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ABSTRACT

An unstable, nonlinear baroclinic wave-mean oscillation is found in a strongly supercritical quasigeostrophic
f -plane numerical channel model with 3840 Fourier components. The growth of linear disturbances to this time-
periodic oscillation is analyzed by computing time-dependent normal modes (Floquet vectors). Two different
Newton–Picard methods are used to compute the unstable solution, the first based on direct computation of a
large set of Floquet vectors, and the second based on an efficient iterative solver. Three different growing normal
modes are found, which modify the wave structure of the wave-mean oscillation in two essentially different
ways. The dynamics of the instabilities are qualitatively similar to the baroclinic dynamics of the wave-mean
oscillation. The results provide an example of time-dependent normal mode instability of a strongly nonlinear
time-dependent baroclinic flow.

1. Introduction

Baroclinic instability, and disturbance growth in bar-
oclinic flows, are fascinating physical processes with
fundamental importance for numerical weather predic-
tion. Instabilities of steady zonal flows have been stud-
ied extensively since the pioneering investigations of
Charney (1947) and Eady (1949), but relatively less
attention has been paid to instabilities of time-dependent
flows.

One approach to this latter problem is to consider
time-periodic flows. This approach offers a framework
for investigating the behavior of disturbances to time-
dependent flows, which is intermediate between the
study of disturbances to steady flows and disturbances
to flows with general time dependence (e.g., Joly and
Thorpe 1991; Farrell and Ioannou 1996). Time-periodic
flows present many of the same technical and conceptual
obstacles as flows with more general time dependence,
but their disturbance growth properties are amenable to
quantitative analysis in terms of time-dependent normal
modes. A number of recent studies have examined pe-
riodic solutions of geophysical fluid models and their
stability (Jiang et al. 1995; Itoh and Kimoto 1996; Jiang
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and Ghil 1997; Kazantsev 1998, 2001; Fantini and Dav-
olio 2001; Samelson and Tziperman 2001).

Perhaps the simplest existing physical model of mid-
latitude baroclinic dynamics is the Phillips (1954) two-
layer quasigeostrophic model of baroclinic instability.
Samelson (2001, 2002) has identified and analyzed un-
stable time-periodic baroclinic wave-mean oscillations
in this model for the weakly nonlinear limit of marginal
supercriticality (Pedlosky 1971; Pedlosky and Frenzen
1980). Strongly unstable flows in this model have been
previously studied numerically by Klein and Pedlosky
(1986). Here, we extend these previous numerical stud-
ies to identify an unstable, strongly nonlinear, time-pe-
riodic, baroclinic wave-mean oscillation for the most
strongly supercritical parameter values considered by
Klein and Pedlosky (1986). The phase–space dimension
of the numerical model is 3840, necessitating the use
of special techniques to locate the oscillation and com-
pute its stability.

The physical model is briefly reviewed in section 2.
Section 3 describes the unstable oscillation, and sections
4 and 5 discuss the corresponding Floquet and singular
vector analyses, respectively. The results are summa-
rized in section 6.

2. Model
a. Formulation

The model studied here is a two-layer, f -plane, qua-
sigeostrophic fluid in a periodic channel with a rigid lid
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at the upper boundary, and Ekman dissipation at both
upper and lower boundaries. The mean layer depths are
equal, and the standard no-normal-flow boundary con-
ditions are imposed at the channel walls along y 5 {0,
1}. The equations are

2Q 1 J(C , Q ) 5 2r¹ C , j 5 1, 2,jt j j j (2.1)

where C j and Qj are the streamfunction and potential
vorticity, respectively, in layer j, j 5 1, 2, and ¹2 5
]2/]x2 1 ]2/]y2. The upper- and lower-layer (j 5 1 and
j 5 2, respectively) streamfunctions may be conve-
niently written as the sum of a constant mean shear and
an arbitrary function:

1
C (x, y, t) 5 2 U y 1 c (x, y, t), (2.2)1 s 12

1
C (x, y, t) 5 1 U y 1 c (x, y, t). (2.3)2 s 22

The potential vorticities are

2Q (x, y, t) 5 ¹ C 2 F(C 2 C ), (2.4)1 1 1 2

2Q (x, y, t) 5 ¹ C 2 F(C 2 C ). (2.5)2 2 2 1

Here, Us is the vertical shear of the steady zonal flow
solution c1 5 c2 5 0, and r is the Ekman damping
coefficient.

The wave-mean oscillation discussed below is a so-
lution of these nonlinear equations for the parameters
Us 5 1, r 5 0.474 342, F 5 55.769 60, the most strongly
supercritical set of parameter values considered in the
numerical study by Klein and Pedlosky (1986). In the
scaled notation of this latter study, which extended pre-
vious work on the weakly nonlinear problem for mar-
ginally supercritical shear, the corresponding parameter
values are g 5 0.2, D 5 45. For these parameter values,
the steady zonal flow c1 5 c2 5 0 is linearly unstable
to six normal modes, and nonlinear numerical solutions
show chaotic behavior (Klein and Pedlosky 1986).

Small disturbances to the wave-mean oscillation will
satisfy a linearized form of (2.1), in which the periodic
wave-mean oscillation is the flow about which the equa-
tions are linearized. Once the periodic solution is
known, the solutions of the corresponding linearized
equations may be computed by standard techniques for
linear differential systems with periodic coefficients
(e.g., Coddington and Levinson 1955), referred to here
as Floquet theory. For a periodic orbit solution, any
linear disturbance may be written as a fixed sum of the
Floquet eigenvectors {f j(t), j 5 1, 2, . . . , N}, where
each vector has the form f j(x, y, t) 5 F j(x, y, t)
exp(l j t), for a function F j(x, y, t), with F j(x, y, t 1 T)
5 F j(x, y, t) [or possibly F j(x, y, t 1 T) 5 2F j(x, y,
t)]. In general, the functions f j and F j and the char-
acteristic exponents l j may be complex; also, the ei-
genvalue spectrum may include a continuous component
(see, e.g., Brevdo and Bridges 1997), and the time de-
pendence may include a polynomial component, if the

corresponding eigenvalue has multiplicity greater than
one. The modes considered here turn out to have real
distinct l j and so also real f j and F j. Modes with (in
general, real parts of ) l j positive grow exponentially,
and correspond to time-dependent normal mode insta-
bilities of the oscillation. Each f j is a solution of the
linearized equations about the oscillation and, as written,
represents both the upper- and lower-layer components
of the disturbance. The Floquet problems were solved
numerically using two different Newton–Picard meth-
ods, as described next. The reader uninterested in the
technical aspects of these computations may skip this
description.

b. Newton–Picard solution

As discussed in detail below, the periodic wave-mean
oscillation identified here in a chaotic regime is linearly
unstable, as it must be: if it were instead stable, nearby
solutions would approach it as a limit cycle, rather than
remain chaotic. Since it is unstable, essentially all near-
by solutions eventually diverge from it as time evolves,
and special techniques are necessary to compute the
periodic solution. The basic method used here is a mul-
tidimensional Newton–Picard iteration. The number of
unstable modes is small compared to the total phase–
space dimension of the two-layer system, which for 48
3 40 horizontal spectral resolution is 3840, and this can
be exploited by computing the Newton iteration in a
small subspace that contains the unstable modes. Con-
vergence in the orthogonal, much larger subspace is
achieved simply by forward (Picard) integration, in the
same way that forward integration of the full equations
would lead to convergence toward a limit cycle if no
unstable modes existed. The combined Newton–Picard
iteration can be much more efficient than a full Newton’s
method, because of the large reduction in the dimension
of the space in which the Newton’s method is carried
out. The technical obstacle to this approach, of course,
is that the subspaces depend on the solution, and are
not known beforehand.

We computed the periodic solution described here in
several steps. First, a long time series from a chaotic
numerical solution was examined to locate an approx-
imately periodic segment. This segment was sufficiently
close to periodic that a preliminary Floquet vector nor-
mal mode analysis was possible. The preliminary Flo-
quet analysis used a direct approach: the linear evolution
during the cycle of a set of independent initial distur-
bances was computed, and the Floquet vectors and char-
acteristic multipliers obtained by solving the corre-
sponding eigenvalue problem. Because of the large di-
mension of the system and the length of the cycle, the
sets of initial disturbances used here were not complete,
consisting of 120 to 2880 members, compared to the
3840 required for completeness. This procedure none-
theless gave interesting and useful preliminary results,
including accurate values for the leading Floquet mode
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FIG. 1. Relative difference between initial and final states of the
numerical solution for the unstable, nonlinear, wave-mean oscillation
vs iteration step for the manual (1, steps 1–11) and PDECONT (M,
steps 12–15) Newton–Picard implementations.

growth rates, even for the most severe of these trun-
cations.

The approximately periodic solution was then used
as an initial guess for a Newton–Picard iteration scheme.
This scheme used an explicit Newton’s method on the
fixed subspace defined by the 12 leading modes from
the preliminary Floquet vector analysis, and Picard it-
eration on the complement of this fixed subspace. Ap-
proximate Floquet vectors were then obtained directly
for this solution, by computing the linear evolution of
a set of independent initial disturbances formed from
the 24 along-channel and 10 across-channel gravest
modes, and solving the corresponding Floquet eigen-
value problem.

To refine the improved estimate of the periodic so-
lution, a version of the Newton–Picard solver PDE-
CONT (Lust et al. 1998) was then implemented. In the
configuration used here, this solver computes the lead-
ing Floquet vectors iteratively, following an approach
that is related to well-known numerical schemes for
computing Lyapunov vectors (Shimada and Nagashima
1979; Benettin et al. 1980) or growing normal modes
(e.g., Samelson and Pedlosky 1990) by time stepping
and rescaling, but with the addition of sophisticated sub-
space iteration and locking algorithms. The solver also
optimizes the calculations needed for the Newton step,
avoiding matrix inversions and other demanding com-
putations that would otherwise be required. Conse-
quently, the needed Floquet vector estimates can be ef-
ficiently updated at each iteration, accelerating the con-
vergence of this second Newton–Picard scheme dra-
matically relative to the first.

3. Nonlinear wave-mean oscillation

As described in the previous section, two Newton–
Picard schemes were used successively to compute the
unstable periodic solution. Eleven steps of the first New-
ton–Picard scheme were sufficient to reduce the relative
difference in the initial and final states from more than
1021 to less than 1023, and thus to indicate that the
iteration was converging toward a true periodic solution
(Fig. 1). The second Newton–Picard iteration, using the
PDECONT solver, was halted after four steps, which
decreased the relative difference in the initial and final
states to less than 1026, providing practical confirmation
of convergence (Fig. 1).

The solution obtained by this second iteration is the
baroclinic wave-mean cycle analyzed and presented
here (Fig. 2). The cycle is a strongly nonlinear analog
of the weakly nonlinear wave-mean oscillation whose
dynamics and stability were analyzed by Samelson
(2001, 2002). Its qualitative characteristics are similar
to the weakly nonlinear cycle. It consists of a periodic
wave-mean oscillation, involving growth and decay of
a nonlinear wave whose dominant structure is the grav-
est along-channel and across-channel Fourier compo-
nent. There are two wave growth and decay events dur-

ing each cycle, with the second offset from the first by
half the channel length. The period of the PDECONT
solution is T 5 38.484 57, very close to the first
Newton–Picard estimate T 5 38.485. The streamfunc-
tion evolution summarized in this section is essentially
indistinguishable for the two Newton–Picard solutions.

Each of these wave growth and decay events begins
with a nearly zonal flow, modified by a perturbation whose
dominant structure is the gravest along-channel and across-
channel Fourier component (Fig. 2a; t 5 0/50). This per-
turbation has the characteristic westward phase shift with
height of a baroclinically unstable disturbance, and rapidly
grows to finite amplitude (Fig. 2a; t/T 5 10/50). When
the perturbation reaches maximum amplitude, there are
closed contours around both the high and low pressure
cells, and the phase shift and the zonal-mean vertical shear
of the zonal flow near the center of the channel both
decrease substantially (Fig. 2a; t/T 5 13/50). The phase
shift then reverses, the disturbance decays, and the vertical
shear of the zonal flow is re-established (Fig. 2a; t/T 5
16/50, 19/50). Finally, the flow returns to near zonal, ex-
actly as before the onset of wave growth, but with the
perturbation shifted zonally by half the channel length,
and the cycle repeats.

A decomposition of the streamfunctions into baro-
tropic (cB 5 c1 1 c 2) and baroclinic (c T 5 c1 2 c 2)
components reveals the development, during the wave
growth phase, of stationary barotropic circulations that
advect heat (proportional to cT) downgradient, across
the channel (Fig. 2b; t/T 5 0/50, 10/50, 13/50). During
the wave decay phase, the weakening barotropic cir-
culations advect some of this heat back across the chan-
nel and up the gradient, extracting energy from the wave
and re-establishing the baroclinic zonal flow (Fig. 2b;
t/T 5 16/50, 19/50, 25/50).
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FIG. 3. Characteristic exponents vs mode number for the first 12
leading Floquet vectors. Four different values are shown for each
exponent, corresponding to different approximations to the full Flo-
quet problem with truncations to 120 ( · ), 264 (V), 240 (3), and
528 (1) independent initial disturbances and resulting eigenvectors,
respectively.

4. Time-dependent normal mode instabilities

The Floquet vectors are the normal modes for linear
disturbances on the unstable cycle. Two different esti-
mates of the leading Floquet modes are available from
the Newton–Picard solutions discussed above. The first
method provided estimates of the first several hundred
leading Floquet exponents and vectors, while the second
provided results only for the first 7 leading modes, since
only these were required by the efficient, iterative PDE-
CONT solver. The accuracy of the vectors was checked
in each case by integrating the Floquet vector distur-
bances over one cycle, and comparing the initial and
final conditions. When scaled by the corresponding Flo-
quet multiplier, these should be identical. The first 12
vectors from the first Newton–Picard solution and the
first 5 vectors from the refined, PDECONT solution sat-
isfied this criterion to an acceptable numerical accuracy.
Only these vectors are considered here. Evidently, the
remaining vectors failed to satisfy this criterion because
of inaccuracies resulting from the incompleteness of the
set of initial disturbances, which neglected many high
along-channel and cross-channel Fourier components,
or because of other related numerical effects induced
by spectral truncation in the explicit linearization of the
spectral model. Work is in progress to address this issue
in related computations, on which we will report else-
where. Here, we will focus primarily on the character-
istics of the growing and neutral modes, for which ac-
curate results were obtained for both Newton–Picard
solutions. The plots of the Floquet vectors discussed in
this section were obtained by the direct method, using
2880 independent initial disturbances, corresponding to
the gravest 36 along-channel modes and all 40 cross-
channel modes.

Both methods yielded three growing (l j . 0, j 5 1,
2, 3) modes and one neutral (l4 5 0) mode (Fig. 3).
The remaining modes were all damped. The values of
the four leading Floquet exponents from the two dif-
ferent methods agreed to within less than 0.1%. Modes
5–7 showed slightly greater differences, up to roughly
1%; note that the PDECONT algorithm is not designed
to provide accurate estimates of damped modes.

The corresponding Floquet structure functions F j

were computed by initializing the linearized equations
with the corresponding eigenvector from the Floquet
analysis, integrating the equations forward for one os-
cillation period, and normalizing the results at each time
by the exponential growth factor exp(l j t). Mode 4, the
neutral mode, is proportional to the time derivative of
the wave-mean cycle. Consequently, its dynamics reflect
the same baroclinic instability processes that maintain
the wave-mean cycle, and its physical structure is dom-
inated by the same gravest Fourier components that
characterize the wave-mean cycle (Fig. 4). Some small-
er-scale features appear in the mode-4 streamfunction
fields at certain times during the cycle, such as at t/T
5 13/50.

Modes 1–3, the unstable modes, have a broadly similar
structure, but differ in significant ways. The amplitudes
| F j | of all three of these oscillate markedly, and essen-
tially in phase with the amplitude of the wave-mean cy-
cle: they reach maximum values near t/T 5 13/50, when
the wave-mean-cycle wave amplitude is maximum (Figs.
5–7). All three are dominated by low-wavenumber Fou-
rier components. Mode 2, like the wave-mean cycle and
mode 4, is dominated by the gravest along-channel and
across-channel Fourier component (Fig. 6), while modes
1 and 3 show large contributions from the second along-
channel Fourier component (Figs. 5–7). This difference
means that the instability represented by mode 2 involves
either an intensification or weakening, depending on the
sign of the disturbance, of the entire wave-mean cycle,
while the instabilities represented by modes 1 and 3 in-
volve an asymmetric development, in which the high
pressure centers intensify and the low pressure centers
weaken, or the lows intensify and the highs weaken.
These differences are especially apparent in the thermal
streamfunctions , with (and of course ) generallyj 2 4c c cT T T

resembling CT, and and having qualitatively dif-1 3c cT T

ferent spatial symmetries.
The structure function F2 for mode 2 has a very

similar structure and evolution to F4, the neutral mode.
There are weakly damped modes that closely resemble
the other two growing modes also: F6 is similar to F3,
and F7 to F1 (Figs. 8 and 9). This illustrates that rel-
atively small changes in disturbance structure are suf-
ficient to control stability. This similarity of growing
and neutral or decaying modes will have implications
for the calculation of optimal disturbances.

Among the first seven modes, the weakly damped
mode 5 stands out as most unlike any other. It has two
isolated, roughly barotropic extrema in streamfunction,
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located between the wave-mean-cycle streamfunction
extrema, and evidently represents, in part, an along-
channel phase shift of the entire cycle (Fig. 10). As can
be verified by visual inspection, mode 5 is approxi-
mately proportional to the along-channel gradient of the
wave-mean oscillation at each fixed time.

Some of the higher, more rapidly damped modes, such
as mode 12 (Fig. 11), have much smaller spatial scales.
The amplitudes of these modes typically oscillate much
less during the course of the wave-mean cycle, repre-
senting instead a disturbance with roughly uniform in-
stantaneous decay rate. Animations of these modes show
that the smaller-scale features are advected rapidly along
the channel and around the pressure centers by the time-
dependent velocity field of the wave-mean cycle. Be-
cause of their relatively small horizontal scales, the up-
per- and lower-layer features are not strongly coupled
vertically, and are often advected in opposite directions
in the two layers.

The existence of multiple growing normal modes on
the wave-mean cycle is evidently related to the existence
of multiple growing normal modes on the underlying
steady parallel zonal flow. The dominant spatial struc-
ture of the three growing Floquet modes corresponds,
respectively, to the spatial structure of the three leading
normal modes of the underlying steady parallel flow
(Klein and Pedlosky 1986, Table 1): both occur in the
order (2,1), (1,1), (2,2), where the pairs (k, m) indicate
the kth along-channel and mth cross-channel Fourier
components. However, the wave-mean cycle is much
less unstable than the underlying steady parallel flow:
the growth rates of the leading Floquet modes are more
than an order of magnitude smaller than those of the
leading normal modes of the steady flow. This near-
stabilization is evidently due primarily to a reduction in
the mean vertical shear of the zonal flow, relative to the
undisturbed value Us 5 1. The time- and along-channel
mean, during one cycle of the wave-mean oscillation,
of the vertical shear of the zonal flow is 0.126 at the
center of the channel, less than the critical value of 0.14,
and 0.179 when averaged across the central half of the
channel width. Note that the oscillation is sufficiently
nonlinear that the sign of the mean along-channel ver-
tical shear in the central part of the channel reverses
when the wave amplitude is maximum (Fig. 2a).

Floquet eigenvalues for many higher modes were also
obtained from the first Newton–Picard method. These
estimates appeared to be relatively reliable and inde-
pendent of the truncation level, despite the difficulties
presented by the more delicate reconstruction of the
corresponding damped Floquet modes themselves.
These had a distribution similar to that of the normal
mode growth rates for the steady flow and for the weakly
nonlinear oscillation treated by Samelson (2001): a
small number of growing or weakly damped modes, a
similar small number of rapidly damped modes, and a
large number of intermediate modes with damping rate
close to the value of the friction parameter r. Some

broadening of the spectrum of the growing or weakly
damped modes was observed for the nonlinear cycle,
however, as roughly 20 of the Floquet modes fell into
this class, compared to only 10 of the steady flow normal
modes.

Samelson (2001) found that the most rapidly decaying
mode in the weakly nonlinear case was inviscidly
damped, with phase shift opposite to that appropriate
for a growing baroclinic disturbance, analogous to the
complex conjugate of the growing mode in the steady
parallel flow. In the present case, reliable estimates of
the spatial structure of the most rapidly decaying modes
were not available, and it was therefore not possible to
determine whether similar inviscidly damped modes ex-
isted. However, the similarity of the structure of the
eigenvalue spectrum to the weakly nonlinear and steady
flow results suggests that such inviscidly damped modes
exist also in the present case.

5. Summary

The primary achievement of this study is the iden-
tification, in a 3840-dimensional numerical model, of a
strongly nonlinear baroclinic wave-mean oscillation that
is linearly unstable to multiple normal mode distur-
bances. Accurate numerical solutions for this cycle were
obtained by two different Newton–Picard methods, the
first using direct estimates of a large number of Floquet
vectors, and the second using the efficient iterative solv-
er developed by Lust et al. (1998). This unstable cycle
is one among many that presumably exist in any chaotic
regime of these equations. Analysis of its leading Flo-
quet vectors illustrated that, as in the weakly nonlinear
case studied by Samelson (2001, 2002), disturbance
growth and decay on the wave timescale are dominated
by baroclinic wave growth and decay processes similar
to those that give rise to the wave-mean oscillation.

These results illustrate that Newton–Picard methods
can be used effectively to compute an unstable cycle in
a strongly nonlinear, high-dimensional geophysical fluid
dynamics model. Such cycles will provide valuable
physical examples in which the the mechanisms and
properties of disturbance growth in unstable time-de-
pendent flows can be analyzed in detail. In addition to
their value as theoretical examples, it seems likely that
future insights resulting from the analysis of flows of
this type will have practical value for the analysis and
development of ensemble forecasting schemes in nu-
merical weather prediction.

Although the present model has a relatively confined
geometry, and an underlying steady parallel zonal flow
that is unstable at only a few zonal wavenumbers, it
may well be possible to find similar, highly symmetric
oscillatory solutions in models with extended domains.
For example, consider extending the present model to
a larger zonal domain by patching several copies of the
model channel together at their ends. Because it is also
zonally periodic, the present solution will extend exactly



1 MAY 2003 1197N O T E S A N D C O R R E S P O N D E N C E

F
IG

.
10

.
(a

)
C

on
to

ur
s

of
up

pe
r-

(l
hs

)
an

d
lo

w
er

-l
ay

er
(r

hs
)

st
re

am
fu

nc
ti

on
s

vs
x

(h
or

iz
on

ta
l

ax
es

)
an

d
y

(v
er

ti
ca

l
ax

es
)

fo
r

th
e

st
ru

ct
ur

e
fu

nc
ti

on
F

5
of

th
e

fi
ft

h
de

ca
yi

ng
F

lo
qu

et
ve

ct
or

du
ri

ng
th

e
ev

ol
ut

io
n

of
th

e
w

av
e-

m
ea

n
os

ci
ll

at
io

n.
(b

)
C

on
to

ur
s

of
ba

ro
tr

op
ic

(l
hs

)
an

d
ba

ro
cl

in
ic

(r
hs

)
st

re
am

fu
nc

ti
on

s
vs

x
(h

or
iz

on
ta

l
ax

es
)

an
d

y
(v

er
ti

ca
l

ax
es

)
fo

r
th

e
st

ru
ct

ur
e

fu
nc

ti
on

F
5

of
th

e
fi

ft
h,

de
ca

yi
ng

F
lo

qu
et

ve
ct

or
du

ri
ng

th
e

ev
ol

ut
io

n
of

th
e

w
av

e-
m

ea
n

os
ci

ll
at

io
n.



1198 VOLUME 60J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 11. Contours of upper- (lhs) and lower-layer (rhs) streamfunctions vs x (horizontal
axes) and y (vertical axes) for the structure function F12 of the twelfth decaying Floquet
vector during the evolution of the wave-mean oscillation.

to a time-periodic solution in the larger domain, despite
the possibility of additional instabilities with larger zon-
al wavelengths, and the present Floquet eigenmodes will
remain eigenmodes of this extended solution. Presum-
ably, less trivial analogs will also exist.
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