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ABSTRACT

An analytical model of subtropical mode water is presented, based on ventilated thermocline theory and
on numerical solutions of a planetary geostrophic basin model. In ventilated thermocline theory, the
western pool is a region bounded on the east by subsurface streamlines that outcrop at the western edge of
the interior, and in which additional dynamical assumptions are necessary to complete the solution. Solu-
tions for the western pool were originally obtained under the assumption that the potential vorticity of the
subsurface layer was homogenized. In the present theory, it is instead assumed that all of the water in the
pool region is ventilated and, therefore, that all the Sverdrup transport is carried in the uppermost, out-
cropping layer. The result is the formation of a deep, vertically homogeneous, fluid layer in the northwest
corner of the subtropical gyre that extends from the surface to the base of the ventilated thermocline. This
ventilated pool is an analog of the observed subtropical mode waters. The pool also has the interesting
properties that it determines its own boundaries and affects the global potential vorticity—pressure rela-
tionship. When there are multiple outcropping layers, ventilated pool fluid is subducted to form a set of
nested annuli in ventilated, subsurface layers, which are the deepest subducted layers in the ventilated
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thermocline.

1. Introduction

The structure of the subtropical thermocline has fas-
cinated theorists and observationalists alike for many
years for it is perhaps the single most prominent aspect
of the ocean’s stratification. Major features of that ther-
mocline include broadly distributed pools of weakly
stratified, low-potential-vorticity water, such as the
“Eighteen-Degree Water” of the North Atlantic (Wor-
thington 1959; McCartney 1982). These pools are
known as “mode waters” because they appear as dis-
tinct modes in a census of water properties. The sub-
tropical mode waters, observed in all subtropical ocean
gyres, are of special interest for a variety of reasons, yet
their origin remains relatively poorly understood.

Here, we propose a simple mechanism for the exis-
tence and maintenance of subtropical mode waters as a
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large-scale dynamical component of the subtropical
gyre circulation. A proximate mechanism for their for-
mation, of course, is deep wintertime convection. How-
ever, this convection can only occur if the large-scale
circulation maintains a weakly stratified volume of wa-
ter with sufficiently small upper-ocean heat content.
From this point of view, mode waters are part of the
large-scale structure of the ocean thermocline, and
must be understood within that context.

The model we propose here is, technically, a modest
extension of the ventilated thermocline theory of the
subtropical gyre developed by Luyten et al. (1983, here-
inafter LPS). Although the ventilated thermocline is, as
its name suggests, generally a stratified region, a strik-
ing feature of a number of numerical simulations of the
subtropical thermocline that have reasonably small ver-
tical diffusivity (Cox 1985; Samelson and Vallis 1997a,
hereinafter SV97; Vallis 2000) is a thick recirculating
thermostad extending down to the internal thermo-
cline, particularly prominent in the northwest (or, more
generally, pole-west corner) of the subtropical gyre,
that resembles observed subtropical mode water.
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In this western region, ventilated thermocline theory
suggests that a recirculating regime can form in which
the circulation is controlled by some mechanism other
than ventilation. One possibility, proposed by Luyton
et al. (1983), is that this pool may be a region of ho-
mogenized potential vorticity. A separate, related, pos-
sibility involves the interaction of weak ventilation and
homogenization. Such was examined in Dewar (1986),
where it was argued that large-scale distributions of low
potential vorticity waters naturally arose in these con-
ditions. Convectively introduced mass anomalies in
subsurface layers were balanced by eddy mass fluxes.

Although plausible, such mechanisms are based on
the assumption of the downgradient diffusion of poten-
tial vorticity by eddies and, especially in regions like
intense western boundary currents where mean advec-
tion may be important, this assertion cannot be justi-
fied. Note too that the original theory implicitly invokes
eddy mechanisms in the pool region although they are
required to be weak in order to fit within the homog-
enization formalism. The alternative hypothesis ex-
plored in the present study is that the western pool is
wholly filled with ventilated fluid. That is to say, if there
is no surface source for a given water mass, then we
may suppose that no such water mass will exist. In the
original theory, one must posit that the pool region is
ventilated via eddy pathways for it is not ventilated by
a steady inflow. Here we consider the possibility that
those eddy fluxes are weak compared to the Ekman
pumping mass flux. Thus, the present model casts the
ventilated thermocline model into a self-consistent
wholly noneddying form. If a nonventilated water mass
is initially present, then we suppose that it slowly dis-
appears from the pool region, expunged by the continu-
ous downward Ekman pumping of surface water into
the pool and a weak frictional flow down the pressure
gradient. Our hypothesis is motivated by, and de-
scribes, the planetary geostrophic numerical model so-
lutions computed by SV97, which contained an explicit
western boundary layer, but no eddies and only mini-
mal parameterized eddy fluxes.

In a two-layer model, this ventilated-pool hypothesis
results in the mode-water region being represented by a
single, thick upper layer, which forms above a second
layer of zero thickness, and a third, quiescent layer or
flat-bottom boundary beneath. As layers are added, the
structure becomes more complicated and the ventilated
pool may contain subducted layers, but the essential
structure remains: a thick weakly stratified pool that
forms the deepest part of the ventilated thermocline.
An interesting complication is that the boundary of the
pool region has vertical isopycnals (in the planetary
geostrophic model) or layer interfaces and that these in
general will be shocks, rather than passive features.
That is, we may not necessarily suppose that the sepa-
rate subregions making up the ventilated thermocline
can be smoothly patched together or that a local solu-
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tion exists to the equations of motion as needed that
does not affect the solution in rest of the domain. How-
ever, by generalizing the model slightly and applying
appropriate shock conditions, we show that solutions
can be found that fit within the planetary geostrophic
framework and that the consequence of the shock ex-
istence can be examined.

We show here that a model can be constructed that is
based on the ventilated-pool hypothesis and satisfies
the large-scale equations of motion. We examine the
consequences of the mode water pool on the larger-
scale circulation and compare qualitatively the quasi-
analytical solutions so obtained with the numerical so-
lutions of SV97. These solutions capture essential ele-
ments of the mode water found in that numerical model.
We hope that the dynamical framework described here
will also prove useful in the effort to understand mode
waters and their role in the general circulation.

The model formulation and some specific solutions
for the classical ventilated thermocline and the recircu-
lating pool is the subject of section 2. The connection of
these two zones is the subject of section 3, where the
pool dynamics are considered in more detail and a gen-
eralization of the ventilated thermocline argument to
properly allow for fronts is presented. A schematic ex-
tension to multiple outcrops with subduction of the
model mode water is presented in section 4, which is
followed by a concluding summary. Some technical
computations are described in appendices.

2. A single-outcrop model

a. Formulation

We consider first a ventilated thermocline model
(LPS) with two moving layers and a single outcrop, that
being the simplest equation set that can illustrate the
ideas. The thicknesses of layers 1 and 2 are denoted by
h, and h,, respectively, and the corresponding layer
interfaces are denoted by z = —H; and z = —H,, re-
spectively, where H, = hy and H, = h; + h,. We will
consider both the flat-bottom case of a two-layer ocean
with H, = const and the reduced-gravity case with two
moving layers overlying a resting abyssal ocean and H,
a function of position. The reduced gravity based on the
density difference between layers j and j + 1 is denoted
v;, where only v, is considered for the flat-bottom case.
Velocities and pressure are geostrophically related and
layer pressures are connected to layer thicknesses via
the usual formulas. A dynamically active variable in the
lower layer of both models is the pressure, p,, which in
the 2%-layer model is related to interface depth via p,
= v,H, The model is solved on a 3 plane, with Coriolis
parameter f = f; + By, where y is the meridional coor-
dinate. The wind forcing, basin geometry, and nondi-
mensionalization used in SV97 are employed here, so
that the Ekman pumping is wy(x, y) = wy, cos2my, 0 <
y < 1. At the eastern boundary x = x,, h, = H, = H,,
= const, and i, = 0.
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In the subtropical gyre (0.25 < y < 0.75), the solution
has four distinct regimes (Fig. 1). For y > y,, layer 2 is
exposed to the surface forcing. There are three addi-
tional regimes in y < y,, where layer 1 is exposed to the
surface forcing: the central region, in which layer-2 fluid
is ventilated, the shadow zone in the southeast, and the
western pool region in the west. The bounding stream-
lines x,(y) and x,(y) separate the shadow zone and pool
region, respectively, from the interior. Layer-2 fluid in
the central, ventilated region is set in motion by the
action of the wind in the outcrop zone y > y,, but any
layer-2 fluid in the shadow zone or pool region is iso-
lated from direct contact with surface forcing.

b. The ventilated pool

Consider now the thermocline structure in the west-
ern pool region. For y > y,, there is only one moving
layer, and the geostrophic and Sverdrup balances may
be solved in the usual way, giving
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for the 2V5-layer model, where p,, = p,(x,) and

d(x,y) = /B fx w, dx. (2.3)

South of the outcrop y,, the Sverdrup formulas gener-
alize to

Hyp, + 'Ylhf/2 = ¢+ Hyp,, (2.4)

and

2 2 H%G

Yhi2 + y,Hy2 = & + Y275 (2.5)
for the flat-bottom and reduced-gravity cases, respec-
tively, as both layers are in motion. For y < y,, the
western limit of the ventilated interior is found by com-
puting the trajectory of the characteristic x,(y) emanat-
ing from the point x = x,,, y = y,, as described below
(section 3a). For both the flat-bottom and reduced-

Hyp, = ¢ + Hyp,, (2.1) gravity cases, these critical trajectories run through the
for the flat-b d interior, thus defining regions in layer 2 that are iso-
or the fat-bottom case an lated from the outcrop and governed by processes other
H? than ventilation (see, e.g., Figs. 1 and 2). LPS, for ex-
e . . . . .
vH5/2 = $(x,y) + 7y, > (2.2) ample, assume that the layer-2 potential vorticity is uni-
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F1G. 1. Horizontal structure of the reduced-gravity model with the ventilated pool. The
subtropical gyre is the region 0.25 < y < 0.75, where w < 0. There is one subregion with layer
2 exposed to the surface forcing (y > y, = 0.65), and three with layer 1 exposed: the interior,
in which the layer-2 fluid is ventilated, the shadow zone x > x,(y), and the ventilated-pool
region x < x,(y). The number of the exposed layer in each of the four subregions is indicated.
The western pool boundary characteristic (dashed) and the ventilated-pool shock trajectory
(solid) are both shown. For this solution, f, = 045, B = 1.1, v, = 10, vy, = 50, H,, = 0.1, and
Wgo = 1, with nondimensionalization as in SV97.
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F1G. 2. Schematic of the front trajectory and characteristics. The
box encloses an area encompassing the shock, and over which
mass conservation is integrated in order to form the joining con-
ditions. The quantities “/” and “m” denote the zonal and meridi-
onal lengths of the integration area, which in the limit converge in
ratio to the slope of the front. Also shown are various character-
istics determining the offshore front thickness. The shaded zone
corresponds to the “pool ventilated” wedge emanating from the
western edge of the outcrop; its width is exaggerated in the sche-
matic. Control of /&, passes to the regular ventilated thermocline
at the latitude where f = 3f,/4.

form in the pool region, and that the layer-2 thickness
is continuous at the joint.

The central assumption of the present ventilated-
pool theory is instead that layer-2 vanishes in the pool
region:

h,=0 and h =H,=H, forx<x,y). (26)

Thus, in the pool region there is again only one moving
layer; in the flat-bottom model, this layer fills the entire
water column, while in the reduced-gravity model, the
intermediate layer 2 vanishes, and the moving layer
extends downward to the top of the stagnant layer 3.
The Sverdrup solution in the ventilated-pool region is
then

2¢ + Hp,,
h, = u 2.7)
Y1
for the flat-bottom model and
2¢ + v,H2,
hl — d) F72 2e (28)

for the reduced-gravity model, where I' = y; + v, is the
density difference between the moving layer (layer 1)
and the quiescent fluid below (layer 3). The deep, ho-
mogeneous, recirculating surface layers (2.7) and (2.8)
in the western subtropical gyre form the ventilated-pool
mode-water analog in the single-outcrop flat-bottom
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and reduced-gravity models, respectively. The ther-
mocline depth /4, in the ventilated-pool regions is thus
determined by the Sverdrup relation, the eastern
boundary depth of the deepest wind-driven layer, and
the wind forcing.

A zonal cross section of the resulting solution of (2.8)
in the middle of the subtropical gyre reveals the follow-
ing structure (Fig. 3). The moving fluid farthest west
consists entirely of upper-layer water and represents
the “mode water” in this model. It is bounded on the
east by the pool front. Just offshore of the front is a thin
layer of pool-ventilated subsurface water. Farther off-
shore is the classical ventilated thermocline. The entire
offshore zone is capped by a thin layer of warm water.
A meridional cross section close to the western edge of
the model domain will cut through the mode water,
which will appear as a thick layer connected to the
surface at the central latitudes of the gyre (Fig. 4). De-
spite the crude discretization of the vertical structure,
these solutions may be usefully compared to the nu-
merical model solutions of SV97. The analog of the
ventilated pool in the numerical model is the weakly
stratified region above the main thermocline on the
western side of the basin (Fig. 5 and Fig. 6). The abrupt
westward increases in the depths of isothermal surfaces
above the main thermocline in the numerical model are
analogs of the abrupt increase of layer-1 thickness
across the pool boundary.

The assumption [(2.6)] that leads to the solutions
(2.7) and (2.8) was originally motivated by the numeri-
cal model calculations analyzed by SV97. The essential
factors that give rise to the formation of the vertically
homogeneous, ventilated-pool structure in those nu-
merical solutions can be readily identified. The key
physical element is the lack of a source of layer-2 fluid
in the pool region. The absence of such a source can be
inferred from several properties of the SV97 model.
The pool region is clearly isolated from the ventilated
portion of layer 2 by the bounding streamline x,(y) or
its analog in the SV97 solutions, and so there is no
ventilation of layer 2 in the pool region. If the outcrop
position were different, the structure of the pool would
change accordingly but, by the very definition of the
pool, there can be no ventilated source of layer-2 fluid
in the pool. Similarly, surface cooling in the western
boundary current cannot provide a source since the lati-
tude at which layer-1 fluid is cooled to layer-2 tempera-
tures in the boundary current defines the western limit
of the outcrop and any such cooled surface fluid that
returns to the subtropical gyre must enter the ventilated
portion of layer 2 instead. The SV97 model is steady;
therefore, there is no possible source from explicit eddy
processes. Moreover, the SV97 western boundary cur-
rent is essentially adiabatic (SV97; Samelson and Vallis
1997b; Samelson 1998), so parameterized eddy fluxes
do not contribute significantly and consequently en-
trainment and mixing of layer-3 fluid also cannot pro-
vide a source. Examination of the spinup of the SV97
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FI1G. 3. Zonal cross section vs depth, at y = 0.5, of the reduced-gravity model with the
ventilated pool. The layer numbers and interfaces are shown. The deep, homogeneous “sub-
tropical mode water” layer in the ventilated pool region is located in the upper left, for x <
x,(y). Layer 3 is quiescent and of arbitrary depth. Horizontal distance x and vertical distance
z have been nondimensionalized by 5000 km and 5000 m, respectively. The constant depth of
layer 2 at the eastern boundary x = 1 is H,, = 0.1 (500 m).

solutions indicates that the exposed layer deepens in
the west on the advective time scale until it reaches the
depth of the main thermocline and carries all the Sver-
drup transport, forming the homogeneous ventilated
pool that we identify as an analog of subtropical mode
water, while a classical ventilated regime develops to
the east. Thus, these time-dependent solutions reach a
stable steady ventilated-pool state without ever devel-
oping an analog of unventilated layer-2 fluid in the
western-pool region.

In the ocean, of course, many processes may operate
that are neglected in this analysis. However, motivated
by the suggestive similarity between the model solu-
tions and observed mode waters, we can rephrase the
specific causes of the model pool structure as a hypoth-
esis regarding the large-scale dynamical mechanisms
that may support and maintain subtropical mode waters
in the ocean:

 In the subtropical mode-water region, the dominant
source of fluid in density classes above the main ther-
mocline is downward surface Ekman pumping.

« Specifically, both adiabatic, lateral and diapycnal, tur-
bulent eddy fluxes of fluid into density classes above
the main thermocline in the subtropical mode-water
region are small relative to surface Ekman pumping.

Some estimates of the relative importance of these pro-
cesses in the ocean are discussed below in section 4.

3. Pool boundary dynamics

a. The western-pool boundary

In the standard ventilated thermocline theory, the
western-pool boundary x,(y) in the flat-bottom or re-
duced-gravity model is determined as follows. The
lower layer flow south of the outcrop line y = y, is
governed in general by potential vorticity conservation,
that is,

ho/f = Fy(p2). (3.1

From either (2.4) or (2.5), it is simple to show that
any contour of constant potential vorticity (or, equiva-
lently in the planetary geostrophic approximation, po-
tential thickness A,/f) is governed by

brip, = Vilihigp,s (32)

ul

where the notation “|,,” denotes a derivative taken
along a contour of constant p,. But because lines of
constant p, correspond to constant 4,/f, the above be-
comes

Yihihy
= —v1(Hy = fFy0)F>,

be b2 = f

(3.3)

where F,, denotes the constant value of potential thick-
ness along the trajectory. This may be integrated to
obtain an implicit expression for x,(y),
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Fi1G. 4. Meridional cross section vs depth, at x = 0.05, of the reduced-gravity model with the
ventilated pool. The layer numbers and interfaces are shown. The deep, homogeneous sub-
tropical mode-water layer in the ventilated-pool region is located in the central portion of the
section. Layer 3 is quiescent and of arbitrary depth. Horizontal distance x and vertical distance
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z have been nondimensionalized by 5000 km and 5000 m, respectively.

2

F
e, Y] = b = HE(f = ) + 11 > (7 = f3),

(3.4)

where H = H, for the flat-bottom case and H = H,,, =
hy(x,,, y,) for the reduced-gravity case, and ¢,, = &(x,,

y2)-

b. Flat-bottom case

The characteristic equation in (3.3) applies to both
the flat-bottom and reduced-gravity models. It appears
to be degenerate in the ventilated pool where, by as-
sumption, 4, = 0 and layer-2 characteristics cannot be
defined. Nonetheless, it may be used to derive proper-
ties of the pool boundary, by considering arbitrarily
small A, > 0, since this limit is well behaved: ¢/, — 0
as h, — 0. Thus, in the ventilated-pool theory, we may
consider layer-2 characteristics in the recirculation pool
in both cases to be governed by ¢;|,, = 0, so that the
characteristics and Sverdrup contours coincide. Alter-
natively, the following argument can be rephrased in
terms of layer-1 characteristics, but the present ap-
proach is simpler.

At the outcrop latitude f,, the characteristics in the
ventilated zone, described by s, = 0, run parallel to
those of the recirculating pool, described by 4, = 0 [see
(3.3)]- However, as the fluid moves south on the char-

acteristics, the recirculation zone continues to be de-
scribed by s, = 0, while s, becomes positive in the
ventilated zone. Thus by (3.3), the ventilated character-
istics are governed by ¢|,, < 0 while the pool charac-
teristics continue to follow the Sverdrup contours (i.e.,
¢¢l,» = 0). The ventilated characteristics cross Sver-
drup streamlines toward higher, and thus western, val-
ues as f decreases. This dual occupation of the same
points in space by multiple characteristics is inconsis-
tent with the straightforward application of the charac-
teristics method. We conclude that globally smooth so-
lutions of this hyperbolic boundary value problem are
not possible and joining conditions must be considered.
These conditions will yield new equations for the pool
boundary x,(y). This boundary proves to consist, in
general, of a shock trajectory x,(y) and a narrow adja-
cent “pool ventilated” region. For simplicity, we none-
theless denote the generalized ventilated-pool bound-
ary by x,(y) in some parts of the discussion below.
Analytically joining the pool and the ventilated inte-
rior is rather complex, and it is useful first to examine
the more accessible flat-bottom model. The condition
governing discontinuities in this case is derived by in-
tegrating the potential vorticity conservation equation

TPy holf) =0 (3.5)

over an area covering the discontinuity. This area is
defined by having two of its corners on the front tra-
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F1G. 5. Zonal cross section vs depth of the reduced-gravity
model (thick solid lines) with the ventilated pool as in Fig. 3,
overlaid on contours of temperature from a numerical solution of
the continuously stratified planetary geostrophic model of SV97.
The near-vertical isotherms above the main thermocline in the
numerical solution are the analogs, on each isothermal surface, of
the ventilated pool in the layer model. The planetary geostrophic
model solution is influenced by friction, which reduces the zonal
slope of the main thermocline, and thermal diffusion, both of
which are neglected in the layer model.

jectory, but is otherwise rectangular (Fig. 2). The
lengths of the two sides are given by m in the meridi-
onal direction and / in the zonal direction. The result of
the area integration is

[HK2 — hi/3] _
[A4] ’

where the square brackets notation denotes the differ-
ence of the value of the enclosed quantity between the
east and west sides of the domain. In the limit of van-
ishing / and m, their ratio converges to

(&, + & l/m) — By, /(f) (3.6)

) l ad
z,rlnlglo <E> - Exl"’ (3.7)

the meridional slope of the front. A bit more algebra
yields

db,  yH[h,+h_ K +h.h_ +h
af — f 2 3H ’

(3.8)

where i, (h_) denotes the upper-layer thickness east
(west) of the front and ¢, denotes the value of the
barotropic streamfunction along the front. This is a dif-
ferential equation governing the trajectory of the front
through the general circulation.
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FI1G. 6. Meridional cross section vs depth of the reduced-gravity
model (thick solid lines) with the ventilated pool as in Fig. 4,
overlaid on contours of temperature at x = 0.1 from a numerical
solution of the continuously stratified planetary geostrophic
model of SV97. The near-vertical isotherms above the main ther-
mocline in the numerical solution are the analogs, on each iso-
thermal surface, of the ventilated pool in the layer model. The
planetary geostrophic model solution is influenced by friction,
which reduces the zonal slope of the main thermocline, and ther-
mal diffusion, both of which are neglected in the layer model.

For the front to exist, it is required that it be inter-
sected on both sides by characteristics of the smooth
solution (“smooth characteristics”). This is stated for
the present problem as

Sl = Pl = Dy,

where the first and third entries in the above denote
trajectories of characteristics for the smooth part of the
problem and the middle entry the trajectory of the
shock. The above inequality reflects that, for decreasing
f, the change in ¢ of the smooth characteristic govern-
ing h_ increase more slowly than either the same
change for the shock or for the smooth characteristic
governing /. This way, the characteristics collide and
are resolved by the presence of the shock. The equals
signs in the above inequality correspond to limiting
cases where the smooth solution characteristics are tan-
gent to the shock. This recognition is key in the analysis
to follow. What is to be avoided here, and what is not
consistent with the concept of the shock, is for the
smooth characteristics to radiate from the shock; for
example, ¢/, < ¢/l,. Now, given that the pool (with
h,= H) always has characteristics that follow ¢, it is
sensible to pose A_ = H. Leaving h, unspecified for the
moment, the shock equation in (3.8) becomes

H?> Hh, K
Y =—ﬂ<—+ *——*),
v f\eé6 6 3

(3.9)

(3.10)
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and it is easy to show for all 4, from 0 to H that the
right-hand side is negative. The shock trajectory thus
always climbs to larger ¢ for decreasing f, while the
smooth characteristic for 4_ always follows constant ¢,
rendering the postulate 4_ = H consistent. The value
for h, is determined by the requirement that the
smooth characteristic run parallel to the shock trajec-
tory; that is,

H(H h, K
(I)fl :_71_<_+_+__+)
v f\6 6 3H

= R RH = ) = byl
whose solution is 4, = H/4. This implies the disconti-
nuity in A, at (x,,, y,) extends from 4, = H to h, = H/4.
For smaller values of %, the smooth characteristics do
not press west fast enough to be swallowed into the
shock.

The behavior of h; for H/4 < h; < H is determined
by the shock trajectory. It thus remains that 4, for 0 <
h; < H/4 is part of a smooth thermocline for which the
standard solution

(3.11)

e _H—h_
f - f - (p2)

applies. The function G remains to be determined,
however. The Sverdrup constraint (2.4) is everywhere

valid, including through the front. The initial location of
the front is (x,,, y,), so by (2.4),

(3.12)

Vlh%
HPZ(hl) = (bw - 2

+ Hp,, (3.13)

for the range h; = 0 — H/4. Combining (3.12) and
(3.13) then determines the function G:

H \/ZH(p + ¢, /H — p,)
v 2e W pZZH_hl

12 f
(3.14)

G(po) =

Equation (3.14), when combined with (2.4), deter-
mines both p, and &, on all characteristics that can be
traced back to (x,, y,). This part of the thermocline
may be referred to as “pool ventilated,”as it has a po-
tential vorticity that is set by the pool condition &, = H

As the shock is followed south from y,, its eastern
face starts to entrain pool-ventilated water. In fact, it
turns out that £, = H/4 during this phase of front evo-
lution because parts of the smooth thermocline thicker
than this run into the shock, while those thinner move
away from it. Further, the pool-ventilated characteristic
emanating from s; = 0 and the ventilated thermocline
characteristic emanating from #; = 0 remain parallel
always, as they both start from the same location and
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have the same characteristic equation [(3.3)]. Thus, at
the latitude where f = 3f,/4, h, . /f = HIf,, signaling a
switch from pool-ventilated water to normal ventilated
water on the offshore front edge (see Fig. 2).

¢. Reduced-gravity case

The flat-bottom model illustrates the essential fea-
tures of the pool boundary calculation, but does so in
the unrealistic environment of a rigid lower boundary.
The reduced-gravity setting is in this sense a much more
natural model of the real ocean, but is algebraically
much more tedious. Nonetheless, an analysis like that
outlined above applies to the reduced-gravity model, as
shown below.

The first hurdle is to develop a shock trajectory equa-
tion like (3.8). The procedure is again to consider an
integral of the layer-2 potential vorticity equation over
a small region around the shock (Fig. 2), although the
calculations are more involved. The details are given in
appendix A and only the results are quoted here.

Define

VIVZh% by, [ . 1< Y172 )
F(hy) = - sin —=h,
2 N L\ N 20

_ Y1Y2 N2,
\/2¢F ”2\/1 267 hz]‘

(3.15)
The shock equation is
1
- j_fF (h2)
brp = (3.16)
' < V V172 sin~! Y21 h )
Y1 241 2

for the 2'5-layer problem, where it has been assumed
that i, = 0.

Recall that #; = 0 along f = f, until x = x,,, at which
point A, = 0. Simple algebra shows that at the discon-
tinuity, &, = \/(2¢,, + v,H3,)/T. Thus h, changes in
the front from this value to a minimum of 0, while 4,
changes from 0 to h, = \/(2,, + v.H3.)lv, = ha,.
Following the flat-bottom analysis, the layer-2 thick-
ness for which the characteristics along the shock par-
allel the smooth thermocline thickness must be com-
puted. This is obtained by equating (3.3) with (3.16).
Although it may be consistently assumed that 4, = 0,
it is still necessary to solve the resulting equation for the
initial 4, , numerically. This value will be referred to as
h,,.. Then, for all &, from h,, to h,,,, the smooth func-
tional relationship linking the potential thickness and
pressures must be determined. To do so uses the special
form of the Sverdrup potential at ¢,,

h_% 72H§ _ Y. H: %e

Nyt Tt

(3.17)
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The relation between h, and H, for general ¢ is

Yiho \/2(1)F + Ty,H;, — v1v:h5
T 7 r ’

H, (3.18)

which can be used to diagnose the functional relation-
ship between p, and k. Combining with the Sverdrup
relation yields

_ (yifa = THh,
= —Ff

. V26,1 + v HaL — vivaf 23/
F b

hy

(3.19)

which governs the connection between 4, and /4, on any
characteristic that can be traced to (x,,,, ¥,). This func-
tion and the Sverdrup relation give #/, in the pool-ven-
tilated zone. Again, the ventilated thermocline charac-
teristic starting from (x,,, f,) with #; = 0 must be par-
allel to the pool-ventilated characteristic with #; = 0
So, the value of p, hitting the shock on the east should
be monitored and, when it exceeds p,,, emanating from
(x,, f>), h,, must be computed from the standard ven-
tilated thermocline theory. In either case, values for
both 4,_ and h,, can be determined for any interior
oceanic point, and the front equation in (3.16) can be
integrated in latitude to yield a new value for ¢|,.

The frontal pool boundary computed in this way lies
to the west of the original western-pool boundary,
which forms the eastern limit of the pool-ventilated
wedge; on the eastern side of the original pool bound-
ary, the circulation is governed by standard ventilated
thermocline theory (Fig. 1).

4. Discussion

a. Subduction

In the simple models discussed above, the entire me-
ridional variation of surface density in the subtropical
gyre is concentrated at the zonal outcrop of layer 2, and
the ventilated pool region in the northwest corner of
the gyre is completely filled by a single, deep, homoge-
neous layer of fluid extending from the surface outcrop
to the base of the main thermocline. It is straightfor-
ward to generalize this conceptual model to the case in
which the meridional variation of density in the sub-
tropical gyre is distributed across several layer out-
crops, as in the original LPS ventilated thermocline
theory. The main complication is that there are a num-
ber of distinct regions to consider, each requiring a
separate calculation to determine the various layer
depths.

Consider a standard three-layer reduced-gravity
model with two layer outcrops, each at a constant lati-
tude. The moving layers are labeled 1, 2, 3 from the top
as usual, with corresponding densities p;, p,, and ps, the
outcrop between layer 1 and layer 2 being at latitude y,,
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and that between layers 2 and 3 at y; (Fig. 7). The
standard multiple-outcrop ventilated thermocline is
complicated by the splitting of western-pool and
shadow-zone boundary trajectories at each outcrop in
the various layers. In the present situation, the com-
plexity is increased by the need to solve the shock equa-
tions. For the present illustrative purposes, we dispense
with these complexities by fixing the pool boundaries at
the original western-pool boundary locations that
would obtain for corresponding single-outcrop models,
and neglecting the shadow zone entirely. This is ad-
equate to provide a semiquantitative schematic solution
of the two-outcrop model. The explicit formulas are
given in appendix B.

The main result of the two-outcrop model is that the
ventilated pool that forms from the northern outcrop
will be subducted at the southern outcrop, forming a
thick, homogenous subsurface layer. The details of this
structure depend on the latitude of the southern out-
crop. A western-pool region arises at a given outcrop if
the flow at the western edge of the outcrop is eastward
that is, if the outcrop is north of the latitude of maxi-
mum Ekman pumping. If the southern outcrop in the
two-outcrop model is south of this latitude, the charac-
teristics of layer 2 will be directed westward and no
ventilated pool will form in layer 1 (Fig. 7). In this case,
the subducted ventilated pool and the shallow layer-1
cap above it will extend to the western boundary (Fig.
8). These solutions develop a shallow ventilated ther-
mocline structure above the subducted pool that closely
resembles the SV97 solutions (Fig. 6).

If both outcrops are north of the latitude of maxi-
mum Ekman pumping, however, there will be two pool

1
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0.8r
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0.6} A RN ]
/‘ y2
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B =T D
04 o-mmTT b
0.2+ |
wE>0
0 . . . ‘
0 0.2 04 0.6 0.8 1
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FiG. 7. Horizontal structure of the three-layer, two-outcrop
model with ventilated pool in layer 2 only. The outcrop latitude of
layer 2 is y, = 0.54, just equatorward of the latitude of maximum
Ekman pumping, so the characteristics in the subsurface layer 2
are all directed westward, and no ventilated pool forms in layer 1,
while the layer-2 ventilated pool is subducted at y = y,. For this
solution, y, = 20, y; = 30, and y; = 0.7, and the other parameters
are as in Fig. 1.
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FiG. 8. (top) Zonal cross section at y = 0.5 and (bottom) me-
ridional cross section at x = 0.1, corresponding to the solution of
Fig. 7. The uppercase and lowercase letters correspond to the
regions and boundaries in Fig. 7, respectively, and the numbers
indicate the fluid layer. The stagnant layer 4 is labeled “Abyss”
and the shadow zone is omitted. The upper interface in the me-
ridional cross section is analogous to the shallow ventilated ther-
mocline in the SV97 solutions (Fig. 6).

boundaries, one emanating from the western edge of
each of the two outcrops (Fig. 9). In this case, the south-
ern outcrop (y = y,) will cross the northern, outer pool
boundary, dividing the latter into two segments. De-
note these segments a and b (Fig. 9). Denote the region
west of the northern segment (a) and north of y = y, by
A, and the region west of the southern segment (b) and
east of the southern, inner pool boundary (c¢) by B.
Also, denote the region west of the inner pool bound-
ary ¢ by C, and the regions east of the outer pool
boundary (a and b) by D. In regions A and B, then,
there are no characteristics of layer 3 that thread back
to the surface and therefore within A and B there is no
layer-3 water. Furthermore, on region C there are no
characteristics of layer-2 water that thread back to the
surface and therefore within C all of the water is layer-1
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water. Zonal sections through regions C, B, and D will
show three distinct themocline structures, from west to
east: an inner ventilated pool, with a single thick layer
of moving layer-1 fluid in region C; an intermediate
regime with moving fluid in the shallow, exposed layer
1 and the thick, subducted ventilated-pool layer-2 an-
nulus in region B; and the standard eastern ventilated
thermocline regime in region D (Fig. 10).

This results of this simplified three-layer reduced-
gravity calculation may be compared with the SV97
numerical solutions, in which the mode-water analog
appears as a continuous, nested set of annuli on succes-
sive isopycnal surfaces (Fig. 5 and Fig. 6). In zonal
cross-section, these appear as short, near-vertical seg-
ments above the main thermocline on the T = 50, 60,
70, and 80 isotherms (Fig. 5). This structure is the natu-
ral extension to continuous stratification of the two-
outcrop conceptual picture described above: each ver-
tical isopycnal segment, lying between the shallow, ven-
tilated part of the surface to the east and the deep,
unventilated part of the surface to the west, is an analog
in the continuous model of the single subducted annu-
lus that lies between the two pool boundaries in the
two-outcrop model (Fig. 10). The capped ventilated-
pool structure that arises when the southern outcrop is
south of the latitude of maximum wind stress curl (Fig.
8) is apparent in cross sections of the SV97 numerical
solutions (Fig. 6).

The three-layer model is sufficient to illustrate the
subduction of the ventilated pool and the associated
formation of the nested annulus and shallow ventilated
thermocline structures. Introducing additional layers
and outcrops would lead to a set of several nested an-
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£ 2. — Va
0.61 BN N |
c N B J D
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F1G. 9. Horizontal structure of the three-layer, two-outcrop
model as in Fig. 7 but for y, = 0.65, with ventilated-pool regions
in layers 1 and 2. The outer pool boundary, marked a and b,
corresponds to the boundary of characteristics in layer 3 that do
not trace back to the surface, and the boundary marked c corre-
sponds to similar characteristics of layer 2. The regions A, B, and
C are ventilated-pool regimes, while region D is the classical ven-
tilated-thermocline regime.
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F1G. 10. (top) Zonal cross section at y = 0.55 and (bottom)
meridional cross section at x = 0.1, corresponding the solution of
Fig. 9. The uppercase and lowercase letters correspond to the
regions and boundaries in Fig. 9, respectively, and the numbers
indicate the fluid layer. The stagnant layer 4 is labeled “Abyss”
and the shadow zone is omitted. The subducted annulus labeled
“B, 2” in the zonal cross section is analogous to the vertical seg-
ments of isothermal surfaces above the main thermocline in the
SV97 solutions (Fig. 5).

nuli and shallow ventilated layers, resulting in a struc-
ture similar to the isothermal surfaces in the SV97 nu-
merical solutions (e.g., Fig. 5 and Fig. 6). As in the
two-outcrop model, the total lateral density gradient
across the ventilated pool will be determined by the
surface boundary conditions and the geometry of the
outcrops. However, even in the continuously stratified
SV97 solutions, the transition in depth on each isopyc-
nal occurs abruptly (Fig. 5), as a front, in agreement
with the present model, and this in turn suggests that
such fronts will tend to obtain an inherent dynamical
character of their own. The horizontal gradients in the
mode-water analog from the SV97 solutions are less
apparent in meridional sections (Fig. 6). Note that, de-
spite having lateral density gradients, the fluid in the
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continuously stratified ventilated pool is nearly homo-
geneous vertically and so will have low potential vor-
ticity throughout.

The SV97 solutions used a planetary geostrophic nu-
merical model. Similar ventilated-pool mode-water fea-
tures appear generically in primitive equation model
simulations of subtropical gyre circulation (e.g., Cox
1985). These can often be identified by the tongues of
low potential vorticity immediately above the main
thermocline (e.g., Cox 1985; Fig. 5) associated with the
weakly stratified, subducted annuli.

b. Jets and eddies

In the layer model, the lateral density gradients in the
ventilated pool and at its boundary are represented by
vertical interfaces between the adjacent layers. Associ-
ated with these fronts in the layer model will be intense
baroclinic jets with infinitesimal thickness. In the con-
tinuous limit (SV97), these jets will spread out laterally
over the width of the pool and the corresponding baro-
clinic shears will be weakened, as they evidently are in
the planetary geostrophic numerical solution. Nonethe-
less, such areas are almost undoubtedly prone to baro-
clinic instability (Samelson 1999), and so may provide
an important source of eddy energy in these regions;
indeed, Henning and Vallis (2004) observe that the
mode-water region is a region of strong mesoscale ac-
tivity. The corresponding eddy fluxes could act to re-
duce the lateral density gradients within the pool that
are associated with the nested annuli structure dis-
cussed above.

It is possible to make rough estimates of the size of
the associated fluxes, which are generally relevant to
the neglect of eddy processes in the theory, as well as to
the specific case of the unstable baroclinic jets. These
estimates may be compared to the downward Ekman
flux into the ventilated pool, which provides the only
source of ventilated-pool fluid in the present model.
The average downward Ekman velocity w,, for this
area is a little weaker than the typical values quoted for
subtropical gyres because the formation zone for the
mode waters is close to the zero Ekman pumping line.
Thus, W, ~ —0.8 X 10”° m s~ '. The amplitude of the
lateral eddy-driven mass flux, weqqy =~ KV?h, can be
crudely estimated as an effective velocity w44, by as-
suming a lateral diffusion coefficient of 1000 m?* s~
acting on a 300-m-deep layer extending laterally a ra-
dius of 500-2500 km. The resulting values are wqq, ~
1.2 — 0.05 (x107®* m s 1), and so can be comparable to
we. Diapycnal velocities w, can also be estimated
based on an interior diffusivity of 107> m? s~ ! operating
on a 300-m-thick water mass and are quite small at w,
~ 3 X 1078 m s !. From these estimates, it is well
established that diabatic fluxes are relatively weak. The
neglect of eddy fluxes is not as clearly supported, and
these may be expected to modify the present large-scale
dynamical results.

A related feature of note is the abrupt change, at the
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bounding streamline x,(y), of the depth of the main
thermocline. This discontinuity arises from the differ-
ence between the reduced gravities across the main
thermocline in the ventilated pool region (I') and in the
adjacent ventilated interior (v,). As x,(y) is ap-
proached from the ventilated interior, the depth of the
main thermocline approaches the value

2¢(x,, y,) + .15, |
H;p _ |: o(x, ¥2) + v 2e:| , @.1)
Y2
while from the ventilated pool, it approaches
2¢(x,, y,) + v.H3, |"*
H;;, _ |: P » Y2% Y2i13 ] . 4.2)

Clearly, these two thicknesses cannot be equal. The
effect of the westward-increasing density difference
across the main thermocline across the pool boundary
(or across the pool itself, in the continuous limit) is to
decrease the depth of the main thermocline toward the
west relative to the depth it would obtain if the warm
fluid were confined near the surface. The geostrophic
shears associated with these changes in the depth of the
main thermocline may also be baroclinically unstable.
It is conceivable that the convergent eddy-driven heat
fluxes observed by Henning and Vallis (2004) at the
base of the main thermocline in eddy-permitting primi-
tive equation simulations are related to this baroclinic
energy source.

c. Air-sea heat fluxes

The model of the existence and maintenance of sub-
tropical mode waters that we propose here does not
explicitly address the role of air—sea heat exchange in
mode-water formation. In fact, with a boundary current
that arranges to return the subducted fluid adiabatically
to the subtropical gyre at the same latitudes where it
was previously exposed to the surface, our model mode
water could be seen—except for a volume flux equal to
the net downward Ekman pumping over the pool area,
which must then escape to the subpolar gyre—as an
essentially adiabatic, steady, recirculating pool. In con-
trast, many studies of subtropical mode water have fo-
cused on wintertime formation of homogeneous col-
umns of fluid by convective overturning that is induced
by air-sea heat exchange and on the relation between
mode water and the intense heat loss from the ocean to
the atmosphere in the western boundary currents and
their extensions that lie on the rim of the mode-water
regions. From the point of view of the present model,
however, the seasonal air-sea exchanges would repre-
sent a literally superficial mechanism with little dynami-
cal influence on the large-scale circulation processes
that support the existence and maintenance of the
mode water pool. Similarly, we cannot exclude the pos-
sibility that eddy processes may be important compo-
nents of the dynamics of observed ocean mode water,
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but it should be clear that they play no explicit or im-
plicit role in the present model.

5. Summary

A simple modification to standard ventilated ther-
mocline theory yields an appealing model of the large-
scale dynamical mechanisms that support and maintain
subtropical mode water as an essential component of
the subtropical gyre circulation. The modification con-
sists in assuming that there are no significant sources of
unventilated, recirculating fluid and, consequently, that
the western pool region is entirely filled with ventilated
fluid. The resulting ventilated pool is a vertically homo-
geneous layer of fluid in the northwest corner of the
subtropical gyre, which extends from the surface to the
main thermocline and carries the entire Sverdrup trans-
port in this region. This ventilated pool is a natural
model of subtropical mode water. With multiple out-
cropping density layers, or continuous stratification, the
mode-water pool comprises a set of nested annuli of
successively subducted, vertically homogeneous fluid
layers. Lateral gradients in the pool are controlled by
large-scale surface conditions and geometry. In this
model, the subtropical mode water is ventilated, in the
sense of LPS. It is the deepest such ventilated layer, and
so forms the base of the ventilated thermocline and the
wind-driven motion in the northwest portion of the sub-
tropical gyre.

Future work might usefully address the dynamic and
thermodynamic mechanisms by which the recirculating
subsurface layer of fluid interacts with the western
boundary current and the atmosphere, and explicitly
consider the time scales on which this occurs. The struc-
ture of mode water suggested by the model will be
particularly prone to baroclinic instability, which can be
expected to modify the circulation. We hope that this
model will provide a useful point of reference for un-
derstanding mode water in more complete numerical
models and that these ideas will be useful in the analysis
of such models and in further attempts to understand
the important role of mode waters in ocean and global
climate dynamics.
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APPENDIX A

A Front Trajectory Equation for a
Reduced-Gravity Model

The equation governing the trajectory of a front
through the general circulation can be obtained by in-
tegrating
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J(pa, hy/f) =0 (A1)

over a small region enclosing the shock (Fig. 2). The
result corresponds to the conservation of layer-2 mass
through the shock and may be written

My — Mg+ M, — My, =0, (A2)

where My g iy denotes the mass flux through the north
(y = yn), south (y = yg), east (x = xj), and west (x =
xy) sides of the domain, respectively. For the remain-
der of this appendix, My, will be ignored, as A, is as-
sumed to vanish in the ventilated pool; M is by design
determined solely by northward velocity, thus

My =

“w

*E 1 [P2k
(hopo/fn) dx = f_ hydp,, (A.3)
NI poy

where the subscripts “W” and “E” denote values west
and east of the front respectively, and fy = f(yn)-
Layer-2 pressure and thickness are related via

_ Y2v1h + Y2 V2 - 'Yz'Ylh%

P2 F I‘

(A4)

through the front by the Sverdrup constraint. Thus
(A.3) yields three integrals:

v _|:7172h_§:|h2++ v, [*=  2Th,dd
=
r 2 o AT Py Vzrd)_Yleh%
_V%Vl = hgdhz

(A.5)

Tiv i \/2r¢ — yiyahi3

It is useful to distinguish in the above equation between
“fast” variables like h,, which on a zonal section
through the front change rapidly, and “slow” variables
like ¢, which are insensitive to the presence of the
front. This permits the second integral to be ignored
relative to the first and third because, as x; — xy, the
second integral is proportional to ¢ — ¢y — 0. In
contrast, the other integrals involve O(1) changes in the
fast variables. The third item in (A.5) is however ren-
dered easily integrable if the slowness of ¢ is exploited
to replace it by the constant value ¢ [(xz + xy)/2,y5]. In
summary, defining

ywehs v, (| [viw
F(h,) = — <sm —h,
2r V Y172 2¢I

- \/ ;;bylf h, \/ 1—;;)713 h§> and (A.6)

_Fpy) Fhy) Fhyy)
Moo I In 7

the latter equality being due to s, = 0. A similar
formula can be written for M. Note that the result of
the integration is a formula that depends only on the

(A7)
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end point thickness, h, . This is a slow variable east of
the front, so the difference M, — Mg can be written as
My — Mg= M3, (A.8)

where 8, = yn — Vs
The eastern face mass flux, M can be written as

M, = f wh, - ny dl, (A.9)

where ng is the eastward-pointing unit vector normal to
the front

i—xl.j
V1+ ()

The quantity x|, denotes the meridional derivative of
the shock trajectory x(y) and the line integration traces
the front slightly to its east. A little algebra then shows

h,d
M, = fp2YI}2 y.

Using (A.4) in the above returns three integrals, all of
which contribute at first order in 8y. Computing dM/dy
and gathering the results in (A.2) yields (3.16).

ng; =

(A.10)

APPENDIX B

The Three-Layer Model

We give here explicit expressions for the three-layer
model solutions described in section 4a. Let the re-
duced gravities be defined by

P3 ~ P1
Po

Yi3= 8 =Yt YeYa=vit vt vs

and

You = V2 T V3 (B.1)

The layer thickness are denoted A, h,, and k5 and the
coordinates of the interfaces are denoted my, 1,, and 5
such that m; = —hy, m, = —(h; + h,), and n3 = —(hy +
h, + hy). Also, f; = f(y,), x, is the longitude of the
eastern boundary of the domain, %5, is the thickness of
layer 3 at the eastern boundary, and W(y) is the value
of the wind stress curl.

The solution is then calculated as follows (see Fig. 9).

1) Within region A all of the moving fluid is layer 2
fluid, and beneath this is abyssal fluid of density p,.
Thus, the layer depth is calculated as in a one-layer
ventilated thermocline model, and as in the pool
region of the one-layer model, but with an appro-
priate value for the reduced gravity determined by
the density contrast between layer 2 and layer 4.

At y, layer 2 is subducted under layer 1, and so
within region B, the pool region consists of layer-1
and layer-2 fluid. Layer 2 conserves its potential vor-

2)
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ticity, and this is given by its value at y,. Effectively,
then, the layer depths are calculated as in a two-
layer ventilated thermocline model, with moving
layers of density p; and p,, along with the abyss p,.

3) In region C all of the moving fluid is layer-1 fluid,
and beneath this is abyssal fluid. Thus, the calcula-
tion proceeds as in item 1 above except with a dif-
ferent value of the reduced gravity (and of course a
different wind field, appropriate to the different lati-
tude).

4) Outside of the pool regions, the layer depths are
calculated in the standard way for a three-layer
model. There will in general be the usual shadow
zone in the eastern part of the domain, necessary to
satisfy the no-normal flow condition at the eastern
boundary, and the usual need to specify the (con-
stant) depth of layer 3, H;, at the eastern boundary.
Note that the layer depths will in general be discon-
tinuous at the pool boundaries, as in the single-
outcrop model.

The layer thicknesses are given by region C:

I 2
Yahs.
m=—h == D%"'_’
Y14

(B.2)
M =M, =My (hy = hy =0),
where the Sverdrup depth D, is given by
2
D, = Bve (x — x )W(y); (B.3)
region B:
S \/D% " (73h§e/724) .
1+ (vi/v24)(1 = fif2)
m =1 = fifa)m, m3 = o, (B.4)
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where

2

D, = (x = x, )W(y); (B.5)

BY24
region A:

="V D% + (73h§e/724)’ m=0,1=m. (B.6)

Outside of these regions, that is in region D, the layer
depths are given by the standard formulas for a three-
layer ventilated thermocline model.

The various layer depths of the regions for the case
shown in Fig. 7 are calculated in a similar fashion, al-
though there is now no region C.
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