,y to � exceed those of

along-sheet w92
,x and vertical w92

,z , reflecting the geometry

of salt-sheet instability. As the flow becomes turbulent,

the ratios 7.5nhw92
,xi/�, 7.5nhw92

,y i/�, and 7.5nhw92
,z i/� reach

steady values between 1.5 and 3 at sfgt ’ 8 (Figs. 5a,b);

however, none of the ratios converge to unity. The axi-

symmetry of the primary salt-fingering state continues to

influence the geometry of the dissipation scales in the

turbulent state (Fig. 5a). In contrast, the geometry of

the salt-sheet instability is disrupted by the increase in

contribution from w92
,x in the turbulent state (Fig. 5b).

To quantify Ri and Rr dependence, the nine approxi-

mations in (8) were averaged over sfgt . 8 and normal-

ized by the true value of � in the turbulent regime (Fig. 6).

Approximations involving the vertical velocity all over-

estimate �, as illustrated previously in Fig. 5, whereas

those involving horizontal velocities underestimate �.

This is consistent with the dominance of vertical motions

in turbulent salt fingers and salt sheets. In the absence of

background shear, the contributions from w92
,x and w92

,y

are the largest, which is consistent with the horizontal

isotropy of square planform salt fingering. In the sheared

cases, the contribution from w92
,y is the largest, consistent

with salt-sheet geometry, but, unlike in the linear re-

gime, the contribution from w92
, x is significant.

In both sheared and unsheared cases, the second larg-

est contribution comes from w92
,z . This vertical conver-

gence squeezes the fluid vertically at the tips of rising and

sinking plumes. This vertical compression is compensated

by horizontal divergence (hw92
,z i’ hu92

, xi, hy92
,y i). Because of

the difference in geometry between sheared and un-

sheared cases, the contributions from u92
, x and y92

,y that

balance w92
,z differ. In the unsheared case, the vertically

squeezed fluid at the tips of plumes is displaced equally in

the streamwise and spanwise directions (hu92
, xi’ hy92

, yi). In

FIG. 4. Approximate average ratios of component thermal variance dissipation rates with the true dissipation rates xTi
/xT for various Ri

and Rr: (a) xT1
/xT , (b) xT2

/xT , and (c) xT3
/xT . Each of the three different forms in (7) is normalized by its true value xT to quantify the

degree of anisotropy. Each ratio is averaged for sfgt . 8 to represent the properties of the turbulent state. Ratios below unity are blue,

ratios above unity are red, and ratios equal to unity are black.
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contrast, the geometry of the sheared case displaces more

fluid in the spanwise direction (hu92
, xi, hy92

, yi).

The approximations using horizontal shears also show

the influence of the linear instabilities. The balances

in the unsheared case, hu92
,y i’ hy92

, xi, hu92
, xi’ hy92

,y i, and

hu92
,z i’ hy92

,z i, indicate axisymmetry about the vertical.

As Ri decreases, contributions from u92
,z and y92

,z increase.

This indicates that the flow is developing characteristics

FIG. 5. Evolution of component ratios 7.5nhw9
2

, xi/�, 7.5nhw9
2

,y i/�, and 7.5nhw9
2

,z i/� for (a) un-

sheared case (Ri 5 ‘, Rr 5 1.6) and (b) sheared case (Ri 5 6, Rr 5 1.6). The solid horizontal

lines indicate the ratio for isotropic turbulence (51).

FIG. 6. Approximations of � from each of the squared perturbation velocity derivatives as a fraction of its true value � for different Ri and

Rr. Each ratio is averaged for sfgt . 8 to represent the geometry in the turbulent state: for (a)–(c) u9, (d)–(f) y9, and (g)–(i) w9.

JUNE 2011 K I M U R A E T A L . 1151



of shear-driven turbulence as described by Itsweire et al.

(1993) and Smyth and Moum (2000).

c. Impact of anisotropy on � and xT from vertical
profilers

Observational estimates of turbulent kinetic energy

and thermal variance dissipation rates are often based

on data from vertical profilers. Estimates of the salinity

variance dissipation rate are scarce because of the need

for extremely fine resolution (e.g., Nash and Moum 1999).

The profilers measure the vertical change of horizontal

velocities and temperature for which � and xT are esti-

mated by

�z 5
15n

4

›u9

›z

� 	2
* +

1
›y9

›z

� 	2
* + !

and (9)

xz
T 5 6k

T

›b
T
9

›z

� 	2
* +

. (10)

For isotropic flows, these approximations are exact:

that is, � 5 �z and xT 5 xT
z. Though Reb associated with

fingering is ;(10), isotropic approximations have been

justified by observations (Lueck 1987) and numerical

simulation (Shen 1995), both showing nearly isotropic

thermal buoyancy field in the turbulent regime. However,

isotropy in temperature gradient does not guarantee

isotropy in velocity gradients. Furthermore, this justifi-

cation does not hold for the initial stage of the flow when

salt sheets or salt fingers are active. The geometry of salt

fingers and salt sheets led theoretical models to utilize

the ‘‘tall fingers’’ (TF) approximation in an unbounded

salt fingers and salt sheets (Stern 1975; Kunze 1987;

Smyth and Kimura 2007). Because salt fingers and salt

sheets are tall and narrow, the TF approximation as-

sumes that the vertical derivative is negligible relative to

horizontal derivatives (�z 5 xT
z 5 0).

The approximation (9) gives a poor estimate of �, even

in the turbulent regime of fingering (Figs. 7a,b). As the

flow evolves, �z/� increases from near zero but never

converges to unity. Instead, at quasi-steady state, the ratio

ranges between 0.32 and 0.52 for sfgt . 8 (Figs. 7a,b). In

contrast, the quasi-steady value of xT
z /xT ranges be-

tween 0.8 and 1.2 (Figs. 7c,d). These results suggest

that, in the presence of turbulent salt fingering, xT
z is an

appropriate approximation, but �z underestimates � by

a factor of 2–3.

5. Turbulent fluxes and diffusivities

Of primary interest to the oceanographic community

is understanding the turbulent fluxes associated with salt

fingers. Measurements of � and xT allow indirect esti-

mates of turbulent fluxes via the dissipation ratio (also

called ‘‘mixing efficiency’’; e.g., McEwan 1983),

FIG. 7. Time evolution of the 1D vertical dissipation rates normalized by their true values. The �z/� evolution is

shown for different (a) Ri and (b) Rr. The xT
z /xT evolution is shown for different (c) Ri and (d) Rr. The solid

horizontal lines indicate the ratio for isotropic turbulence.
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G 5
N2x

T

2�hB2
T,zi

. (11)

In turbulence, mechanical energy can be expended by

raising the mass of fluid through mixing or kinetic en-

ergy dissipation by molecular viscosity. The quantity G

approximates the fraction of the turbulent kinetic en-

ergy that is irreversibly converted to potential energy

due to mixing. In shear-driven turbulence, G can be used

to estimate the effective diffusivity of heat and salt as

KT 5 KS 5 G(�/N2) (Osborn 1980).

The effective diffusivities of heat, salt, and momen-

tum are defined via the standard flux–gradient relations,

K
T

5�
hw9b

T
9i

›B
T

›z


 � ; K
S

5�
hw9b

S
9i

›B
S

›z


 � ; K
U

5�hu9w9i
›U

›z


 � .

(12)

Relationships between the thermal and saline buoyancy

and momentum fluxes can be expressed using the heat–

salt flux ratio and the turbulent Schmidt number,

g
s
5�
hw9b9

T
i

hw9b9
S
i ; Sc 5

K
U

K
S

.

In square and sheet planform salt-fingering instabilities,

an unstable distribution of mean saline buoyancy drives

salt and heat fluxes downward. This implies that thermal

buoyancy flux is working against the gravity, w9b9T , 0.

The turbulent Schmidt number quantifies the relative

importance of effective diffusivity of momentum to that

of salt. In the following subsections, we will quantify the

Ri and Rr dependences of G, the effective diffusivities,

gs, and Sc.

a. Estimation of G

The value of G can be approximated by Gz,

Gz 5
N2xz

T

2�zhB2
T ,zi

. (13)

In homogeneous, stationary isotropic turbulence, G 5

Gz. In shear-driven turbulence, measurements indicate

Gz ’ 0.2 (Osborn 1980; Oakey 1982; Moum 1996). This

value is accurate for Reb . 2 3 102 (Gargett et al. 1984).

Fastest-growing salt-finger theory suggests 0.2 , Gz ,

0.8 (Hamilton et al. 1989; Inoue et al. 2008), whereas

measurements suggest that G can have higher values:

0.4 , Gz , 2 (St. Laurent and Schmitt 1999; Inoue et al.

2008). At statistical steady state, balances of turbulent

kinetic energy and scalar variance imply

G 5
R

r
� 1

R
r

g
s

1� g
s

(14)

in the absence of shear (Hamilton et al. 1989; McDougall

and Ruddick 1992). For fastest-growing fingers, G can

be expressed as a function of Rr by substituting gs 5

(Rr)1/2[(Rr)1/2 2 (Rr 2 1)1/2] (Stern 1975; Kunze 1987).

In the presence of shear, for the fastest-growing salt

sheets,

G 5
R

r
� 1

R
r

PrRi

PrRi 1 1
(15)

(Smyth and Kimura 2007). In the present DNS for Rr 5

1.6, G lies below 0.6 (Fig. 8a). In the linear regime (sfgt ,

2), G is consistent with (15). The value of G decreases

slowly as the flow becomes unstable to secondary in-

stability (sfgt ; 3) and then becomes quasi steady be-

tween 0.3 and 0.4 in the turbulent salt-fingering regime.

The value of Gz is generally larger than G (Fig. 8b),

consistent with �z , �. For Ri . 6, Gz can be 30 times larger

than G in the preturbulent state (0 , sfgt , 3). A local

peak of Gz/G occurs during the secondary instability

(sfgt ; 5). As the flow becomes turbulent, the ratio de-

creases and approaches a quasi-steady value of ;2: that

is, Gz overestimates G by a factor of 2 in the turbulent

salt-fingering regime.

Because both G and Gz become quasi steady after

sfgt 5 8, both G and Gz are averaged over sfgt . 8 to

quantify Ri and Rr dependences in the turbulent regime.

In all cases, Gz coincides approximately with observa-

tions (Fig. 9). Both observed and simulated Gz increase

with increasing Ri. Similarly, G increases with increasing

Ri. The Rr dependence of the observed Gz and the DNS

result exhibit different trends (Fig. 10). Observed Gz de-

creases with increasing Rr, whereas both Gz and G from

DNS increase with increasing Rr. The difference in Rr

dependence of the observations and our simulation can

be attributed to Ri. Our simulation has uniform Ri,

whereas the Ri in the observation lies between 3 and 7.

The linear result (15) from Smyth and Kimura (2007)

predicts G from DNS remarkably well (Figs. 9, 10).

Our results contradict the isotropy assumption used to

infer G from microstructure profiles. This has implica-

tions for recent attempts to extend the k–� formalism to

include double diffusion (Canuto et al. 2008), where Gz

was used to validate model parameters. Also, Inoue

et al. (2008) used Gz from St. Laurent and Schmitt (1999)

to suggest that the wavelength of oceanic fingers is larger

that that of the fastest-growing mode (their Fig. 5). In

contrast, we find G consistent with linear fastest-growing

fingers (Figs. 9, 10).
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b. Effective diffusivities

Effective diffusivities are often used in large-scale models

to represent small-scale physics (e.g., Bryan 1987; Gargett

and Holloway 1992; Walsh and Ruddick 1995). Gargett

and Holloway (1992) found that steady-state solutions of

low-resolution general circulation models (GCMs) were

sensitive to the ratio of KT to KS. More recent modeling

studies have found that regional circulations are signifi-

cantly altered when parameterizations of KT and KS due to

fingering are introduced (Merryfield et al. 1999; Zhang

et al. 1998).

Parameterizations of these diffusivities are essential in

modeling flows where turbulent salt fingering controls

small-scale fluxes of heat and salt, such as thermohaline

interleaving. Walsh and Ruddick (2000) employed a pa-

rameterization of KS for pure salt fingering, KS 5 KS0
R�n

r .

Smyth (2008) fitted this simple model to DNS results from

Stern et al. (2001) and obtained n 5 2 and KS0
5 1024.

To add dependence on Ri, we compute a least squares fit

of KT and KS, averaged over sfgt . 8 for all simulations,

K
T

(R
r
, Ri) 5 3.07 3 10�5R�4.0

r Ri0.17 and (16)

FIG. 8. Evolution of (a) G and (b) Gz normalized by its true value G for different Ri. These ratios

are unity [thin solid line in (b)] for isotropic turbulence.

FIG. 9. The G and Gz for different Ri compared to observations from Inoue et al. (2008).

Vertical bars denote 95% confidence limits (Inoue et al. 2008). Mean Rr is nearly constant

around 1.65 in Inoue et al. (2008).
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K
S
(R

r
, Ri) 5 4.38 3 10�5R�2.7

r Ri0.17. (17)

Both KT and KS decrease with decreasing Ri (Figs. 11a,c),

which is also true in the salt-fingering system with Ri ,

0.25 described by Smyth and Kimura (2011). This find-

ing was unexpected and has important implications for

turbulence modeling, where it is often assumed that,

because background shear represents an energy source

for mixing, its introduction will increase effective dif-

fusivities (e.g., Large et al. 1994; Zhurbas and Oh 2001;

Smyth and Ruddick 2010). The Ri dependence differs

significantly from the prediction of Kunze (1994), KS }

Ri1.0, but is closer to that of Inoue et al. (2008), KS }

Ri0 (Fig. 11c).

We also find that KT and KS increase with decreasing

Rr (Figs. 11b,d), which has been reported in previous

DNS of two-dimensional salt fingering (W. J. Merryfield

and M. Grinder 2000, personal communication; Stern

et al. 2001) and laboratory experiments (Turner 1967;

Linden 1973; McDougall and Taylor 1984; Taylor and

Bucens 1989). Our KT and KS are consistent with DNS

results of W. J. Merryfield and M. Grinder (2000, personal

communication) (Figs. 11b,d). This agreement should be

interpreted with caution because of the difference in Ri, t,

and computational domain dimensions. Estimates for

three-dimensional salt fingering by Stern et al. (2001) are

twice as large; this could be due to the presence of the

shear and difference in t in our simulations (Figs. 11b,d).

In the absence of shear, our KS (open triangle) is con-

sistent with laboratory experiments (Turner 1967; Linden

1973; Schmitt 1979a) and theoretical prediction (Kunze

1987) (Fig. 12, small symbols and dashed–dotted curve).

Likewise, when Rr is sufficiently small, the effect of

shear is secondary and our results agree with those from

the laboratory experiments and theoretical prediction

(large solid triangle at Rr 5 1.2). However, when Ri is

finite and Rr is substantially greater than 1, shear may be

expected to have a significant effect. Our DNS results

show an overall reduction in KS in the sheared cases;

moreover, the decrease in KS with increasing Rr is am-

plified. Simulations with higher Rr are needed to verify

(17) with the laboratory experiments and theoretical

prediction (Fig. 12, solid curve).

In two-dimensional unsheared, turbulent salt fingers,

Stern et al. (2001) showed that decrease in t from 0.04 to

0.01 increased the heat flux by 15%. In 3D sheared,

turbulent salt fingering, Kimura and Smyth (2007) found

that the decrease in t from 0.04 to 0.01 increases the KT

and KS by a factor of 2. The effective diffusivities of heat

and salt for the ocean may therefore be up to 2 times

larger than (16) and (17).

The flux ratio gs remains within ;10% of the linear

value 0.6 (Fig. 13a). In the sheared, turbulent salt-fingering

regime, gs is about 8% higher than its linear value for the

unsheared case. Ruddick (1985) suggested that individual

salt sheets rapidly lose their momentum via lateral dif-

fusion and therefore Sc , 1. A laboratory experiment to

confirm this hypothesis was inconclusive (Ruddick et al.

1989). Linear stability analysis of salt sheets (Smyth and

Kimura 2007) and subsequent DNS (Kimura and Smyth

2007) for a single initial case confirm that Sc , 1 for Ri 5

2. The value of Sc , 1 holds for Ri ranging from 0.5 to 20

FIG. 10. As in Fig. 9, but for different Rrs. Mean Ri ranges between 0.4 and 10 for

Inoue et al. (2008).
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(Fig. 13b). The effective diffusivity of the momentum

(viscosity) is an order of magnitude smaller than that of

salt, confirming (over the simulated range of Ri and Rr)

that salt sheets are inefficient at transporting momentum.

c. Observational estimates of effective diffusivities

In interpreting observational data, the Osborn and Cox

(1972) diffusivity model in conjunction with the isotropy

assumption gives

K
xz

T 5
xz

T

2
›B

T

›z

� 	2
* + ; K

xz

S 5
xz

S

2
›B

S

›z

� 	2
* + , (18)

based on property variance dissipations, where xS
z 5

6kSh(›b9S/›z)2i. These estimates are exact for stationary,

homogeneous, isotropic turbulence. Here, we compare

these estimates with the true diffusivities KT and KS,

computed directly using fluxes (12).

FIG. 11. Effective diffusivity of heat with respect to (a) Ri and (b) Rr; and of salt with respect to (c) Ri and (d) Rr.

Solid curves represent the parameterizations (16) and (17) with arguments as indicated in the legend. (a),(b) Circles

indicate diffusivities from 3D DNS with molecular diffusivity ratio t 5 0.01 (Kimura and Smyth 2007); DNS results

presented here have t 5 0.04. (b),(d) Downward triangles indicate 2D DNS results with Ri 5 ‘ and t 5 0.01 (W. J.

Merryfield and M. Grinder 2000, personal communication). (b),(d) Squares are effective diffusivities for Ri 5 ‘

(Stern et al. 2001) estimated from the ratio of 2D to 3D fluxes using accessible values of t and then multiplying the

ratio onto directly computed 2D fluxes with t 5 0.01.

FIG. 12. Effective diffusivity of salt with respect to Rr compared to that of theoretical (Kunze

1987) and laboratory (Turner 1967; Linden 1973; Schmitt 1979a) estimates.
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The isotropic Osborn–Cox model (18) captures the Rr

dependence of KT and KS (Figs. 14a,b). Both Kxz

T and Kxz

S

decrease with increasing Rr, consistent with the trends

of KT and KS from DNS and observations by St. Laurent

and Schmitt (1999). However, both K
xz

T and K
xz

S are

smaller by up to a factor of 3 than KT and KS for the

range of Rr discussed here (Figs. 14a,b). The isotropy

assumption alone cannot explain this difference, because

ratios xT
z /xT and xS

z/xS range between 0.8 and 1.2 in

section 5. The Osborn and Cox (1972) diffusivity model

combined with isotropy assumption can underestimate

KT and KS by up to a factor of 3 for turbulent salt

fingering.

6. Conclusions

We have simulated sheared, turbulent salt fingering in

a sharp high-gradient interface characteristic of labora-

tory studies (Turner 1967; Schmitt 1979a; McDougall

and Taylor 1984; Taylor 1992). Although these simula-

tions are intended to shed light on oceanic thermohaline

staircases, the following caveats should be noted:

(i) The ratio of molecular diffusivity of salt to heat is 4

times larger than in the real ocean.

(ii) The interface thickness is at least 3 times smaller

than observed thickness of thermohaline staircases.

In much thicker layers and continuous stratifica-

tion, salt-finger flux laws change because fingers no

longer extend across the interface from one ho-

mogeneous layer to the other (Kunze 1987).

(iii) The equation of state is linear.

Our main findings are as follows:

(i) Scalar gradients are nearly isotropic in the dissipation

range, but velocity gradients are not. The approxi-

mations of � based on vertical shears, which are often

used in interpretations of microstructure data, un-

derestimate its value by a factor of 2–3. This suggests

that the rate of dissipation by sheared, turbulent salt

fingering can be 2–3 times larger than measured

inferences.

(ii) The geometry of the primary instability is often

(though not always) reflected in the anisotropy of

the turbulent salt-fingering regime.

(iii) The isotropy assumption can lead to overestimation

of the dissipation ratio G by a factor of 2 to 3. This will

impact estimates of correlation time scales in the k–�

model of turbulent salt fingering (e.g., Canuto et al.

2008). It also caused Inoue et al. (2008) to incorrectly

ascribe the signals in St. Laurent and Schmitt (1999)

to fingers with wavelengths larger than those of the

fastest-growing mode.

(iv) Effective diffusivities of heat and salt can be reduced

by either an increase in Rr or (surprisingly) a de-

crease in Ri. Empirical fits give KT(Rr, Ri) 5 3.07 3

1025Rr
24.0Ri0.17 and KS(Rr, Ri) 5 4.38 3 1025

Rr
22.7Ri0.17. Kimura and Smyth (2007) showed that

a decrease in t from 0.04 to 0.01 increased KT and KS

by a factor of 2. The dependence on Ri differs sig-

nificantly from the theoretical prediction of Kunze

(1994).

(v) Effective diffusivities estimated by the Osborn and

Cox (1972) model with isotropy assumption produced

FIG. 13. Evolution of (a) flux ratio gs and (b) turbulent Schmidt number Sc with respect to

scaled time for different Ri with keeping Rr 5 1.6.
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consistent Rr dependence but are up to a factor of 3

too small.

(vi) Values of nondimensional mixing efficiency G, flux

ratio g, and Schmidt number Sc in the turbulent

salt-fingering regime are predicted by linear theory

with remarkable accuracy.
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