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ABSTRACT

Global 18 3 18 climatologies of the first baroclinic gravity-wave phase speed c1 and the Rossby radius of
deformation l1 are computed from climatological average temperature and salinity profiles. These new atlases
are compared with previously published 58 3 58 coarse resolution maps of l1 for the Northern Hemisphere and
the South Atlantic and with a 18 3 18 fine-resolution map of c1 for the tropical Pacific. It is concluded that the
methods used in these earlier estimates yield values that are biased systematically low by 5%–15% owing to
seemingly minor computational errors. Geographical variations in the new high-resolution maps of c1 and l1

are discussed in terms of a WKB approximation that elucidates the effects of earth rotation, stratification, and
water depth on these quantities. It is shown that the effects of temporal variations of the stratification can be
neglected in the estimation of c1 and l1 at any particular location in the World Ocean. This is rationalized from
consideration of the WKB approximation.

1. Introduction

The first baroclinic Rossby radius of deformation
plays a fundamentally important role in extratropical
large-scale ocean circulation theory. It defines the length
scale of baroclinic variability longer than which internal
vortex stretching is more important than relative vor-
ticity. It also figures in the phase and group velocities
of baroclinic Rossby-wave solutions to the linear, un-
forced potential vorticity equation for zero background
mean flow. It is intimately related to the dominant length
scale of unstable waves in a stratified shear flow.

In consideration of its significance to ocean circula-
tion theory, a reliable, finely resolved, global climatol-
ogy of the first baroclinic Rossby radius is clearly of
great value. Emery et al. (1984) and Houry et al. (1987)
published 58 3 58 coarse resolution climatological av-
erage maps of the first baroclinic Rossby radius for the
Northern Hemisphere and the South Atlantic, respectively.
Picaut and Sombardier (1993) published a 18 3 18 fine-
resolution map of the first baroclinic gravity-wave phase
speed (which is directly proportional to the first baro-
clinic Rossby radius outside of the equatorial band) for
the region 308N to 308S in the tropical Pacific. One of
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the objectives of this study is to extend the results of
these three previous studies to the global ocean with a
spatial resolution of 18 3 18.

A fundamental assumption of the linear theory from
which the baroclinic Rossby radius of deformation is
derived is that effects of temporal variability of the strat-
ification can be neglected. A second objective of this
study is to investigate the justification for this assump-
tion by determining the range of first baroclinic Rossby
radius values derived from the seasonal cycles of tem-
perature and salinity profiles on the 18 3 18 grid. A
large seasonal variation of Rossby radius values at any
given location would imply that this aspect of the lin-
earization is invalid.

This study was also motivated by a recent analysis
of altimeter data (Chelton and Schlax 1996), which
showed large-scale, low-frequency sea level signals
propagating westward throughout much of the World
Ocean. The space–time character of these features is
very similar to that expected for freely propagating,
linear, first baroclinic Rossby waves. The phase speeds
of long baroclinic Rossby waves are proportional to the
square of the baroclinic Rossby radius of deformation.
Outside of the Tropics, the observed propagation speeds
are systematically higher than the nondispersive Ross-
by-wave phase speeds predicted on the basis of the Em-
ery et al. (1984) and Houry et al. (1987) estimates of
the first baroclinic Rossby radius. The discrepancy is
about a factor of 2 at 358 latitude and larger at higher
latitudes. A similar discrepancy between observed and
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predicted propagation speeds has been deduced from
upper-ocean thermal data by Kessler (1990). Among
several candidate explanations, these results suggest the
need for a critical assessment of the accuracy of the
previously published estimates of the baroclinic Rossby
radius to determine whether the discrepancies are due
simply to errors in the estimated Rossby radius.

The formalism for determining the Rossby radii of
deformation and an approximate analytical solution for
the baroclinic Rossby radii are briefly summarized in
section 2; complete derivations are given in appendix
A, and the numerical method used to compute the Ross-
by radii is described in appendixes B and C. Geograph-
ical variability in a 18 3 18 global climatology of the
first baroclinic Rossby radius is described in section 3.
The importance of temporal variability of the stratifi-
cation in the estimation of the Rossby radius is assessed
in section 4. The implications of the results are discussed
in section 5.

2. The Rossby radii of deformation

It is shown in section a of appendix A that the bar-
oclinic Rossby radii of deformation can be obtained by
solving a Sturm–Liouville eigenvalue problem for the
vertical structure f(z) of the vertical velocity, which can
be written in the form

2 2d f N (z)
1 f 5 0, (2.1a)

2 2dz c

f 5 0 at z 5 0 (2.1b)

f 5 0 at z 5 2H, (2.1c)

where f 5 2V sinq is the Coriolis parameter for earth
rotation rate V and latitude q, H is the local mean water
depth, and N2(z) is the squared buoyancy frequency. The
surface boundary condition (2.1b) is the rigid-lid ap-
proximation, which is valid for the baroclinic solutions
of interest here. The bottom boundary condition (2.1c)
is for a flat-bottom ocean. Horizontal variations of f, H,
and N(z) are neglected in the formulation of (2.1). How-
ever, if these variations are small over a Rossby radius
of deformation (see below), then a WKB development
in the horizontal shows that (2.1) represents a reasonable
local theory.

The eigenvalue problem (2.1) permits an infinite num-
ber of ordered, nonnegative eigenvalues , ,22 22c c1 2

, ··· and corresponding eigenfunctions f1(z), f2(z),22c3

f3(z), . . . . The subscript m denotes the baroclinic mode
number. The eigenvalues and eigenfunctions are esti-
mated by discretizing the continuously stratified eigen-
value equation (2.1) as described in appendix C and
solving the resulting system of equations numerically.

It is shown in section b of appendix A that an ap-
proximate solution for cm can be obtained by the WKB
method, which gives

01
WKBc ø c 5 N(z) dz, m $ 1. (2.2)m m Emp

2H

Physically, the parameter cm is the phase speed of long,
mode-m gravity waves in a nonrotating, continuously
stratified fluid (Gill 1982; LeBlond and Mysak 1978).
Outside of the Tropics, the Rossby radius of deformation
for mode m at latitude q is determined from cm by

cml 5 if |q | * 58. (2.3a)m | f (q)|

Within the equatorial band, the Rossby radius of de-
formation can be defined (see Gill 1982) as

1/2cml 5 if |q | & 58, (2.3b)m 1 22b(q)

where b(q) 5 df/dy 5 2V cosq is the latitudinal21Re

variation of the Coriolis parameter for earth radius Re.
The WKB approximation for lm obtained from (2.2) for
the region of primary interest here (i.e., outside of the
equatorial band) is

01
WKBl ø l 5 N(z) dz, m $ 1. (2.4)m m E| f |mp

2H

Several features of the Rossby radii can be inferred from
(2.4).

1) The geographical variability of lm is dominated by
an inverse dependence on z f z. Thus, lm decreases
with increasing latitude owing to the b effect.

2) At a given latitude, lm is proportional to the vertical
integral of N(z) and inversely proportional to the
baroclinic mode number m. Since the stratification
is weak at high latitudes, the dependence on N(z)
also results in a decrease of lm with increasing lat-
itudes poleward of the subtropical gyres in both
hemispheres.

3) Because most of the large-scale topographic varia-
tions in the open ocean are restricted to the lower
half of the water column in which N(z) is small and
approximately constant, there is an approximately
linear dependence of lm on water depth H.

It can be noted from (2.2) that, unlike the Rossby
radii lm, the gravity-wave phase speeds cm do not depend
on f. The effects of stratification and water depth on the
mode-m eigensolution of (2.1) are thus wholly embod-
ied in the parameter cm.

The WKB solutions and numerical estimates l1
WKBl1

on a 18 3 18 global grid (see section 3) are compared
in Fig. 1. The WKB approximations are, on average,
systematically high by about 6.5%. This bias is probably
associated with the spike in N(z) profiles often found at
the base of the mixed layer (see examples in section b
of appendix A). Although this spike violates the con-
ditions for the strict validity of the WKB approximation,
(2.4) is nonetheless surprisingly accurate; 68% of the
WKB approximations of the first baroclinic Rossby ra-
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FIG. 1. Comparison between the WKB approximations andWKBl1

numerical estimates l1 of the first baroclinic Rossby radius of de-
formation on a global 18 3 18 grid. (a) Scatterplot of versusWKBl1

l1. The dashed line represents the line of perfect agreement. The
slope of the least squares fit line through the origin is 1.065, indicating
the WKB estimates are biased high by 6.5%, on average. (b) His-
togram of the differences ( 2 l1), expressed as a percentage ofWKBl1

l1.

dius of deformation fall within 69% of the numerical
estimates and 95% fall within 624% of the numerical
estimates (Fig. 1b).

Although not sufficiently accurate for many appli-
cations, the WKB approximations and pro-WKB WKBc l1 1

vide a very useful physical interpretation of the geo-
graphical variability of the quantitatively accurate nu-
merical estimates of c1 and l1 presented in sections 3
and 4.

3. Geographical variability of the first baroclinic
Rossby radius

a. Annual mean climatology

The squared buoyancy frequency profile N2(z) was
estimated from centered first differences of the ‘‘neutral
density gradient’’ as described in section d of appendix
B based on 18 3 18 gridded climatological average tem-
perature and salinity profiles constructed at standard
depths (see Table B1 in appendix B) by the National
Oceanographic Data Center (NODC). The details of the
NODC climatological average hydrographic dataset are
described by Boyer and Levitus (1994), Levitus et al.
(1994), and Levitus and Boyer (1994).

Because of the approximately linear dependencies of
the baroclinic gravity-wave phase speeds and Rossby
radii on water depth, it is important that the full water
column be represented in the eigenvalue calculation. An
additional discrete depth at the ocean bottom was there-
fore added to the density profile at each specific 18 3 18
location if the water depth was deeper than the deepest
NODC standard depth for that location. The bottom
density was taken to be the adiabatically adjusted linear
extrapolation of the density values at the two deepest
NODC standard depths. This yields an extrapolated
deepest value of N2(z) that is equal to the value cal-
culated from the deepest pair of standard depths.

The first baroclinic gravity-wave phase speed c1 was
computed from the discretized N2(z) profile at each
18 3 18 grid location by discretizing the eigenvalue
problem (2.1) as described in section a of appendix C
and numerically solving the resulting ‘‘layer equations’’
using a matrix eigenvalue routine. The differential equa-
tion was also solved numerically at each grid location
using the iterative ‘‘shooting method’’ (Pryce 1993; Press
et al. 1992). The root-mean-square difference between
the two numerical estimates for c1 over the 18 3 18
global grid was 0.018 m s21, which is typically less than
a 1% difference. The close agreement between these
two estimates alleviates any concerns about possible
inaccuracies resulting from the matrix approach sum-
marized in section a of appendix C, specifically with
regard to the discretization interval imposed by the
NODC standard depths (Pryce 1993; see also section b
of appendix C).

The effects of stratification and water depth inferred
from the WKB approximation (2.2) are very evident in

the numerical estimates contoured in the map of the
annual mean 18 3 18 gridded first baroclinic gravity-
wave phase speed c1 shown in Fig. 2.1 Comparison with
the bathymetric shading in the figure reveals that con-
tours of c1 tend to parallel bathymetric contours. Major
topographic features such as the Mid-Atlantic Ridge,
the East Pacific Rise, the Hawaiian Ridge, the complex

1 Digital files of the 18 3 18 gridded fields of c1 and l1 shown in
Figs. 2 and 6 can be obtained via the Internet by contacting the
corresponding author by e-mail at chelton@oce.orst.edu.
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FIG. 2. Global contour map of the 18 3 18 gridded first baroclinic gravity-wave phase speed c1 (in m s21) computed numerically from the
neutral density gradient by centered first differences. Water depths shallower than 3500 m are shaded.

of ridges in the Indian Ocean, and numerous smaller
ridges and seamount chains throughout the World Ocean
are clearly delineated by the locally reduced values of
c1 in shallower water.

At subtropical latitudes, the effects of longitudinal
variations of the stratification are manifest as the in-
crease of c1 from about 2.4 m s21 near the eastern bound-
aries to more than 3 m s21 near the western boundary
currents. This east–west asymmetry is an indication of
stronger stratification in the western basins suggested
by the WKB approximation (2.2). As shown by the
example in Fig. 3, the basin-scale longitudinal variation
of c1 along 248N across the North Pacific arises because
of the deeper permanent pycnocline and corresponding
larger vertically integrated N(z), and hence , in theWKBc1

western basin in association with the westward inten-
sification of the subtropical gyre. The shorter-scale vari-
ations of c1 in Fig. 3 represent the topographic effects
noted from the WKB approximation (2.2); the gravity-
wave phase speed decreases over shallow water.

In the equatorial Pacific, c1 increases from about 2.2
m s21 off the coast of Ecuador to about 3 m s21 near
the date line. As shown in Fig. 4, this zonal variation
of c1 reflects the deepening of the pycnocline and an
associated larger vertically integrated N(z) and to-WKBc1

ward the west. The effects of stratification are somewhat
masked by topographic effects on c1 west of about 1658E
in the Pacific (Fig. 4) and throughout the tropical At-
lantic and Indian Oceans (Fig. 2).

At Northern Hemisphere subpolar latitudes, the ef-
fects of latitudinal variations of stratification are ap-
parent from the approximate linear decrease of c1 north-
ward across the subpolar gyres to values as low as about
2 m s21 near the Aleutian Islands in the North Pacific
and to less than 1 m s21 in the weakly stratified water
near Greenland and Iceland in the North Atlantic. In the
Southern Hemisphere, c1 decreases linearly southward
across the Antarctic Circumpolar Current to values of
about 1 m s21 in the weakly stratified water near Ant-
arctica. These effects of latitudinal variations of strati-
fication are also evident in the global zonally averaged
values of c1 shown in Fig. 5.

A map of the first baroclinic Rossby radius of de-
formation l1 computed from the gravity-wave phase
speed c1 by (2.3) is shown in Fig. 6. The dominant z f z21

dependence noted from the extratropical WKB solution
(2.4) is clearly evident from the predominantly zonal
orientations of the contours. The first baroclinic Rossby
radius decreases from about 240 km in the near-equa-
torial band to less than 10 km at latitudes higher than
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FIG. 3. Zonal sections along 248N across the subtropical North Pacific of (a) the density expressed
as su in the upper 2000 m of the water column, (b) the water depth H in meters, (c) the WKB
approximation for the first baroclinic gravity-wave phase speed in m s21, and (d) the numericalWKBc1

estimate of the first baroclinic gravity-wave phase speed c1.

about 608. The basin-scale longitudinal deviation in Fig.
6 from the strictly zonal contours that a simple z f z21

dependence would imply arises because of the effects
of the deeper permanent pycnocline and corresponding
larger vertically integrated N(z) in the western basins
noted previously from the map in Fig. 2 and the zonal
sections in Figs. 3 and 4. The shorter-scale perturbations
from strictly zonal contours of l1 near major topograph-
ic features are manifestations of the dependence of l1

on water depth also noted previously.
The strong latitudinal dependence of the first baro-

clinic Rossby radius is also illustrated by the global
zonally averaged values of l1 shown in Fig. 7. The
equatorial solution (2.3b) is shown between 58N and

58S. For practical use in applications for which a char-
acteristic latitudinal variation of l1 is desired, an ana-
lytical expression for the latitudinal variation of the
global zonally averaged extratropical baroclinic Rossby
radii in Fig. 7 was derived by regression onto a quadratic
function of inverse latitude. The resulting global re-
gression fits for each hemisphere separately are shown
by the dashed lines in Fig. 7, and the corresponding
regression parameters are listed in Table 1. The regres-
sion parameters for each individual ocean basin are also
listed in Table 1. In the extratropical latitudes where the
quasigeostrophic formalism (appendix A) is valid, the
root-mean-square errors of the regression fits are less
than 2.6 km in all ocean basins except the South Indian
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FIG. 4. As in Fig. 3 except along the equator in the Pacific.

where the root-mean-square error is 3.6 km (see Table
1).

The 18 3 18 gridded fields of c1 and l1 presented here
are compared with previously published values in sec-
tion e of appendix B. It is shown that subtle and seem-
ingly minor errors in previous methods result in 5%–
15% underestimates of c1 and l1.

b. Sensitivity to the density climatology

The NODC climatological average temperature and
salinity profiles from which N2(z) was estimated for the
Rossby radius calculations in this global analysis were
constructed by NODC from historical temperature and
salinity profiles by isobaric averaging on constant stan-
dard-depth pressure surfaces. In addition, the NODC

processing included spatial smoothing of the tempera-
ture and salinity profiles over horizontal scales of order
1000 km (see, e.g., Table 3 of Levitus and Boyer 1994).
(The precise filtering properties of the NODC objective
analysis procedure depend on the data distribution near
the estimation location.) The resulting climatological
description of the hydrography of the World Ocean has
become an invaluable resource to ocean modelers and
observationalists alike. Indeed, this is the only global
hydrographic climatology presently available for anal-
yses such as the global Rossby radius calculation pre-
sented here.

While the virtues and utility of the NODC hydro-
graphic dataset are undisputed, an important limitation
of the dataset is also widely recognized. The large
NODC spatial smoothing, which is essential in data-
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FIG. 5. The global zonally averaged first baroclinic gravity-wave phase
speed c1 (in m s21) obtained from the 18 gridded c1 shown in Fig. 2.

FIG. 6. Global contour map of the 18 3 18 first baroclinic Rossby radius of deformation l1 in kilometers computed by Eq. (2.3) from the
first baroclinic gravity-wave phase speed shown in Fig. 2. Water depths shallower than 3500 m are shaded.

sparse regions of the ocean (e.g., most of the Southern
Hemisphere), broadens the spatial scales of water prop-
erty distributions in regions of sloping isopycnals. Lo-
zier et al. (1994, 1995) have shown that this problem

is further exacerbated by the use of isobaric averaging.
Because mixing in the ocean occurs primarily along
isopycnal surfaces, spatial gradients of water properties
are smaller on isopycnal surfaces than on isobaric sur-
faces. For a given choice of spatial smoothing, spatial
gradients of water properties are thus better retained by
averaging and smoothing historical hydrographic data
along isopycnal surfaces than by isobaric averaging and
smoothing. Lozier et al. (1994) showed that isobaric
averaging can actually yield spurious water mass anom-
alies that are purely artifacts of the isobaric averaging
process.

A new 18 3 18 climatological-average North Atlantic
hydrographic dataset has recently been constructed by
Lozier et al. (1995, referred to hereafter as LOC) based
on isopycnal averaging and minimal spatial smoothing
over scales on the order of 200 km. Expansions of this
dataset to include the South Atlantic and North Pacific
are under way. The sensitivity of the Rossby radius
calculation presented in section 3a to the density cli-
matology from which N2(z) is estimated is investigated
here by comparison with 18 3 18 Rossby radius esti-
mates computed from the LOC climatological average
hydrographic profiles.
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FIG. 7. The global zonally averaged first-baroclinic Rossby radi-
us of deformation l1 in kilometers (solid line) obtained from the
18 3 18 gridded Rossby radii shown in Fig. 6. The y axis is expanded
in the lower panel to resolve the middle- and high-latitude Rossby
radii better. The dashed lines represent least squares fits over the
latitude range 108–608 to an empirical quadratic function of inverse
latitude; the parameters of the least squares estimates are listed in
Table 1. Least squares fit parameters for each individual ocean basin
are listed in Table 1.

TABLE 1. The parameters of the least squares estimate of the zonally averaged first baroclinic Rossby radius of deformation in kilometersl̂1

obtained by regression onto a quadratic function of inverse latitude for the latitude range 108–608. The form of the quadratic function is
5 a0 1 a1q21 1 a2q22, where q is the absolute value of latitude. The coefficients a0, a1, a2 and the root-mean-square and maximuml̂ (q)1

error of the regression fit are listed separately for each hemisphere for the global ocean (see Fig. 7), the Pacific Ocean, the Atlantic Ocean,
and the Indian Ocean.

a0 a1 a2 rms (km) max (km)

Global Ocean
Northern Hemisphere
Southern Hemisphere

217.13
212.79

1908.41
1641.09

27572.13
24827.22

1.69
1.45

4.34
2.74

Pacific Ocean
Northern Hemisphere
Southern Hemisphere

214.77
26.89

1866.03
1396.94

26809.97
22587.56

1.17
1.12

2.67
2.46

Atlantic Ocean
Northern Hemisphere
Southern Hemisphere

218.66
215.03

1902.66
1673.95

28285.09
26073.50

2.57
2.44

6.55
4.77

Indian Ocean
Northern Hemisphere
Southern Hemisphere

213.90
220.05

1376.39
1994.46

21833.22
27500.20

1.00
3.57

22.62
4.57

North Atlantic maps of the first baroclinic gravity-
wave phase speed c1 and Rossby radius l1 computed
from the LOC data are shown in Fig. 8. The contours
are generally very similar to the North Atlantic contours
in Figs. 2 and 6. A scatterplot comparison of l1 com-

puted from the two datasets is shown in Fig. 9a. Over
most of the North Atlantic, the two estimates are in very
close agreement; 68% of the NODC solutions fall within
65% of the LOC solutions and 95% fall within 620%
of the LOC solutions (Fig. 9b).

A map of the locations where the NODC and LOC
solutions for l1 differ by more than 610% is shown in
Fig. 10. The influences of the effects of isobaric aver-
aging and large horizontal smoothing are readily ap-
parent. By comparison with the dynamic height field
superimposed on Fig. 10, it can be seen that most of
the large discrepancies are associated with regions of
steeply sloping isopycnal surfaces, for example, the Gulf
Stream and its northward extension around Grand Banks
and Flemish Cap. The LOC values of the Rossby radius
are more than 10% larger than the NODC values on the
right side (when facing downstream) of this current sys-
tem. Likewise, the LOC values are 10% smaller than
the NODC values on the left side. Locations of more
than 610% differences are also found along the eastern
continental margin and more or less randomly distrib-
uted over the open ocean poleward of 408N where l1

becomes very small (less than 20 km) and small dif-
ferences are therefore a large fraction of the NODC
value. Some of these differences are likely attributable
to the different quality control procedures applied to the
historical hydrographic data.

The differences between estimates of l1 from the
LOC and NODC datasets can be understood by consid-
eration of the WKB approximation (2.4). As shown by
the example vertical sections of density in Figs. 11a and
11b, the mean Gulf Stream is much broader and less
well defined in the NODC data than in the LOC data.
As a result, the vertically integrated N(z) and hence,
from (2.2), the WKB approximation of the gravity-WKBc1

wave phase speed, are weaker on the equatorward side
of the Gulf Stream in the isobaric averaged and heavily
smoothed NODC data (Fig. 11d). As expected from the
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FIG. 8. North Atlantic maps of (a) the first baroclinic gravity-wave phase speed c1 (in m s21) and (b) the
first baroclinic Rossby radius of deformation l1 in kilometers computed from the Lozier et al. (1995) (LOC)
18 3 18 gridded climatological-average hydrographic data. Gray shading represents water shallower than
3500 m.

WKB approximations, the baroclinic gravity-wave
phase speed c1 and the Rossby radius l1 are correspond-
ingly higher in the LOC data (Fig. 11e). On the poleward
side of the Gulf Stream, isopycnals are all much shal-
lower and the vertically integrated N(z) and areWKBc1

smaller in the LOC data, resulting in smaller values of
c1 and l1.

4. Effects of temporal variability of the
stratification

a. Annual variability

The linearization leading to the eigenvalue problem
(2.1) assumes that the effects of temporal variability of
the stratification are small. This can be investigated by
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FIG. 9. Comparison between numerical estimates of the first bar-
oclinic Rossby radius of deformation computed from the NODC and
the LOC climatological-average hydrographic datasets. (a) Scatterplot
of LOC versus NODC. The dashed line represents the line of perfect
agreement. (b) Histogram of the differences LOC minus NODC, ex-
pressed as a percentage of the LOC estimate.

naively computing the baroclinic gravity-wave phase
speed c1 or Rossby radius l1 for each month of a 12-
month climatological average seasonal cycle of density
profiles and examining the magnitude of the seasonal
variations in computed values. The seasonal cycle of l1

has previously been computed in this manner for the
North Pacific and North Atlantic by Emery et al. (1984),
who concluded that seasonal variability was surprisingly
small. The seasonal cycle is investigated here over a
larger geographical domain and the small seasonal vari-

ability is interpreted in light of the WKB approximation
(2.4).

The first baroclinic Rossby radius of deformation was
computed from the hydrographic profiles at each of the
18 3 18 grid locations for which the 12-month clima-
tological average seasonal cycle was available in the
NODC dataset. Each time series of l1 was then regressed
onto an annual cycle with frequency f1 5 1 cycle per
year,

5 A0 1 Ac cos2pf1t 1 As sin2pf1t.l̂1 (4.1)

The amplitude of annual variability is obtained from the
regression coefficients Ac and As by

A1 5 [ 1 ]1/2.2 2A Ac s (4.2)

The residuals from the annual regression fit were very
small; 68% of the regression residuals were within 61%
of the corresponding mean Rossby radius and 90% of
the residuals were within 62.5% of the mean Rossby
radius. The mean and annual cycle (4.1) are thus a high-
ly accurate description of the seasonally varying Rossby
radii.

A map of the constant offset regression coefficient
A0 (not shown) is virtually indistinguishable from the
map of the annual-mean first baroclinic Rossby radius
shown in Fig. 6. The amplitude A1 of annual variability
is shown in Fig. 12. These seasonal variations expressed
as a percentage of the annual mean l1 in Fig. 6 are
exactly equivalent to the amplitudes of seasonal vari-
ations of the baroclinic gravity-wave phase speeds c1

expressed as a percentage of the annual mean c1 shown
in Fig. 2. Typical values are only 1%–2%. Except for
a few bull’s eyes of locally large values of A1, a max-
imum annual variability of about 4% occurs in the east-
ern tropical Pacific. An inspection of the density profiles
in the bull’s eyes near 228S, 758E in the South Indian
Ocean and near 108N, 1258W in the eastern tropical
Pacific concluded that one or more of the 12 monthly
mean temperature and salinity profiles in the 1994
NODC climatological average dataset are highly suspect
at these locations.

The small annual variability of the baroclinic Rossby
radius is easily understood by consideration of the WKB
approximations (2.2) and (2.4). Substantial changes of
c1 and l1 require large changes of the vertical integral
of N(z). Seasonal variations of the density structure are
mostly restricted to the upper few hundred meters,
which is only a small fraction of the total water column.
Although annual variations of N(z) are often very large
within the seasonal pycnocline, the effect on the vertical
integral of N(z) over the entire water column is small.
The net effect on the baroclinic Rossby radii is therefore
only a few percent at most.

b. Intraseasonal and interannual variability

The effects of temporal variability of the stratification
on the Rossby radius on timescales other than the annual
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FIG. 10. The 18 3 18 locations at which the Rossby radius differences LOC minus NODC are greater than 10% of
the LOC estimate (large dots) and less than 210% of the LOC estimate (small dots). Contours represent the dynamic
height of the sea surface relative to 1000 m in units of meters.

cycle considered in section 4a are of interest. Unfor-
tunately, there are few locations in the World Ocean
where a long-term program of repeated hydrographic
measurements has been maintained. An upper bound on
the importance of temporal variations in the stratifica-
tion can be obtained by examining l1 for all individual
density profiles within, for example, 18-square areas of
the ocean. This was investigated here by computing
numerical solutions of the eigenvalue problem for each
density profile in the quality-controlled LOC 86-yr his-
torical hydrographic dataset for the North Atlantic.

In order to isolate the effects of temporal variability
of the stratification, it is important to eliminate to the
extent possible any effects of spatial variability within
each 18-square area. The effects of geographical vari-
ability of the water depth H can be removed by assuring
that all of the estimates of l1 within a given 18 square
are calculated from density profiles over exactly the
same depth range. To this end, only those profiles that
extended to a depth of at least 3500 m were considered
(see the bathymetric maps in Fig. 8). Furthermore, the
portions of any density profiles deeper than 3500 m were
excluded from this analysis for the purposes of this cal-
culation. Individual estimates of c1 within each 18 square
were thus calculated from profiles of exactly 3500-m
depth. The baroclinic Rossby radius l1 for each profile

was then obtained from c1 by (2.3) using the value of
f or b at the center of the 18 square. The resulting values
of l1 are still affected by spatial variations of the mean
stratification over the 18 areas. This is a particularly
important consideration in the interpretation of these
results in regions of strong horizontal shear such as the
Gulf Stream.

A scatterplot of the individual values of l1 is shown
in Fig. 13a as a function of the long-term average l1

computed from the upper 3500 m of the climatological
average density profile at the 18 3 18 grid point near-
est the sample location. The preponderance of his-
torical North Atlantic hydrographic measurements
have been made in the vicinity of the Gulf Stream
(see Fig. 2 of Lozier et al. 1995) where l1 ranges
between about 20 and 30 km (see Fig. 8b). Some of
the scatter in this portion of Fig. 13a can therefore be
attributed to the effects of spatial variability of the
mean stratification over the 18 squares. The variability
in Fig. 13a can thus be considered an upper bound
on intraseasonal and interannual variability of the first
baroclinic gravity-wave phase speed.

In an attempt to quantify the degree of variability of
the Rossby radius, the individual points in Fig. 13a were
sorted into 5-km bin sizes according to the climatolog-
ical average Rossby radius along the abscissa. The root-
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FIG. 11. Meridional sections along 67.58W across the Gulf Stream of (a) the density expressed
as su computed from the NODC climatological average hydrographic data in the upper 1500 m
of the water column, (b) the density expressed as su computed from the LOC climatological
average hydrographic data, (c) the water depth H in meters, (d) the WKB approximations WKBc1

for the first baroclinic gravity-wave phase speeds (in m s21) computed from the NODC (dashed
line) and LOC (solid line) datasets, and (e) numerical estimates of the baroclinic gravity-wave
phase speed c1 computed from the NODC (dashed line) and LOC (solid line) datasets.

mean-square differences in kilometers and the root-
mean-square percent differences within each 5-km bin
are shown in Fig. 13b. As shown in Fig. 13c, the bins
with climatological average Rossby radii greater than
40 km are very sparsely sampled compared with bins
with average Rossby radii ranging from 10 to 40 km.
This again reflects the dense sampling near the Gulf
Stream. Although the statistical reliability of the results
is highly variable from one bin to another, the results

are nonetheless suggestive that the upper bound on the
root-mean-square intraseasonal and interannual vari-
ability of the first baroclinic Rossby radius is generally
less than 10%. At latitudes higher than 408N, where the
climatological average Rossby radius is less than 20 km,
the root-mean-square variability is only a few kilome-
ters. The root-mean-square variability increases to about
10 km in the Tropics where the climatological average
Rossby radius is more than 100 km.
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FIG. 12. Contour plot of the amplitudes of least squares fits of the 18 3 18 Rossby radii for the 12 monthly climatological-average NODC
density profiles to an annual harmonic. The amplitudes are expressed as a percentage of the annual mean first baroclinic Rossby radius
shown in Fig. 6. The contour interval is 1%.

5. Discussion and conclusions

Atlases of the first baroclinic gravity-wave phase
speed c1 and Rossby radius of deformation l1 were com-
puted on a global 18 3 18 grid from the NODC cli-
matological average hydrographic dataset produced by
Boyer and Levitus (1994). The numerically computed
values of c1 and l1 can be obtained via the Internet by
contacting the corresponding author by e-mail at chel-
ton@oce.orst.edu. Geographical variations of the cli-
matological averages of c1 and l1 were discussed in the
context of a WKB approximation. Although not suffi-
ciently accurate for many applications, the WKB ap-
proximation is shown here to be very useful for elu-
cidating the effects of earth rotation, stratification, and
water depth on c1 and l1. The geographical variability
of l1 is dominated by a latitudinal variation owing to
an inverse dependence on the Coriolis parameter f. At
a given latitude, the baroclinic Rossby radii are ap-
proximately proportional to the vertical integral of the
buoyancy frequency N(z). The Rossby radii thus in-
crease with increasingly strong stratification and de-
crease with decreasing water depth. The effects of strat-
ification and water depth are most clearly seen in the

geographical distribution of c1, which does not depend
on f.

The availability of the high-quality LOC climatolog-
ical average hydrographic dataset produced by Lozier
et al. (1995) for the North Atlantic allows an assessment
of the sensitivity of the Rossby radius calculation to the
particular hydrographic dataset used to estimate N(z)
from which the Rossby radius is calculated. The LOC
North Atlantic dataset differs significantly from the
global NODC dataset used elsewhere in this study. The
NODC dataset was constructed by isobaric averaging
and large, ;1000 km, spatial smoothing. The LOC da-
taset was constructed by isopycnal averaging and min-
imal spatial smoothing of ;200 km on isopycnal sur-
faces. In regions of sloping isopycnals, the LOC hy-
drographic fields retain much higher spatial resolution
than the NODC fields.

A comparison of c1 and l1 computed from the LOC
and NODC climatological average datasets concluded
that the calculated values agree to within a few percent
over most of the North Atlantic. However, near the Gulf
Stream and its northward extension around Grand Banks
and Flemish Cap, the LOC and NODC estimates of these
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FIG. 13. (a) Scatterplot of the first baroclinic Rossby radius of
deformation computed from each individual hydrographic profile in
the North Atlantic quality-controlled LOC 86-yr hydrographic da-
taset, shown as a function of the climatological average Rossby radius
computed from the nearest 18 3 18 LOC grid location. (b) Root-
mean-square differences of the individual Rossby radii from the cli-
matological average Rossby radii expressed in kilometers (thin solid
line) and expressed as a percentage of the climatological average
Rossby radii (thick solid line). Statistics were computed from panel
(a) over bin sizes of 5 km. (c) Logarithm of the number of individual
hydrographic profiles in each 5-km bin over which the statistics in
panel (b) were computed.

parameters differ by more than 10%. It can thus be
concluded that the global atlases of c1 and l1 presented
in Figs. 2 and 6 are generally accurate to within a few
percent, except near intense currents that are overly
smoothed in the NODC hydrographic dataset.

The WKB approximation also elucidates the insig-
nificance of temporal variations of stratification on c1

and l1. Seasonal variations of the density profile are
mostly restricted to the upper few hundred meters of
the water column. While these seasonal variations have
a very strong effect on N(z) locally near the depth of
the seasonal pycnocline, their effect on the vertical in-
tegral of N(z) and hence is relatively small. Sea-WKBc1

sonal variations of c1 and l1 are therefore only a few
percent at most.

Quantitative estimates of the importance of temporal
variability of the stratification on other timescales (in-
traseasonal and interannual) in the estimation of c1 and
l1 are difficult to obtain because of the lack of hydro-
graphic time series at fixed locations. It was shown from
an analysis of the 18-gridded LOC historical hydro-
graphic data in the North Atlantic that an upper bound
on temporal variability is less than 10%. Much of this
variability can undoubtedly be attributed to spatial vari-
ations of the mean stratification over the 18-square areas.
It is concluded that the effects of temporal variations of
the stratification can be neglected for the purposes of
estimating c1 and l1.

As noted in the introduction, one of the objectives of
this study was to determine whether systematic errors
in previously published atlases of the Rossby radius
could account for the apparent factor-of-2 discrepancy
between the westward propagation speeds of midlatitude
sea level signals observed in TOPEX/POSEIDON al-
timeter data by Chelton and Schlax (1996) and the phase
speeds predicted from the standard theory for nondis-
persive Rossby waves. A quantitative, detailed com-
parison with previous atlases of the first baroclinic Ross-
by radius published by Emery et al. (1984), Houry et
al. (1987), and Picaut and Sombardier (1993) concluded
that the previous estimates are indeed biased system-
atically low (see section e of appendix B). The errors
in the previous published results can be attributed to
seemingly minor errors in the details of the methods
used to compute the Rossby radius. In particular, the
use of the gradient of potential density (rather than the
neutral density gradient defined in section d of appendix
B) to estimate N2(z) and/or the use of forward first dif-
ferences (rather than centered first differences) yields
first baroclinic Rossby radii that are biased 5%–15%
low. The precise geographical distribution of the bias
depends on the water masses sampled by the hydro-
graphic profiles.

The phase speeds of extratropical long, baroclinicpc1

Rossby waves are related to the Rossby radius l1 by
5 2b . A 10% underestimate of l1 thus corre-p 2c l1 1

sponds to approximately a 20% underestimate of .pc1

Although the 5%–15% biases in previously published
atlases of the Rossby radius are significant, they are not
of sufficient magnitude to account for the ;100% un-
derestimate of midlatitude Rossby wave propagation
speeds observed in altimeter data by Chelton and Schlax
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(1996). The standard theory is evidently deficient in
predicting the observed propagation speeds.

Numerous studies are under way to determine the
effects on propagation speeds when the linearized po-
tential vorticity equation includes terms omitted from
the standard derivation presented in section a of appen-
dix A. White (1977), White et al. (1998), and Qui et al.
(1997) have suggested that the apparent speedup is due
to a misinterpretation of the propagating signals in al-
timeter data as freely propagating Rossby waves. With
appropriate phasing between narrowband (in frequency)
propagating waves and zonally coherent wind forcing,
an apparent speedup of a factor of 2 can be obtained.
Killworth et al. (1997), deSzoeke and Chelton (1997,
manuscript submitted to J. Phys. Oceanogr.), and Dewar
(1997, manuscript submitted to J. Phys. Oceanogr.)
have shown that latitudinally varying increases in phase
speed very comparable to those observed by Kessler
(1990) and Chelton and Schlax (1996) can be obtained
for purely free waves when the effects of vertical shear
on the potential vorticity field are included in the ei-
genvalue problem for l1 and c1. Distinguishing between
these and other potential mechanisms for the observed
increased propagation speeds of long Rossby waves re-
mains a significant challenge.
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APPENDIX A

The Eigenvalue Problem

a. Mathematical formalism

The standard method for determining the Rossby radii
of deformation is to linearize the quasigeostrophic po-
tential vorticity equation about a zero background mean
flow. In the absence of buoyancy forcing, wind stress,
or frictional forces, the resulting equation (e.g., Gill
1982; LeBlond and Mysak 1978) is a wave equation for
freely propagating linear waves. For a flat bottom, the
vertical dependence is separable from the horizontal and
temporal dependencies. The vertical velocity w, for ex-
ample, can then be expressed as

w(x, y, z, t) 5 f(z)W(x, y, t). (A.1)

Substituting (A.1) into the linearized quasigeostrophic
potential vorticity equation and separating the z-depen-
dent terms from the x-, y- and t-dependent terms yields
the coupled pair of equations

2] f ]W
2¹ 2 W 1 b 5 0 (A.2)h 21 2]t c ]x

2 2d f N (z)
1 f 5 0, (A.3)

2 2dz c

where c22 is the separation constant, 5 ]2/]x2 1 ]2/2¹h

]y2 is the horizontal Laplacian operator, f 5 2V sinq is
the Coriolis parameter at latitude q for earth rotation
rate V 5 7.29 3 1025 s21, b 5 df/dy 5 2V cosq21Re

is the latitudinal variation of the Coriolis parameter, Re

5 6371 km is the earth’s radius, and N2 is the squared
buoyancy frequency defined in terms of the water den-
sity r and sound speed cs as

2g ]r g
2N (z) 5 2 2 . (A.4)

2r ]z cs

For present purposes, the second term can be neglected
since the sound speed is essentially infinite. The rigid-
lid and flat-bottom boundary conditions applicable to
the baroclinic solutions of interest here are that the ver-
tical velocity vanish at the sea surface and ocean bottom;
that is,

f 5 0 at z 5 0 (A.5a)

f 5 0 at z 5 2H, (A.5b)

where H is the mean water depth.
The ordinary differential equation (A.3) and bound-

ary conditions (A.5) for the vertical structure of the
vertical velocity constitute an eigenvalue problem of
Sturm–Liouville form. There is a countable set of in-
creasing nonnegative eigenvalues and corresponding22cm

eigenfunctions fm(z). The subscript m labels the differ-
ent eigensolutions for the normal modes of the coupled
equations. The eigenfunction fm(z) has m 1 1 inter-
sections with the zero axis, including those at z 5 0
and z 5 2 H. The eigenfunctions satisfy the orthogon-
ality condition

0

2N (z)f f dz 5 0 if k ± m. (A.6)E k m

2H

The eigenvalue problem (A.3) and (A.5) can be rec-
ognized as equivalent to the differential equation and
boundary conditions for the vertical structure of the ver-
tical velocity for long, baroclinic gravity waves in a
nonrotating, continuously stratified fluid. Physically, the
parameter cm is the phase speed of the mode-m gravity
wave. At latitudes outside of the Tropics, the Rossby
radius of deformation for mode m is obtained from cm

by

cml 5 if q * 58. (A.7a)m | f |
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Near the equator where f → 0, the modified radius of
deformation is

1/2cmEQl 5 , if q & 58 (A.7b)m 1 22b

(Gill 1982).
The eigenvalue problem (A.3) depends only on N2(z),

which, in turn, requires knowledge of only the local
vertical stratification according to (A.4). The method
used here to compute N2(z) from hydrographic data is
presented in section d of appendix B. The eigensolutions
for a general profile of N2(z) can be estimated by dis-
cretization and numerical solution of (A.3) subject to
the boundary conditions (A.5), as summarized in ap-
pendix C. Estimates of c1 and l1 are obtained numeri-
cally in section 3a on a 18 3 18 global grid.

b. WKB approximation

Although not sufficiently accurate for many appli-
cations, insight regarding the nature of the parameters
cm and lm and the corresponding eigenfunctions fm(z)
can be gained from an analytical approximate solution
of the ordinary differential equation (A.3) with bound-
ary conditions (A.5) obtained by the so-called WKB
method (Morse and Feshbach 1953). From the form of
(A.3), we expect solutions to oscillate with z. The WKB
method makes the formal substitution

f(z) 5 eix(z), (A.8)

where x(z) is the phase of the complex oscillation as a
function of z. Substituting (A.8) into (A.3) and using
primes to denote differentiation with respect to z trans-
forms (A.3) into

2x9 x0
2 1 1 5 2i , (A.9)

2 2˜ ˜N N

where

2N (z)
2Ñ (z) 5 . (A.10)

2c

Note that R [x9(z)] is the (variable) vertical wavenumber
of f and R [x9/Ñ] is this wavenumber scaled by the
internal length scale [Ñ(z)]21. In the WKB approxima-
tion, the scaled rate of change of vertical wavenumber
x0/Ñ2 on the right side of (A.9) is assumed to be small
compared to the scaled vertical wavenumber, x9/Ñ, that
appears on the left side of the equation.

The WKB approximation considers a series expan-
sion of the form

x 5 x0 1 x1 1 · · ·. (A.11)

It is supposed that

x x0k 05 O & 1, for k 5 1, 2, · · · (A.12)
2˜1 2x Nk21

so that, when (A.11) is substituted into (A.9), an ordered
set of equations for the xk is obtained:

2x90 5 1 (A.13a)
2Ñ

2x9x9 5 ix0, (A.13b)0 1 0

· · · .

It is evident from (A.13a) that the vertical wavenum-
ber is approximately Ñ(z). The solution for the first term
in the expansion (A.11) is easily seen to be

z

˜x (z) 5 6 N(z9) dz9 (A.14)0 E
2H

to within an arbitrary additive constant that, from (A.8),
corresponds to a multiplicative constant in f. The two
sign possibilities in (A.4) can be superposed to construct
from (A.8) either sine- or cosine-like behavior for the
zero-order WKB term of f,

ix (z) 2ix (z)0 0ae 1 be

z z

˜ ˜5 A cos N dz9 1 B sin N dz9 , (A.15)E E1 2 1 2
2H 2H

where A 5 a 1 b and B 5 i(a 2 b) are arbitrary
constants.

From (A.4), it is seen that z /Ñ2z 5 zÑ9/Ñ2z. The re-x00
quirement (A.12) that /Ñ2 be small thus also demandsx00
that the environment, characterized by the length scale
[Ñ(z)]21, change slowly in the vertical.

The next higher-order term in the expansion (A.11)
is obtained from (A.13b) using (A.13a):

i x0 i i0 ˜x9 5 5 (lnx9)9 5 (lnN )9.1 02 x9 2 20

The integral of this is

i ˜x (z) 5 lnN(z) (A.16)1 2

to within another arbitrary additive constant that can be
absorbed into A and B. Hence,

ix 21/2˜1e 5 [N(z)] . (A.17)

Retaining only the first two terms (A.15) and (A.17)
in the expansion (A.11), the WKB approximation of
(A.8) becomes

z

WKB 21/2˜ ˜f (z) 5 [N(z)] A cos N dz9E1 2[
2H

z

˜1 B sin N dz9 .E1 2]
2H

The bottom boundary condition (A.5) implies that A 5
0. Substituting for Ñ(z) from (A.10), the WKB approx-
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FIG. A1. Vertical profiles of density expressed as su, buoyancy frequency N(z) in
cycles per hour, and the WKB approximations (thin solid lines) and numerical estimates
(heavy solid lines) for the first and second baroclinic vertical velocity eigenfunctions f 1

and f 2 at three locations in the middle of the North Atlantic: (a) 53.08N, 27.28W; (b)
29.98N, 45.38W; and (c) 13.98N, 37.68W. The WKB approximations and numericalWKBlm

estimates lm for the Rossby radii in kilometers are labeled on each eigenfunction plot.
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imation for the mode-m baroclinic vertical velocity ei-
genfunction is

WKBf ø f (z)m m

21/2 zN(z) 1
5 B sin N(z9) dz9 , m $ 1.E1 2[ ]c cm m 2H

(A.18)

The parameter corresponding to the WKB baro-WKBcm

clinic eigenfunction (A.18) is easily determined by ap-
plying the rigid-lid boundary condition (A.5) to (A.18).
This leads to

01
sin N(z9) dz9 5 0,E1 2cm 2H

which implies that
01

WKBc ø c 5 N(z9) dz9 m $ 1. (A.19)m m Emp
2H

From (A.7a), the WKB approximations for the baro-
clinic Rossby radii of deformation outside of the equa-
torial band are

01
WKBl ø l 5 N(z9) dz9 m $ 1. (A.20)m m E| f |mp

2H

The nature of the eigenfunctions can be assessed from
the form of (A.18). The amplitude of each baroclinic
vertical velocity eigenfunction at depth z is proportional
to [N(z)]21/2. The vertical velocity eigenfunctions there-
fore have smaller amplitude in the upper water column
where the stratification is stronger than in the weakly
stratified deep water. The eigenfunctions oscillate ver-
tically with a stretched sinusoidal structure that has a
local wavelength proportional to N(z). The vertical
structure therefore varies more rapidly in the upper wa-
ter column than in the deep water.

The accuracy of the WKB approximation is illustrated
in Fig. A.1 for the first two baroclinic modes from long-
term average density profiles at three locations in the
middle of the North Atlantic by comparison with so-
lutions of (A.3) and (A.5) computed numerically as de-
scribed in appendix C. It is apparent that the differences
between the WKB and numerical eigenfunctions are
largest in the upper water column where the vertical
scale of N(z) is short. This is consistent with the WKB
assumptions that restrict the validity of the approxi-
mation to regions of the water column where the scaled
rate of change of the environment [i.e., the vertical de-
rivative of N(z), scaled appropriately as in (A.10)] is
small compared with the scaled vertical wavenumber of
the eigenfunction. These assumptions are violated in the
upper ;300 m of the water column where N(z) increases
rapidly from a small value near the surface to a maxi-
mum at the base of the mixed layer and then decreases
rapidly below the mixed layer.

The WKB eigenvalues are less sensitive than the

WKB eigenfunctions to the validity of the assumptions
of the WKB approximation. For the three locations
shown in Fig. A1, the WKB approximations for the first
baroclinic Rossby radii all agree with the numerical es-
timates to within 10%. The relationship between l1 and

is examined globally in section 2. The ;10% un-WKBl1

certainty of the WKB approximation is too large for
many quantitative applications of the baroclinic Rossby
radii. However, as shown in sections 3 and 4, the WKB
solution provides a very useful interpretation of geo-
graphical and temporal variations of the numerical es-
timates of l1 and c1.

APPENDIX B

Estimation of the Buoyancy Frequency Profile

It is shown in appendix A that the only information
required to compute the first baroclinic gravity-wave
phase speed c1 and Rossby radius of deformation l1 is
the vertical stratification in order to specify the squared
buoyancy frequency profile (A.4) in the differential
equation (A.3). We are aware of only three previous
studies in which the geographical variability of c1 and
l1 over ocean basin scales has been presented. The
methods used to estimate N2(z) in these previous studies
are briefly reviewed in sections a, b, and c of this ap-
pendix and attention is drawn to inherent weaknesses
in all of these methods. An improved method is intro-
duced in section d of this appendix. The sensitivity of
l1 to the method used to estimate N2(z) is illustrated in
section e of this appendix and section b of appendix C.

a. The potential density method

Long-term average potential temperature (denoted as
u) and salinity profiles were compiled by Emery and
Dewar (1982) on a 58 3 58 grid of the Northern Hemi-
sphere. These climatological average profiles extended
from the surface to a depth of 3000 m at 66 nonuni-
formly spaced standard depths with higher vertical res-
olution in the upper water column where temperature
and salinity vary most rapidly. For the purposes of es-
timating N2(z), Emery et al. (1984) computed an average
potential density profile ru(z) for each gridded pair of
standard-depth, 3000-m potential temperature and sa-
linity profiles. The potential density of a water parcel
is defined to be the density that the parcel would have
when moved adiabatically from its in situ pressure to
atmospheric pressure at the sea surface.

An estimate of the squared buoyancy frequency pro-
file (A.4) was obtained by Emery et al. (1984) by
smoothing the potential density profile and then first
differencing. Details of the first differencing were not
described; as illustrated in section b of appendix C, the
first baroclinic Rossby radius calculated from N2(z) is
sensitive to the method used to approximate the density
derivative in (A.4). We have assumed that the centered
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FIG. B1. A schematic vertical profile of the M standard depths zk

in the NODC climatological average hydrographic dataset from which
the buoyancy frequency profile N(z) is estimated in order to solve
the eigenvalue equation for the Rossby radius of deformation. The
depth zk 1 1/2 corresponds to the midpoint between standard depths
zk and zk 1 1. The actual NODC standard depths are listed in Table
B1.

FIG. B2. Profiles of N(z) in cycles per hour estimated from the
standard-depth climatological average density profile shown in Fig.
A1b by the potential density method (dashed line), the forward first
difference method (dotted line), and the neutral density gradient meth-
od. The tick marks along the right axis indicate the NODC standard
depths.

first difference method was used, in which case N2(z)
is estimated from the discrete standard-depth data by

g r (z ) 2 r (z )u k u k112N (z ) 5 2 , (B.1)k11/2 [ ]r z 2 z0 k k11

where zk11/2 [ (zk 1 zk11)/2 is the midpoint between
standard depths zk and zk11 (Fig. B.1). The usual positive
upward convention for the z axis has been adopted here
so that zk . zk11. The buoyancy frequency calculated
by (B.1) is therefore positive when ru(zk11) . ru(zk). For
58 squares where the 3000-m hydrographic profiles did
not extend to the bottom, Emery et al. (1984) linearly
extrapolated N2(z) from 3000 m to a value of N2(z) 5
0 at the bottom, z 5 2H.

A weakness of the potential density method is that
potential density is not an accurate indicator of N2(z).
Because of the so-called thermobaric effect of the in-

creased compressibility of seawater with decreasing
temperature (Lynn and Reid 1968; Price and O’Neil
Baringer 1991), N2(z) computed from ru(z) is system-
atically low. As shown in Fig. B.2, the bias is largest
in the deep water column where the water temperatures
are coldest. Lynn and Reid (1968) showed that N2(z) in
deep water calculated from potential density can, in fact,
be negative, even though the adiabatically adjusted in
situ density r(zk11) is greater than r(zk).

From the WKB approximations (A.19) and (A.20),
the baroclinic Rossby radii are, to a close degree of
approximation, proportional to the vertical integral of
N(z). The errors from the use of potential density ru to
estimate N2(z) are small at any particular depth. How-
ever, these errors are systematic and integrate to values
of c1 and l1 that are typically biased low by 4%–12%.
The geographical variability of this bias is discussed in
section e of this appendix.

b. The forward first difference method

Spatially smoothed long-term average temperature
and salinity profiles were compiled by Levitus (1982)
on a 18 3 18 global grid. These climatological average
profiles extended to the bottom at 33 nonuniformly
spaced standard depths between the surface and 5500
m (see Table B1) with additional standard depths below
5500 m for the deeper profiles. Houry et al. (1987)
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FIG. B3. Smoothed global contour maps of (a) the errors of the 18 3 18 gridded first baroclinic Rossby
radius computed numerically from the 1994 NODC hydrographic dataset by the potential density method,
and (b) the differences between the actual Emery et al. (1984) 58 3 58 gridded first baroclinic Rossby radius
and the 18 3 18 gridded values of the Rossby radius shown in Fig. 6 at the center locations of the Emery
et al. 58 3 58 squares. The errors are expressed as a percentage of the first baroclinic Rossby radius shown
in Fig. 6, and the sign convention is such that negative values (represented by dashed contours) correspond
to estimates biased low compared with the values shown in Fig. 6.

averaged the Levitus (1982) 18-gridded profiles onto a
58 3 58 grid for the South Atlantic and portions of the
North Atlantic and Indian Oceans.

In a significant improvement over the potential den-
sity method (B.1), Houry et al. (1987) estimated the

vertical density gradient in (A.4) in situ with an adia-
batic correction, rather than at atmospheric pressure at
the sea surface from the vertical gradient of potential
density. This avoids the problem of the thermobaric ef-
fect discussed in section a of this appendix. Profiles of
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FIG. B4. Histograms of the percentage errors of (a) the potential
density method shown in Fig. B3a, (b) the forward first difference
method shown in Fig. B5, and (c) the hybrid method shown in Fig.
B6.

TABLE B1. The standard depths in meters in the NODC
climatological average hydrographic dataset.
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in situ density r(z) were computed from the 58-gridded
in situ temperature and salinity profiles. Houry et al.
(1987) then obtained an estimate of the squared buoy-
ancy frequency profile (A.4) by adiabatically adjusting
the densities at neighboring standard depths to a com-
mon local reference depth, rather than to the sea surface
as in the potential density method. For standard depths

zk and zk11, Houry et al. (1987) estimated the buoyancy
frequency as forward first differences,

g r(z ) 2 r(z → z )k k11 k2N (z ) 5 2 , (B.2)k [ ]r z 2 z0 k k11

where r(zk11 → zk) is shorthand notation for the density
that a water parcel at zk11 has when moved adiabatically
to the next shallower standard depth zk.

Although (B.2) eliminates errors of N2(z) owing to
the thermobaric effect, there are two correctable weak-
nesses in the forward first difference method. The first
is that the water parcel at depth zk11 was raised adia-
batically to zk, rather than moving both parcels adia-
batically to the midpoint zk11/2. This is a relatively minor
point that does not significantly affect the estimate of
N2(z) since the standard depths in the Levitus (1982)
climatological-average dataset are closely spaced in the
upper water column where r(z) varies most rapidly.

The other weakness in the forward first difference
method is much more serious. By assigning the first
difference on the right side of (B.2) to N2 at depth zk

by forward first differencing, rather than to the correct
midpoint depth zk11/2 as in centered first differencing,
the N2(z) profile is effectively shifted upward in the
water column (see Fig. B.2). Since N2(z) decreases
monotonically with increasing depth over most of the
water column, this estimate of N2(zk) is generally biased
low. The bias is small if the discrete samples r(zk) are
closely spaced, as they are in the upper water column.
However, in the lower permanent pycnocline (depths
from about 700 m to about 1500 m), where the standard
depth spacing in the Levitus (1982) and 1994 NODC
climatological-average datasets is 100 m (Table B1) and
the vertical variation of N2(z) is large, the bias intro-
duced by vertically shifting the N2(z) profile is substan-
tial (see Fig. B2). Accordingly, as predicted from the
WKB solutions (A.19) and (A.20), this results in values
of c1 and l1 that are biased low. As shown in section b
of appendix C, the bias depends on the vertical spacing
of the density samples and the structure of the stratifi-
cation and is typically 4%–9% for the Levitus (1982)
and 1994 NODC standard depth spacing. The geograph-
ical variability of this bias is discussed in section e of
this appendix.
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c. The hybrid method

Picaut and Sombardier (1993) computed the internal
gravity-wave phase speed c1 from the eigenvalue equa-
tion (2.1) for the latitude range 308N to 308S in the
Pacific. Numerical estimates for c1 were obtained from
N2(z) profiles derived from the Levitus (1982) 18 3 18
climatological average standard-depth temperature and
salinity profiles.

The details of the method used by Picaut and Som-
bardier to estimate N2(z) combines to estimate the neg-
ative attributes of both the potential density method and
the forward first difference method: the N2(z) profile
was estimated by forward first differencing standard-
depth profiles of potential density,

g r (z ) 2 r (z → z )u k u k11 k2N (z ) 5 2k [ ]r z 2 z0 k k11

g r (z ) 2 r (z )u k u k115 2 . (B.3)[ ]r z 2 z0 k k11

It can be noted that the right sides of (B.1) and (B.3)
are identical. The hybrid method is therefore equivalent
to computing the same potential density gradients as the
potential density method, except that the resulting first
differences in (B.3) are assigned to the upper depths zk

rather than the midpoint depths zk11/2 as in (B.1). From
the discussion in sections a and b of this appendix, the
resulting estimates of N2(z) are biased even lower than
the estimates obtained by either the potential density
method or the forward first difference method. It can
therefore be anticipated that the hybrid estimates of c1

are biased low. This is confirmed in section e of this
appendix.

d. The neutral density gradient method

For the purposes of this study, the systematic errors
of the potential density method, forward first difference
method, and hybrid method were ameliorated by mod-
ifying (B.2) to estimate N2(z) by centered first differ-
ences of the in situ density, adiabatically adjusted to the
midpoint between standard depths,

g r(z → z ) 2 r(z → z )k k11/2 k11 k11/22N (z ) 5 2 ,k11/2 [ ]r z 2 z0 k k11

(B.4)

where, using the notation introduced in section b of this
appendix, the terms in the numerator on the right side
of (B.4) represent the densities that water parcels at
standard depths zk and zk11 have when moved adiabat-
ically to the midpoint zk11/2. The quantity in square
brackets in (B.4) is referred to here as the ‘‘neutral den-
sity gradient.’’ Adiabatically adjusted densities were
computed using the UNESCO (1981) equation of state.

The density profiles used to estimate N2(z) by (B.4)

were computed from the 18 3 18 average temperature
and salinity profiles recently produced by NODC, which
are described in detail by Boyer and Levitus (1994),
Levitus et al. (1994), and Levitus and Boyer (1994).
The historical dataset used to construct this new 18 3 18
climatological average hydrographic dataset is signifi-
cantly expanded from that used to construct the earlier
Levitus (1982) climatology.

As shown by the example in Fig. B2, the N(z) profile
estimated by (B.4) is higher throughout the water col-
umn than the estimate obtained by the potential density
method (B.1). It is also higher throughout most of the
water column than the estimate obtained by the forward
first difference method (B.2).

e. Comparison of the four methods

Contour maps of c1 and l1 computed numerically as
described in appendix C based on N2(z) estimated from
the neutral density gradient by (B.4) are shown in Figs.
2 and 6, respectively, and are discussed in detail in
section 3a. These results are compared with previously
published results in this section.

The geographical variability of differences between
the Rossby radii shown in Fig. 6 and Rossby radii com-
puted by the potential density method (B.1) applied to
the 1994 NODC hydrographic data is shown in Fig. B3a,
and a histogram of these differences is shown in Fig.
B4a. From (A.7), these differences expressed as a per-
centage of the values of l1 shown in Fig. 6 are exactly
equivalent to the differences between the two estimates
of the baroclinic gravity-wave phase speed expressed as
a percentage of the values of c1 shown in Fig. 2. Because
of the thermobaric effect of the temperature dependence
of the compressibility of seawater (see section a of this
appendix), the biases of l1 and c1 computed by the po-
tential density method are greater than 10% throughout
most of the North Atlantic. This is because of the in-
fluences of North Atlantic Deep Water and Mediterra-
nean Water. The biases also exceed 10% at high southern
latitudes where Antarctic Bottom Water is formed and
advected around the Antarctic continent. Elsewhere, the
biases generally range between 4% and 8%.

Although the potential density method is clearly
flawed, it is important to point out that the errors in the
actual maps of l1 published by Emery et al. (1984) differ
from those shown in Fig. B3a. In particular, the errors
in the North Atlantic are generally somewhat smaller
than indicated by Fig. B3a. The actual errors are shown
in Fig. B3b. The differences between Figs. B3a and B3b
are most likely attributable to the different climatolog-
ical average hydrographic datasets used in the two cal-
culations.

A quantitative comparison of the 1994 NODC dataset
used here and the Emery and Dewar (1982) dataset used
by Emery et al. (1984) is beyond the scope of this study.
However, it can be noted that, in addition to the much
larger number of historical hydrographic profiles in the
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FIG. B5. Smoothed global contour map of the errors of the 18 3 18 gridded first baroclinic Rossby radius computed numerically from the
1994 NODC hydrographic dataset by the forward first difference method. The errors are expressed as a percentage of the first baroclinic
Rossby radius shown in Fig. 6. The sign convention is the same as in Fig. B3.

1994 NODC dataset, a major difference between the
two climatological average hydrographic datasets is that
the Emery and Dewar (1982) temperature and salinity
profiles extended only to a depth of 3000 m. In order
to compute l1, Emery et al. (1984) extrapolated their
N2(z) profiles from 3000 m to a value of zero at the
ocean bottom. These extrapolations tend to offset the
errors in the use of potential density since the ther-
mobaric effect is generally most pronounced in water
deeper than 3000 m. The physical basis for the errors
in Fig. B3a is therefore less pronounced in the actual
Emery et al. (1984) estimates of the Rossby radii than
in the Rossby radii computed here by the potential den-
sity method.

The geographical variability of the differences be-
tween the Rossby radii shown in Fig. 6 and Rossby radii
estimated by the forward first difference method (B.2)
applied to the 1994 NODC hydrographic data is shown
in Fig. B5, and a histogram of these differences is shown
in Fig. B4b. The systematic low bias of l1 computed
by the forward first difference method is due to the use
of forward first differences, rather than centered first
differences (see section b of this appendix). In contrast
to the errors of the potential density method shown in

Fig. B3a, the errors of the forward first difference meth-
od are more nearly uniform geographically. The bias is
4%–6% over most of the ocean, increasing to more than
8% in the western tropical Pacific Ocean where the ver-
tical density gradients are stronger than anywhere else
in the World Ocean at the depths where the NODC
standard depths are coarsely spaced.

The geographical variability of differences between
the Rossby radii shown in Fig. 6 and Rossby radii es-
timated by the hybrid method (forward first differences
of potential density) applied to the 1994 NODC hydro-
graphic data is shown in Fig. B6 and a histogram of
these differences is shown in Fig. B4c. The systematic
low bias of l1 computed by the hybrid method is at-
tributable to a combination of the use of the gradient
of potential density, rather than the neutral density gra-
dient, and forward first differences, rather than centered
first differences (see section c of this appendix). The
combined effects of these two errors result in Rossby
radii that are typically biased 10%–14% low, with errors
exceeding 16% in the eastern North Atlantic and at high
southern latitudes.

Picaut and Sombardier (1993) also noted a negative
bias of c1 computed numerically from standard-depth
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FIG. B6. Smoothed global contour map of the errors of the 18 3 18 gridded first baroclinic Rossby radius computed numerically from the
1994 NODC hydrographic dataset by the hybrid method. The errors are expressed as a percentage of the first baroclinic Rossby radius shown
in Fig. 6. The sign convention is the same as in Fig. B3.

data compared with the values computed from high-
resolution density profiles. They attributed the bias to
an inability of standard-depth data to resolve the vertical
structure of N2(z) and recommended increasing their
published values of l1 by 8%. The simulation in section
b of appendix C clarifies that the component of the bias
in Fig. B6 associated with the use of standard-depth
data is actually attributable to numerical errors arising
from the use of forward first differences; the values of
l1 and c1 can be computed with sufficient accuracy from
standard-depth hydrographic profiles if centered first
differences are used. The analysis here reveals that even
the estimates of c1 computed by Picaut and Sombardier
(1993) from high-resolution density profiles are biased
low because of the use of the gradient of potential den-
sity rather than the neutral density gradient to estimate
N2(z).

APPENDIX C

Numerical Solutions of the Eigenvalue Problem
a. Discretization of the eigenvalue problem

The squared buoyancy frequency profile N2(z) was
estimated at discrete depths z 5 zk by the methods

described in appendix B from the density profile r(z)
computed using the UNESCO (1981) equation of state
from the NODC 18 3 18 climatological-average tem-
perature and salinity values at the nonuniformly
spaced standard depths zk listed in Table B1. In the
centered first difference methods, the zk are midway
between standard depths zk and zk11. In the forward
first difference methods, the zk are equivalent to the
standard depths zk.

For the purposes of estimating the Rossby radii, neg-
ative estimates of N2(zk), presumably the result of noise
in the climatological averaging and/or noise in the first
derivatives of the density, were replaced with the esti-
mate N2(zk21) at the next shallower depth zk21; if N2(z1)
at the shallowest level z1 was negative, it was replaced
with a value of 1028. The number of cases for which
N2 was negative was very small.

To assure that the full water column was represented,
an additional discrete depth zk 5 2H was added to the
density profile if the water depth H was deeper than the
deepest NODC standard depth at the center of that
18 3 18 location. In this case, the deepest value of N2(z)
was set equal to the next shallower estimate between
the deepest pair of NODC standard depths.
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The eigenvalue problem (A.3) with boundary con-
ditions (A.5) is the same form used by Emery et al.
(1984), Houry et al. (1987), and Picaut and Sombardier
(1993) to determine the first baroclinic gravity-wave
phase speed c1 and Rossby radius of deformation l1. To
obtain solutions numerically, this eigenvalue problem
must be discretized at the same nonuniformly spaced
depths zk at which N2(z) was estimated. A Taylor ex-
pansion of f(z) about z 5 zk yields

2(z 2 z )kf(z) 5 f(z ) 1 (z 2 z )f9(z ) 1 f0(z )k k k k2!

1 · · · , (C.1)

where the primes denote differentiation with respect
to z. The value of f0(zk) can be approximated by eval-
uating (C.1) at zk21 and zk11 and then scaling and
differencing the resulting two equations to eliminate
f9(zk), yielding

f0(z ) 5 Q [D f (z ) 2 (D 1 D )f (z )k k k11 k21 k k11 k

1 D f (z )], (C.2)k k11

where

D [ z 2 z (C.3)k k k21

and
21Q [ 2[D D (D 1 D )] . (C.4)k k k11 k k11

Substituting (C.2) into the eigenvalue problem (A.3)
then yields a set of discrete equations at the depths zk,
expressed entirely in terms of f at the same set of
depths.

1) CENTERED FIRST DIFFERENCES

In the centered first difference method, N2(z) is es-
timated at the M 2 1 midpoints z 5 zk11/2, k 5 1, . . . ,

M 2 1 between the M nonuniformly spaced standard
depths zk (see Fig. B1). The vertical velocity eigen-
functions f(z) must therefore be discretized at the same
midpoints, that is, zk 5 zk11/2 in the formalism above.
Defining z0 5 z1 5 0 and zM 5 zM 5 2H in (C.2) and
(C.3) and applying the rigid-lid and flat-bottom bound-
ary conditions (A.5) in the top and bottom discrete equa-
tions yields M 2 1 equations that can be written in
matrix eigenvalue form as

QT AF 5 mF, (C.5)

where, using (A.7),

1
2 if q * 58

2 21 f l
m 5 2 5 (C.6)

2c 15
2 if q & 58

2 44b l

is the eigenvalue corresponding to baroclinic gravity-
wave phase speed c and Rossby radius of deformation
l, F is the (M 2 1) 3 1 column vector of the corre-
sponding vertical velocity eigenfunction

f(z ) 1
 

F 5 A , (C.7) 
 
f(z ) M21

Q is the (M 2 1) 3 (M 2 1) diagonal matrix

2Q /N (z ) 0 0 1 1

2 0 Q /N (z ) 0 2 2Q 5 , 5 
20 0 Q /N (z ) M21 M21

(C.8)

and A is the (M 2 1) 3 (M 2 1) tridiagonal matrix

2(D 1 D ) D 0 0 1 2 1

D 2(D 1 D ) D 03 2 3 2 
A 5 0 D 2(D 1 D ) 0 . (C.9) 4 3 4

5 
0 0 0 2(D 1 D ) M21 M

From (C.3) and the definitions z0 5 0 and zM 5 zM, the
Dk in (C.9) and in the expression (C.4) for the Qk in
(C.8) are

z /2, k 5 12
D 5 (z 2 z )/2, k 5 2, · · · , M 2 1 (C.10)k k11 k21
(z 2 z )/2, k 5 M. M M21

The matrix equation(C.5) was solved for the M 2

1 eigenvalues m and corresponding eigenvectors F
using a standard matrix eigenvalue routine. The first
baroclinic gravity-wave phase speed c1 and Rossby
radius l1 were then obtained from the eigenvalue m1

from (C.6). It should be noted that there are M sample
depths but only M 2 1 eigenvalues and eigenfunc-
tions. The barotropic eigensolution is eliminated in
the quasigeostrophic potential vorticity equation for
the vertical velocity.
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2) FORWARD FIRST DIFFERENCES

In the forward first difference method, N2(z) is esti-
mated at the M 2 1 nonuniformly spaced standard
depths zk, k 5 1, · · · , M 2 1 (see Fig. B1). The vertical
velocity eigenfunctions f(z) must therefore be discre-
tized at the same depths, that is, at zk 5 zk in the pre-
ceding formalism for the discretized eigenvalue prob-
lem. In this case, f0 cannot be evaluated from (C.2) at
the top level z1 since z0 is undefined. The eigenvalue
equation can therefore be discretized only at the M 2
2 discrete depths zk, k 5 2, · · · , M 2 1. The matrix
equations are therefore reduced to order M 2 2 in the
forward first difference method.

Defining zM 5 zM 5 2H as in the centered first dif-
ference method summarized above and applying the rig-
id-lid and flat-bottom boundary conditions (A.5) in the
discrete equations for depths z2 and zM21, the M 2 2

equations can be written in the matrix eigenvalue form
(C.5) as before, where F in this case is the (M 2 2) 3
1 column vector of the vertical velocity eigenfunction

f(z ) 2
 

F 5 A , (C.11) 
 
f(z ) M21

Q is the (M 2 2) 3 (M 2 2) diagonal matrix

2Q /N (z ) 0 0 2 2

2 0 Q /N (z ) 0 3 3Q 5 , 5 
20 0 Q /N (z ) M21 M21

(C.12)

and A is the (M 2 2) 3 (M 2 2) tridiagonal matrix

2(D 1 D ) D 0 0 2 3 2

D 2(D 1 D ) D 04 3 4 3 
A 5 0 D 2(D 1 D ) 0 . (C.13) 5 4 5

5 
0 0 0 2(D 1 D ) M21 M

The Dk in (C.13) and in the expression (C.4) for the Qk

in (C.12) are

Dk 5 zk 2 zk 21, k 5 2, · · · , M 2 1. (C.14)

Implementation of the forward first difference dis-
cretized eigenvalue problem in the manner summarized
above based on N2(z) estimated from the neutral density
gradient as described in section b of appendix B yielded
baroclinic Rossby radii that were very nearly identical
to those published for the South Atlantic and portions
of the North Atlantic and Indian Ocean by Houry et al.
(1987). The small differences of order 1% are easily
attributable to the differences between the Levitus
(1982) hydrographic dataset used by Houry et al. (1987)
and the 1994 NODC hydrographic dataset used here.

b. Case study comparisons of centered and forward
first difference solutions

The importance of the method of estimating the N2(z)
profile can be quantified by a simple simulation. The
first baroclinic Rossby radius of deformation l1 was
computed numerically as described in section a of this
appendix from N2(z) profiles estimated as described in
appendix B using various discretization intervals. For

all profiles considered, a resolution of 5 m was retained
in the upper 200 m, where the vertical scales of N2(z)
are short. The simulated resolution in deeper water
ranged from 5 m to 200 m. The Rossby radii computed
from a vertical resolution of 100 m are effectively equiv-
alent to the Rossby radii computed from the NODC
standard depth spacing, which is 100 m in the permanent
pycnocline (see Table B1). For present purposes, the
value of l1 computed for the neutral density gradient
by (B.4) with the highest vertical resolution of 5 m
throughout the water column was considered to be the
‘‘true’’ value. The biases of l1 computed with other
simulated vertical resolutions and by the other methods
summarized in appendix B were then defined to be the
differences from this true value, expressed as a per-
centage of this true value.

The results of this simulation are shown in Fig. C1
for three geographical locations. It is evident from the
figure that the l1 based on N2(z) computed from the
neutral density gradient by (B.4) are insensitive to the
vertical resolution of the density profile; at all three
locations, the computed values of l1 agree with the true
values to within a fraction of a percent, regardless of
the vertical resolution of the density profile. The first
baroclinic Rossby radii estimated in section 3a by the
neutral density gradient method from the NODC stan-
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FIG. C1. The percentage errors of numerical estimates of l1 as a
function of the vertical resolution of discretely sampled density pro-
files (see text in section b of appendix C for details) based on N 2(z)
estimated by the various methods considered in this study. Solid,
dashed, and dotted lines correspond to the locations of the density
profiles shown in Figs. A1a, A1b, and A1c, respectively.

dard-depth hydrographic profiles are therefore not sig-
nificantly different from those that would be estimated
from essentially continuous hydrographic profiles.

The values of l1 computed from N2(z) estimated by
the potential density method (B.1) are also insensitive
to the vertical resolution. However, the resulting l1 for
the cases considered in Fig. C1 are biased 8% low at
the tropical and subpolar locations and 10% low at the
midlatitude location. As discussed in section a of ap-
pendix B, these biases arise from the use of the gradient
of potential density rather than the neutral density gra-
dient to estimate N2(z). The geographical variability of
this negative bias depends on the specific water masses
sampled by the hydrographic profile (see section e of
appendix B).

In contrast to the insensitivity of the centered first
difference methods (B.1) and (B.4) to the vertical res-
olution of the density profile, the negative bias of l1

computed from N2(z) estimated by the forward first dif-
ference method (B.2) increases in magnitude with in-
creased vertical spacing between the density samples.
The dependence on vertical resolution indicates that
these biases are purely a numerical problem arising from
the use of forward first differences rather than centered
first differences to estimate the density derivative in the
expression (A.4) for N2(z). The forward first differences
and centered first differences converge to the same value
as the discrete sample spacing decreases. The forward
first difference estimates of l1 with 5-m vertical reso-
lution are essentially identical to the true values at all
three locations. The magnitude of the negative bias of

forward first difference estimates of l1 computed from
standard-depth density profiles varies somewhat geo-
graphically, depending on the shape of the permanent
thermocline (see section e of appendix B).

The negative biases of l1 (and hence c1) computed
by the hybrid method (B.3) also increase in magnitude
with increased vertical spacing between the density sam-
ples. This is to be expected since this method estimates
N2(z) from forward first differences. This component of
the error in the hybrid method can be eliminated by
using centered first differences. However, the resulting
estimates of l1 agree with the values obtained by the
potential density method, which are biased low relative
to the true values as noted above because of the use of
the gradient of potential density rather than the neutral
density gradient to estimate N2(z).

We conclude that l1 and c1 can be computed with
sufficient accuracy from standard-depth hydrographic
profiles if the neutral density gradient and centered first
differences are used.
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