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The dissipation of internal wave energy in the turbulent boundary layer under pack ice is determined 
using a time-varying boundary layer model with an eddy coefficient closure scheme. The magnitude of 
the eddy coefficient is determined by the ice drift velocity, which is assumed greater than the rms water 
velocity induced by internal waves. The Arctic Ocean internal wave velocity spectrum is represented by a 
line spectrum with 44 rotary frequency components. The energy at a given frequency is set equal to the 
energy in a band about the frequency in the continuous spectrum. The dissipation spectrum is found to 
have an to-'- shape. For an internal wave energy level representative of Arctic Ocean conditions (energy 
parameter r equal to 50 m •- cph) the total dissipation is 0.16 mW m-•-. This corresponds to a dissipation 
time scale of 32 days and suggests that underice dissipation is important. The surface boundary layer 
dissipation process is unique to ice-covered regions, and the_ predicted amount of dissipation appears to 
be great enough to explain earlier observations that the internal wave energies in the Arctic Ocean are 
low compared to internal wave energies measured in ice-free oceans. 

1. INTRODUCTION 

Despite the intensive study of oceanic internal waves over 
the past several decades by both experimentalists and thec•r.- 
eticians there are significant deficiencies in our understanding 
of the physical processes that generate, modify, and dissipate 
internal waves (see recent reviews by Munk [1981], Olbers 
[1983], and Levine [1983]). On the basis of a set of diverse 
field evidence, Garrett and Munk [1972, 1975, 1979] (hereafter 
referred to as GM) presented the surprising result that the 
internal wave spectrum is remarkably constant in time and 
space. Subsequent experiments have generally confirmed the 
GM hypothesis. As a means of identifying possible sources 
and sinks of internal waves, Wunsch [1976] suggested search- 
ing for geographical regions where the internal wave field de- 
viated from the canonical GM spectrum. The Arctic Ocean 
appears to be one location where deviations do exist. Prelimi- 
nary studies suggest that the internal wave energy under the 
Arctic ice cover is lower than usually observed in temperate 
oceans [Morison, 1985; Levine et al., 1985]. Morison [1985] 
has examined historical data from Yearsley [1966], Neshyba 
et al. [1972], Bernstein and Hunkins [1971], and Bernstein 
[1971] and has found that while the forms of the internal 
wave spectra from the Arctic are of the same shape as the G M 
model, the energy levels are 0.05 to 0.33 times lower. Recent 
data gathered in the Arctic by Levine et al. [1985] also show 
low energy levels, from 4 to 6 times lower than the canonical 
values. 

There are several possible explanations for this reduced 
energy level. The forcing of internal waves in the Arctic may 
be substantially less than at lower latitudes. The ice cover 
eliminates most surface wave forcing. Also, tides are generally 
weak in the Arctic, and above 75øN the tidal frequencies lie 

Copyright 1985 by the American Geophysical Union. 

Paper number 5C0435. 
0148-0227/85/005C-0435505.00 

outside the internal wave frequency band. However, these re- 
ductions may be offset by forcing that is unique to the Arctic, 
such as the motion of pressure ridge keels on the underside of 
the ice and the strong buoyancy flux that occurs in leads. 

The internal wave energy may also be less in ice-covered 
waters because of increased energy dissipation, and that is the 
subject of this paper. Figure 1 illustrates how dissipation is 
enhanced by a surface ice cover. The ice pack provides a lid 
that is effectively rigid for most internal wave frequencies and 
horizontal wavelengths. Thus, unlike the waves in an ice-free 
ocean, the waves under ice must generate oscillatory boundary 
layers at the surface. These are embedded in and interact with 
the turbulent boundary layer that exists without the waves. 
Such oscillating boundary layers may provide an important 
sink for internal wave energy, one which does not exist in the 
open ocean. D'Asaro [1982] discusses the absorption of inter- 
nal wave energy in the bottom boundary layer and estimates 
that the absorption ranges from -0.003 to 0.024 mW m -2. 
This indicates bottom absorption is unimportant. However, 
for typical profiles of the Brunt-Vaisala frequency N, the inter- 
nal wave modal structure yields much higher horizontal veloc- 
ities near the surface than at the bottom. Thus dissipation may 
be much larger in a surface boundary layer than in a bottom 
boundary layer for the same level of internal wave energy per 
unit area. The problem of internal wave dissipation under ice 
has been addressed for a special case by Levkov and Cherkesov 
[1974]. They discuss the behavior of long surface and inter- 
facial waves in an ice-covered, viscous, two-layer ocean forced 
by a fluctuating surface pressure. The ice cover damps the 
interfacial waves substantially, by a factor of 2 q-(v•/v2) •/2 
over the no-ice cover case, where v• and v 2 are upper and 
lower layer viscosities. 

In this paper we estimate the energy dissipation using a 
model of oscillating boundary layers developed by Long 
['1981]. The model employs an eddy coefficient and is solved 
numerically. The eddy coefficient requires specification of 
single-velocity and single-length scales and is based on the 
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Fig. 1. Schematic illustrating the difference in internal wave 
boundary conditions between an ice-covered ocean and an ice-free 
ocean. The boundary layer coordinate system is also illustrated. 

eddy coefficient form developed by Businger and Arya [1974]. 
Our philosophy in using the model is to obtain a conservative 
but realistic estimate of the dissipation, not to explore the 
nuances of how internal waves interact with each other and 

the mean flow. For this reason, the nonlinear interactions of 
the waves in the boundary layer are ignored. We assume that 
the velocity scale and magnitude of the eddy coefficient are 
determined by the mean flow and are independent of the inter- 
nal wave field. This linear model is relatively easy to interpret 
and yields dissipation values which should be conservative. 
The underice energy dissipation will be compared with dissi- 
pation estimates for the open ocean, and the effect on the 
internal wave energy in the Arctic will be assessed. 

2. THE DISSIPATION MODEL 

From Long [1981] the governing equations for the bound- 
ary layer motion under the ice are 

•U 1 •p •%, 
i --fV - • (1) 
c3t p c•x c•z 

and 

• V + f U = 1 cgp &ry (2) 
c•t p c•y r3z 

where U and V are the mean horizontal velocity components 
in the x and y directions, respectively; z is positive down (see 
Figure 1); t is time; p is density; 3p/3x and 3p/3y are the 
pressure gradients driving the boundary layer flow; and %, and 
ry are the Reynolds velocity correlations -u'w' and -v'w', 
respectively. Because z is defined here as positive downward, 
rotation in the cyclonic sense is negative, and the Coriolis 
parameter f is taken as -0.0833 cph. In solving the boundary 
layer problem the depth range is from the roughness scale Zo 
at the top to outside the boundary layer z--} oo, at the bottom. 
In practice, Zo is a few centimeters while z--} oo corresponds to 
about 50 m. 

Equations (1) and (2) can be posed in the complex horizon- 
tal plane by first defining C- U q-iV, V,- (3/3x) q- i(3/3y), 
and •- %, q- i•y and replacing the pressure gradient terms 
with the time-dependent velocity Coo just outside the bound- 
ary layer: 

1 Vnp = c•Coo - +/fc (3) 
Then (1) and (2) can be written as 

(c - c©) + if (c - - az (4) 

The boundary conditions are 

C = Ci½ ½ = Ui½ ½ q- i0 at z = Zo (5) 

and 

C = Coo as z--} oo (6) 

Forcing for the boundary layer motion is established by 
specifying Uic½ and Coo. It is assumed that the velocity field 
can be decomposed into M rotary components 

M M 

C(z) = • Cn(z ) = • Dn(z)e iø•"t 
n=O n=O 

M 

= E [An(z) + iBn(z)] eim"t (7) 
n=O 

and 

M 

Coo = • D oo. "ø"' (8) 
n=O 

The motion includes a steady component n = 0, correspond- 
ing to the mean ice velocity relative to the water. Rotary 
components are chosen as the rms velocity over narrow bands 
of a GM-type velocity spectrum. In this way the continuous 
spectrum is represented as a multiline discrete spectrum with 
the same total energy. 

Even though the velocity for an individual wave component 
varies in the horizontal, the average energy in a frequency 
band is assumed invariant in the horizontal. The model results 

are not affected by the assumption of horizontal homogeneity 
as long as the oscillating boundary layer thicknesses are small 
compared to the horizontal wavelengths of the motions. 

The key step in solving this boundary layer problem is 
selecting a closure scheme. Long [1981] uses an eddy coef- 
ficient closure 

•C 
• = K I (9) 

Oz 

where K is of the form 

K = ku,ze -61'ø+fl:/"* (10) 

and k(= 0.41) is von Karman's constant, u, is a characteristic 
friction velocity, and co is the driving frequency. The model 
has been tested satisfactorily by Long [-1981] against labora- 
tory experiments for constant density flows driven at a single 
frequency by rotating or oscillating barotropic pressure gradi- 
ents or boundary stresses. Under steady flow conditions the 
model reduces to that of Businger and Arya [1974]. In the 
time-dependent flows the eddy coefficient is independent of 
time. 

The latter feature is of particular interest here. Long [1981] 
found experimental evidence that the constant K works for 
the purely oscillatory flow case. That is a rather extreme test 
of the temporal stability of the momentum-transferring 
properties of the turbulence because the turbulent kinetic 
energy production term z(•C/&) varies dramatically in time 
(as cos 2 cot). This implies that the residence time of the turbu- 
lent conditions is long compared to the driving period. Hence 
the effect of turbulence can be scaled quite satisfactorily with 
the integral flow properties. 

Finally, a determination must be made of the appropriate 
integral scales with which to characterize K for flows with 
multiple frequency components. This is difficult in principle 
because the components interact nonlinearly owing to bound- 
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ary layer turbulence. In practice the lower limit on K can be 
estimated by assuming that the momentum-transferring 
properties of the turbulence field are due only to the most 
persistent flow component, i.e., the steady component due to 
the ice motion. For this case the scale friction velocity u, is 
that due to the stress, which would exist if only the steady 
motion were occurring. So, u, = U,ice -'- Izol •/2 and 

K = ktl,iceZe -61flz/u*ice (11) 

This is reasonable when the steady flow is very much larger 
than the oscillating components. It represents a minimum 
value of K (and results in conservative estimates of dissi- 
pation) because the addition of oscillating velocity compo- 
nents would increase the level of turbulence and the dissi- 

pation rate at all depths. 
With this K the solution is of the form given in (7). The 

complex velocity Do(z) is the ice motion component. It satisfies 
the ice motion boundary condition at Zo and decays to zero as 
z--• oo. Hence 

c3 8D o D O = Uic e at z = z o (12) /fDo =•z K 8--•- Do -0 as z--} oo 
The wave motion components are D,(z)e i'ø"t, and each satisfies 

• 8D. D.=O at Z=Zo 

i(co. + f)(D. -- Do•.) = •zz K 8z D. = D• as z--• oo 
(13) 

The dissipation Q(z, t) is given as the energy sink term in the 
(ensemble) mean kinetic energy equation and appears as shear 
production in the turbulent kinetic energy equation 

Q(z, t) = ß •z 
8C 8C' 

=K 
8z 8z 

kk,'•-zJ + k, Oz J I (14) 
where prime (3 denotes complex conjugate. Using (7) in (14) 
and computing the time average Q(z) of Q(z, t) yields 

_ M r(c%4n•2 (c•Bn•21 Q(z) = Kn=•O • •-z J + • •-z J ! (15) 

This gives the mean energy dissipation per time per unit mass 
at each level in the flow. When multiplied by p, it gives the 
rate of energy loss per unit volume as a function of z. The 
total energy loss for the water column is found by integrating 
(15) with respect to z over the whole water column, i.e., 

ffzoo M 2 <Q>: pK.• ø r(2A" (2B"•21 dz (16) o = LLW/ + LW7 ] 
The final calculation gives the energy lost from the wave 

field alone. Equations (15) and (16) are linear sums of the 
component contributions to the dissipation. (It works this way 
because K is assumed constant in time.) Thus the internal 
wave contribution is only the sum associated with the wave 
components. 

Hence 

(17) 

and 

.... -'- o PKn=•i LLW/ + L Oz / j (18) 

The system is solved by specifying Zo, f, Uice, and a series of 
M frequencies co, and velocities Aoo, that characterize the 
wave field. For convenience, it is assumed that Boo, = 0, since 
the phase does not affect the dissipation estimates. Equations 
(12) and (13) are then solved numerically using K from (11). 

In the numerical scheme the stress equations corresponding 
to (12) are actually integrated by assuming an initial estimate 
of U,ice and using (11). The resulting surface velocity, deter- 
mined by integrating the stress equation, is compared with 
Uice, and an improved estimate of U,ice is made. This process 
is iterated until the estimates converge. The solution for the 
wave components is similar, but it is not necessary to change 
the value of K derived in solving (12). 

3. FORCING AND MODEL PARAMETERS 

To apply the model, steady and internal wave velocity com- 
ponents must be specified. The steady component is the mean 
ice motion. For most runs we have assumed a value of 7 cm 
s- •, which corresponds to the rms ice velocity measured in the 
Arctic Basin with drifting ARGOS buoys (R. Colony, personal 
communication, 1982). 

The internal wave velocity components are derived from 
observations of vertical displacement at 50-150 m depth at the 
Fram III ice camp [Levine et al., 1985]. The Desaubies [1976] 
formulations of the GM spectra, 

2f 
So(co) = •-• rco-2(1 _f2/co2) (19) 

(co + f)2 (20) S,(_+ co) = 4r•rf N co3(co2 +f2)•/2 
were used to parameterize the data. A local Brunt-Vaisala 
frequencey N of 3 cph and a value of the energy parameter r 
of 50 cm 2 cph were found to be representative of the data. 
These values were used in (20) to determine the internal wave 
velocity spectra shown in Figure 2. The velocity which drives 
the boundary layer motion is that at the very base of the 
mixed layer, at the outermost edge of the boundary layer. The 
velocity just below the mixed layer, as represented by the 
spectra of Figure 2, provides a conservative estimate of this 
driving velocity because the internal wave velocity mode 
shapes approach a maximum magnitude going from the pyc- 
nocline up into the mixed layer. The usual WKB, N scaling 
does not apply when going from the seasonal pycnocline into 
the mixed layer. 

The spectra of Figure 2 have been divided into spectral 
bands. At high frequencies the bands are evenly spaced in log 
of frequency, but their widths decrease at low frequencies in 
order to resolve the effect of the singularity in the clockwise 
rotary spectrum at the inertial frequency. The center frequency 
and equivalent velocity for each band are given in Table 1. 
The equivalent velocity is the rms velocity in each frequency 
band of the clockwise (+) and anticlockwise (-) rotary com- 
ponents. In this way the spectra are represented as single 
rotary components at the center frequencies. 
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3.4 cm. The linear increase near the surface and the ex- 

ponential decrease at greater depth result in a maximum 
K(z) = 46.4 cm 2 s- • at 6 m depth. 

Figure 4 shows the shape of velocity profiles for several 
rotary components. They are solutions of (13) normalized by 
the freestream velocity Anoo or, in the case of the ice motion 
component, by the imposed ice velocity. The boundary layer 
thickness for an oscillating boundary layer scales as 
+ fl- •, where % is the nth component of surface stress and con 

is the frequency. Thus the boundary layer is thin for large 
negative frequencies and reaches a maximum thickness for 
frequencies close to -f (0.0833 cph) such as co = 0.0842 cph. 
The model constrains the velocity to reach the freestream 
value at 50 m and thus imposes a limit on boundary layer 
thickness for components very close to minus the inertial fre- 
quency. To see if this affected dissipation estimates, the depth 
where velocities were constrained to reach freestream values 

was varied from 25 to 100 m. This was found to have an effect 

on the velocity profiles away from the boundary but not near 
the boundary. The effect on the dissipation estimates is negli- 
gible because dissipation occurs very close to the boundary. 
For frequencies above 0.0833 cph, boundary layer thickness 
decreases with increasing frequency. 

For frequencies less than 0.0833 cph, velocity hodographs 
look as they do for a steady boundary layer, i.e., looking 
downward, velocity veers to the right with increasing depth. 
At frequencies greater than 0.0833 cph the velocity veers to 
the left with depth. Similarly, stresses are oriented relative to 
velocity in the usual manner (with velocity to the right of 
stress) for frequencies less than 0.0833 cph and in the opposite 
manner for greater frequencies. 

Figure 5 shows the dissipation spectrum for r = 50 m ecph, 
Zo = 3.4 cm, and K as in Figure 4. The spectrum was formed 
by computing the energy dissipation, integrated over depth, 
for each frequency component and then normalizing by the 
frequency bandwidth. Clockwise and counterclockwise com- 
ponents were added to form the spectrum. The total dissi- 
pation of internal wave energy was computed using (18). As 

0.1 0.2 0.5 1.0 2.0 3.0 

FREQUENCY (cph) 

Fig. 2. The internal wave velocity rotary spectra used for input to 
the boundary layer model. The total energies in the vertical bands are 
computed and assumed to apply at the band center frequencies. 

The one additional parameter necessary to solve the bound- 
ary layer problem is Zo. Estimated values of Zo under the 
Arctic ice range over several orders of magnitude. M. G. 
McPhee (personal communication, 1977)statistically analyzed 
ice force balances during summer conditions to determine a 
drag law for ice moving over water: 

• - Cwp •l V•le i• (21) 

where •// is the complex ice velocity (V•ast + i[•north), Cw = 
0.0055, and/? - 23 ø. This is the drag law used in the Arctic Ice 
Dynamics Joint Experiment (AIDJEX) model •Pritchard, 
1980]. Our model for the steady case was run for varying 
values of Zo until, for Zo- 3.4 cm, C,• equal to 0.0055 was 
obtained. For this value of Zo the model produced a/? of 24 ø, 
close to McPhee's statistically derived value of 

4. SIMULATION RESULTS 

Simulations were run using the forcing and parameters just 
described. Figure 3 shows K(z) for/,/ice = 7.0 cm S-1 and Zo = 

TABLE 1. Dissipation Model Input Parameters for Rotary 
Components 

Free Stream Velocity, cm/s 
Frequency, 

rad/s Clockwise Counterclockwise 

0.08359 0.825 0.001 
0.08422 0.528 0.003 
0.08480 0.462 0.004 
0.08537 0.421 0.005 
0.08594 0.391 0.006 
0.08657 0.371 0.007 
0.08715 0.354 0.008 
0.08778 0.341 0.008 
0.09053 0.844 0.035 
0.09574 0.711 0.049 
0.10118 0.626 0.061 
0.10703 0.565 0.070 
0.11310 0.515 0.078 
0.11958 0.477 0.085 
0.12645 0.443 0.091 
0.16301 0.967 0.301 
0.25502 0.637 0.317 
0.39998 0.456 0.295 
0.62498 0.338 0.257 
0.97901 0.259 0.217 
1.53003 0.199 0.177 
2.40001 0.156 0.196 
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Fig. 3. The model eddy coefficient due to an ice motion of 7.0 
cm s -•. 

illustrated in Figure 5, the dissipation varies as to-2 just as the 
internal wave energy does. The reason for this can be seen by 
performing a scale analysis of the components of (18): 

- føøK(r3An•2dz (22) 
The velocity An scales with Anon, the rms freestream internal 

wave velocity. As will be shown, dissipation occurs mainly 

near the surface where the eddy coefficient is proportional to 
the ice velocity and z: 

K • UiceZ (23) 

The boundary layer thickness rS n for a given frequency compo- 
nent scales as the friction velocity for that component and 
inversely with frequency for frequencies away from -f, rS n • 
U,n/rOn. Using (23) and (9), the component friction velocity can 
be expressed as 

( l•An•l/2 Usn •-• (Tn) 1/2 •'• K •2 J • (UiceAnøø)l/2 
resulting in 

( U iceAn oo ) 1/2 
{•n •'• (24) 

(_o n 

Thus (22) yields 

•nZ <•> ....... p .... t • Ano•(-Dn 2 dz • Ano • 2 eice 

or 

<•> ....... p .... t • r•On - 2 Uice (25) 

Thus dissipation is proportional to internal wave energy 
and ice velocity; there is no dependence on frequency other 
than that due to the ro -2 decrease in internal wave energy. 
D'Asaro's [1982] model produced a different result. Even for a 
constant wave energy, his results suggest that dissipation 
should go to zero at high frequencies. This may be because the 
thickness in his slab model does not decrease with increasing 
frequency. D'Asaro's [1982] results would require an energy 
cascade to lower frequencies to supply dissipated energy, while 
the model presented here does not. Energy is dissipated in 
each frequency band in proportion to the amount of energy in 
the band. 

NORMALIZED BOUNDARY LAYER VELOCITIES 

0 0.50 1.00 0 0.50 1.00 0 0.50 I O0 0 0 50 1.00 0 0.50 1.00 
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35 - - - 
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Fig. 4. Boundary layer velocity profiles at five different frequencies, all normalized by the maximum velocity in the 
profile. 
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Fig. 5. Dissipation spectra for three different surface roughnesses. 
The bold dashed line represents an o•-2 slope. 

The dissipation spectrum decreases at frequencies close to 
Ifl in spite of the singularity in the clockwise velocity spec- 
trum at w = -f. This is because the velocity profiles for w, 
near -f possess little shear close to the boundary where K is 
large. In essence, the resonant nature of inertial motion does 
not allow stress to build up while maintaining a velocity shear 
adequate to produce dissipation. In nature, the shear for iner- 
tial motions occurs at the pycnocline where K is small owing 
to stratification. 

Curves for Zo = 10 cm and Zo = 0.2 cm are also shown in 
Figure 5. The dissipation spectra for these are within factors of 
2 of the values obtained using Zo = 3.4 cm. Thus the results 
are not critically dependent on surface roughness. 
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Fig. 7. Total dissipation plotted as a function of r with Uic e con- 
stant and plotted as a function of Uice with r constant. 

In using (23) the assumption is made that the dissipation 
occurs near the surface. This notion is substantiated by Figure 
6, which shows the total dissipation per unit volume for all 
frequency components as a function of depth. The dissipation 
for the steady component as a function of depth is also shown. 
The dissipation per unit volume of internal wave energy drops 
faster than the inverse of distance from the surface. Over 80% 

of the dissipation occurs in the top 5 m. 
Equation (25) suggests that the total dissipation is linearly 

related to r and Uice. Figure 7 bears out this relation. It shows 
the total dissipation as functions of r and Uice. Both variations 
are approximately linear. On the basis of this result, a simple 
way to estimate the total dissipation is as the product of an 
effective internal wave stress pCDlsUiceUw and the internal 
wave rms velocity U,•. For the results of the model, 

Q • t9CDisUiceUw 2 

and 

CDi S = 0.0034 

io-2 

10-1 

• IOø 

io I 

WAVES ICE 

IO 2 I i I I l illl I t I ' ' ' '''1 ' ' ' • '''11 I I ' , , ,,,I i , , , 
iO -3 i0 -2 i0 -I i0 0 I0 [ I0 2 

DISSIPATION/UNIT VOLUME (mW m -3) 

Fig. 6. Dissipation per unit volume plotted versus depth for the 
wave components and steady ice components. 

The dissipation coefficient CDiS is slightly less than the steady 
state drag coefficient. 

5. DISCUSSION 

To put these results in perspective, it is useful to compare 
them with estimates of dissipation from temperate oceans. 
Olbers [1983] lists dissipation estimates based on the work of 
several authors. In his Table 1, Olbers [1983] interprets the 
measurements of velocity shear microstructure by Osborn 
[1978] as suggesting 1 mW m -2 of internal wave energy is 
dissipated in the upper ocean through the generation of turbu- 
lence. He cites the work of Woods [1968] and states that 5 
mW m -2 is dissipated in the upper ocean, presumably by 
wave-induced shear instability. Finally, he refers to Garrett 
[1979] for a dissipation estimate of between 0.01 and 0.1 mW 
m-2 in the main thermocline. Most of the estimates cited by 
Olbers [1983] for all types of energy flux in internal waves are 
less than 1 mW m-2. On his Table 1 our value of dissipation, 
0.16 mW m -2, would be ranked as significant but not domi- 
nant. 

The most direct point of comparison with our dissipation 
estimate is work dealing with downward propagation of 
energy in temperate oceans and dissipation in the bottom 
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boundary layer. Leaman [1976] used electromagnetic velocity 
profiler data to determine the polarization of horizontal veloc- 
ity with depth in the Atlantic. He estimated the downward 
energy flux to be 0.02-0.4 mW m -e and proposed that this 
amount of energy was dissipated mainly in the bottom bound- 
ary layer. D'Asaro and Perkins [1984] estimate the downward 
flux near the same location to be 0.12 mW m -e. D'Asaro 

[1982] has modeled dissipation in the bottom boundary layer 
for the same area using a slab model with a linearized qua- 
dratic drag law. He estimates that the dissipation is between 
-0.003 and 0.024 mW m -e. The downward flux measure- 

ments of Learnan [1976] are of the same order as our dissi- 
pation estimates. D'Asaro's [1982] estimate is an order of 
magnitude smaller than ours. 

Such comparisons are somewhat inappropriate because the 
internal wave energy level in the Arctic is lower than the 
temperate ocean energy levels to which the other flux and 
dissipation estimates apply. For example, if the r value were 
equal to the GM canonical value of 325 m e cph, then the 
dissipation in the underice boundary layer would be 1.0 mW 
m -e. This is comparable to the largest flux estimates in 
Olber's [1983] Table 1 and is larger than the vertical flux 
estimates of Learnan [1976] and D'Asaro and Perkins [1984]. 

Another way of looking at this is to compare estimates of 
dissipation time scale. D'Asaro [1982] points out that as- 
suming a total internal wave energy of 4 x 10 3 J m -e [Garrett 
and Munk, 1979], an energy flux of 0.01 mW m -e, repre- 
sentative of his dissipation estimate, would produce a dissi- 
pation time scale of 12 years. He concludes that bottom 
boundary layer dissipation is unimportant. McCornas and 
Muller [1981] cite Gerrett [1979] and estimate the time scale 
for dissipation of internal wave energy by internal wave break- 
ing to be 100 days. By comparison, the time scale for bound- 
ary layer dissipation under the ice is short. The total internal 
wave energy is pNHr, where N is the average of N over the 
ocean depth H and 2qH = 5 m s -x in the Arctic [Morison, 
1985]. For r = 50 m e cph the total internal wave energy is 436 
J m -e. Underice dissipation of 0.16 mW m -e results in a 
dissipation time scale of 32 days. Thus the underice boundary 
layer dissipation in the Arctic is as important as any other 
dissipation mechanism is in temperate oceans. Of course, the 
other mechanisms that dissipate energy in temperate oceans 
may also act in the Arctic. The boundary layer process is 
simply an additional means of dissipation that occurs only in 
the presence of an ice cover. 

Can the added dissipation in the underice boundary layer 
explain the reduced internal wave energy levels? The Arctic 
value of r = 50 m e cph assumed for this study is a factor of 6 
less than the GM canonical value and a factor of 4 less than 

the Internal Wave Experiment (IWEX) value [Levine et al., 
1985]. A crude model of the internal wave energy balance, 
which is compatible with the notion of dissipation time scales, 
illustrates how such a reduction in energy might result from 
surface boundary layer dissipation. We assume that the total 
internal wave energy E can be approximated with a first-order 
differential equation' 

dE 1 1 
•+•E+•E=S 
dt 'l•diss •bl 

where %t is the time constant for energy dissipation in the 
surface boundary layer, %iss is the time constant for dissi- 
pation by all other means, and S is the source of internal wave 
energy. For steady state in the open water case, %t = oo, the 
energy E = Eow would equal %is•S. However, for the same 

amount of forcing but with the imposition of an ice cover, 
is finite, and the energy level E = Eic would be (%i•-• + 
%•- x)- x S. Therefore 

Eic = Zbl(Zbl + Tdiss )- 1Eow 

and for '•diss---100 days [McComas and Muller, 1981-1 and 
%t = 32 days from this study, 

Eic = 0.24Eow 

Such a reduction in energy could explain the lower energy 
levels in the Arctic. Of course, this is not conclusive because 
the time scales quoted are only estimates and we do not really 
know how the internal wave forcing in the Arctic compares 
with that in temperate oceans. The forcing may very well be 
lower owing to the absence of surface waves and tidal forcing. 

Assuming that boundary layer damping is a dominant 
mechanism in the Arctic, there are other differences that might 
be expected in the Arctic internal wave field when compared 
with open ocean conditions. For example, the internal wave 
energy flux might be upward (at least during periods with little 
surface forcing), rather than downward as observed by 
Learnan [1976] and D'Asaro and Perkins [1984]. If the re- 
duced energy is due to increased damping, there might be a 
more rapid decay of internal wave energy after a period of 
energy input; i.e., the ocean would not "ring" as long as in the 
open water case. As a result, there may be more temporal 
variability in the internal wave energy. In fact, internal wave 
energy estimates from the Arctic do vary by over an order of 
magnitude [Morison, 1985; Levine et al., 1985]. Finally, be- 
cause boundary dissipation is independent of vertical and 
horizontal wave number for vertical and horizontal wave- 

lengths greater than the mixed layer thickness, the vertical and 
horizontal wave number spectra might be different from that 
observed in open water. There may not be the necessity for an 
energy transfer from low vertical wave numbers to high verti- 
cal wave numbers where dissipation could occur as suggested 
by McCornas and Muller [1981]. 

In summary, we conclude that surface boundary layer tur- 
bulence is a significant factor in the dissipation of internal 
wave energy and may be the cause of the reduced levels of 
internal wave energy found in the Arctic. Further, dissipation 
in the underice boundary layer may produce other, as yet 
unmeasured, changes in the internal wave spectrum of the 
Arctic. 
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