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Mid-Latitude (30◦–60◦ N) climatic warming inferred by
combining borehole temperatures with surface air

temperatures

Robert N. Harris and David S. Chapman

University of Utah, Dept. of Geology and Geophysics, Salt Lake City

Abstract. We construct a mid-latitude (30◦–60◦ N) re-
duced temperature-depth profile from a global borehole tem-
perature database compiled for climate reconstruction. This
reduced temperature profile is interpreted in terms of past
surface ground temperature change and indicates warming
on the order of 1◦C over the past 100 to 200 years. The
combination of an initial temperature (the primary free pa-
rameter) with the last 140 years of gridded surface air tem-
perature (SAT) data yields a synthetic temperature profile
that is an excellent fit to observations, accounting for 99%
of the observed variance and a RMS misfit of only 12 mK.
The good correlation suggests that this reduced temperature
profile shares much information with the mean SAT record
over large areas and long time-scales. Our analysis indicates
0.7◦±0.1◦C of ground warming between pre-industrial time
and the 1961-1990 mean SAT.

Introduction

How much warmer is the surface of the Earth at the end
of the 20th Century than it was in preindustrial times? Re-
cent estimates vary from 0.3 to 0.9 K [Overpeck et al., 1997;
Jones et al., 1998; Mann et al., 1999; Huang et al., 2000;
Jones et al., 2000]. The answer has been elusive because ex-
tensive instrumental records of temperature change extend
only to about 1850 [Jones et al., 2000], and estimates of
surface temperature in the critical 18th Century are based
either on proxy methods with an imperfect temperature cal-
ibration [Ellsaesser et al., 1986; Jones et al., 1998] or on di-
rect temperature measurements in boreholes with poor time
resolution [Clow, 1992].

Analysis of borehole temperatures for climate change
information is relatively new [Lachenbruch and Marshall,
1986; Harris and Chapman, 1997; Huang et al., 2000]. Be-
cause variations in surface ground temperature (SGT) im-
part curvature to a mostly linear temperature structure in
the subsurface and because transient climatic signals are
much shorter lived than background heat flow variations,
it is possible to use borehole temperature profiles to ex-
tract and interpret the record of SGT variations in the
past. Time before present and subsurface depth are linked
through thermal diffusivity such that temperature profiles
measured to a depth of a few hundred meters contain infor-
mation about SGT over the past several centuries. In con-
trast to traditional proxy methods in which the link between
the measured data and temperature needs to be established,
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temperature-depth profiles bear a direct relationship to con-
tinuous SGT forcing.

A popular approach for constructing SGT histories has
been to use Bayesian inverse theory [Shen and Beck, 1991;
Wang, 1992; Huang et al., 2000]. A principal advantage of
these inversion techniques is the ability to suppress noise,
which, if left unchecked, could produce wild fluctuations in
SGT histories [Shen et al., 1995]. However, because of the
typically large number of free parameters, it is often diffi-
cult to assess the quality of solutions. The loss of high fre-
quency information with time in the past also makes direct
comparisons between SGT histories and surface air temper-
ature (SAT) records challenging [Harris and Gosnold, 1999].
Futhermore, SGT solutions based solely on temperature-
depth measurements cannot retrieve the most recent tem-
perature change information if borehole temperatures were
only measured below a depth of 40 or 50 m. We address
some of these shortcomings by 1) showing that noise can be
suppressed by a simple averaging of reduced temperature
profiles, and 2) combining borehole transient temperature
profiles with conventional meteorological data in an inte-
grated analysis. Both of these considerations greatly reduce
the number of free parameters in the climate change recon-
struction.

Temperature-Depth Data

Recently, a global database of borehole temperature pro-
files has been assembled for the purpose of reconstructing
SGT histories [Huang and Pollack, 1998]. We have pro-
cessed these data to facilitate comparisons with climate
change inferred from meteorological records and to test a
series of climate change scenarios. We isolate transient bore-
hole temperature anomalies that may be attributed to cli-
mate change by removing the background thermal regime
(Figure 1). The background temperature field is estimated
in terms of two free parameters, the thermal gradient and
surface temperature computed using data below 160 m, a
depth sufficient to avoid more recent climate change effects
but that retains enough data in the deeper subsurface to
obtain robust estimates of these parameters. This process
does not modify curvature in the temperature-depth profile.

Because of the effects of thermal diffusion, it is not ap-
propriate to average individual reduced temperature pro-
files logged at different times. This compilation of temper-
ature profiles span 27 years (1958–1995); profiles measured
in 1958 contain different information than those logged in
1995. Thus we have forward continued all reduced tempera-
ture profiles to a common year of 1995 by assuming that the
surface temperature is constant between the date of logging
and 1995 and diffusing the reduced temperature profile for-
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Figure 1. Processing borehole temperature-depth data to iso-
late climate-change transients. Example log is borehole US-VA6-
60 measured in 1964. a) Circles depict temperature measure-
ments. Solid line shows background thermal field. The shaded
area represents anomalous temperature resulting from surface
ground temperature variations to 1964. b) Reduced tempera-
ture profile computed by removing the background thermal field
(Solid line labeled 1964). Dashed line shows a best fitting step
function to estimate surface temperature for 1964. Solid line la-
beled 1995 is the forward continued reduced temperature profile
assuming a constant surface temperature between 1964 and 1995.

ward in time. This process produces a reduced temperature
profile (marked 1995, Figure 1) with diminished high fre-
quency noise, anomalous reduced temperatures extending
a little deeper in the subsurface, and a somewhat greater
magnitude of the anomalous reduced temperatures at inter-
mediate depths.

A composite of mid-latitude Northern Hemisphere re-
duced temperature profiles, based on 439 logs forward con-
tinued to 1995, is shown in Figure 2. The variability reflects
natural climatic variability as well as site specific effects.
Lack of any discernable trend in the reduced temperature
profiles below 200 m justifies the choice of 160 m to compute
a background thermal field. An average thermal anomaly
for these temperature logs has been computed by first tak-
ing an average reduced temperature for each 5×5◦ grid, and
then averaging all grids containing data. The mean anomaly
has an amplitude of 0.5◦C at 30 m and a depth extent of
approximately 190 m (Figure 2). Positive anomalous tem-
peratures are direct thermal evidence of surface warming
from some long-term mean value. Simple last event models
that reproduce this anomaly include a step change of sur-
face temperature of 0.7 ± 0.1◦C in 1885 or a ramp increase
of 0.8 ± 0.1◦C starting in 1800.

Integrated Analysis

How much signal does the average Northern Hemisphere
reduced temperature profile share with the Northern Hemi-

sphere SAT record? We answer this question by computing a
synthetic transient temperature profile [Lachenbruch et al.,
1988 Harris and Chapman, 1998] from gridded meteorologi-
cal data [Jones et al., 2000] using 5×5◦ grid cells collocated
with the boreholes (Figure 2). The SAT time series (Figure
3a) is expressed as a sequence of N annual step functions of
known amplitude and time prior to 1995. Because the SAT
data are limited to the last 140 years whereas the reduced
temperature profile indicates a sensitivity to at least the last
300 years, we parameterize the time before the start of the
SAT record in terms of a constant temperature termed the
pre-observational mean (POM) temperature. In the com-
parison of model prediction versus observation, this is the
only free parameter.

The best model (Figure 3) jointly satisfying SAT and
SGT constraints corresponds to a POM of 0.71◦C below the
1961-1990 mean SAT value. The combination of this POM
with the last 140 years of SAT data yields a synthetic profile
that is an excellent fit to observations, with a RMS misfit of
only 12 mK. The sharp trough in the misfit diagram indi-
cates just how sensitive this fit is to the POM. A variation
of ±0.1◦C in the POM doubles the misfit error. Much of the
misfit is produced in upper 65 m where the reduced temper-
ature profile is less than the synthetic transient temperature
and may be due to our conservative assumption of no SGT
change between the year a borehole was logged and 1995.
In fact, since 1980, only four years, (1982, 1984, 1985, and
1993), have been cooler than the 1961-1990 average.

Sensitivity to the SAT time series is demonstrated by
comparing the fit between the reduced temperature pro-
file and the POM-SAT model for other forcing functions.
For example, a null SAT information hypothesis [Harris and
Gosnold, 1999] would be constituted by an optimized step
function, where the step is constrained to occur at the time
of the beginning of the SAT record. Such a forcing func-
tion produces a RMS misfit of 29 mK, more than double
that when using the information contained in the SAT time
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Figure 2. Northern Hemisphere reduced temperature profiles
for 1995. Lines represent 439 profiles whose locations are shown
in the inset. Bold line shows average reduced temperature profile.
The mean SAT record is based on data from the shaded 5 × 5◦

grid cells.
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Figure 3. Climate reconstructions and their geothermal conse-
quences. (a) Mean surface air temperatures (SAT) from 1856 to
1999 [Jones et al., 2000] with the pre-observational mean temper-
ature (POM) prior to 1856. Climatic models are plotted relative
to the 1961-1990 mean temperature. (b) Comparison of Northern
Hemisphere reduced temperature profile and synthetic transients
computed from proxy reconstructions. POM-SAT model shows
fit to data by using the SAT data as a forcing function. Each
synthetic profile is shown relative to the 1500– 1700 mean tem-
perature, which was used to initialize the models.

series. This comparison indicates that ground and air tem-
peratures are correlated [Baker and Ruschy, 1993; Putnam
and Chapman, 1996] and that the hemispheric reduced tem-
perature profile is sensitive to both the POM and details of
the SAT time series [Harris and Chapman, 1997; Harris and
Gosnold, 1999].

Since borehole temperatures to depths of 500 m are sen-
sitive to temperatures over the last millennium, the bore-
hole temperature anomaly also affords the opportunity of
testing multi-century surface temperature reconstructions
[Overpeck et al., 1997; Jones et al., 1998; Mann et al., 1999;
Huang et al., 2000; Crowley and Lowery, 2000] (Figure 3a).
One measure of warming since preindustrial time is the dif-
ference between the 1500-1700 mean temperature and the
1961-1990 mean commonly used as a modern reference tem-
perature (Table 1). These differences for six reconstruc-
tions vary between 0.9◦ and 0.3◦C and, with the exception
of the Arctic reconstruction [Overpeck et al., 1997] demon-
strate that ground temperatures indicate greater warming
than proxy reconstructions.

The extent to which various surface temperature histo-
ries for the Northern Hemisphere are consistent with the
geothermal record of climate change can be illustrated by
using the proxy and other reconstructions as forcing func-
tions and calculating the subsurface thermal response (Fig-
ure 3b). Synthetic temperature profiles for each proxy re-

construction are calculated relative to respective 1500-1700
AD mean temperatures. All time series have been similarly
filtered through the Earth heat conduction filter to facilitate
a visual comparison.

The ground response to the arctic reconstruction and the
hemispheric proxy reconstructions [Mann et al., 1999; Crow-
ely and Lowery, 2000] bracket the Northern Hemisphere re-
duced temperature profile. This variation may be a lati-
tudinal effect because the hemispheric reconstructions rely
to a greater extent on proxy records from the tropics that
may attenuate the warming signal [Mann et al., in press].
On the other hand, the ramp reconstruction of Huang et
al. [2000] yields a similar total amplitude of warming as
our SGT history. But the combination of the last 140 years
of SAT data and a single POM used in our model seems
to provide a better fit to the data than does their model
of monotonically increasing century-long ramps determined
from a more complex inversion procedure.

Discussion and Conclusions

This study suggests that borehole temperature profiles
contain a valuable signal for measuring the magnitude and
timing of surface warming since preindustrial time. This ap-
proach allows a quantitative comparison between the signals
of ground warming and proxy reconstructions at appropri-
ate frequencies and temporal scales, necessary if we are to
understand and learn from their differences. These tests
have assumed a constant offset between proxy surface tem-
peratures and surface ground temperatures. Potential can-
didates for a time-varying offset include: 1) an imperfect or
changing calibration between proxy records and air tempera-
tures at long periods [Ellsaesser, 1986], 2) changing patterns
of snow cover [Groisman et al., 1994], and 3) changing pat-
terns of land-use and land-cover [Lewis, 1998; Skinner and
Majorowicz, 1999]. Furthermore, borehole temperature pro-
files respond to the continuous variation of surface ground
temperature throughout the year whereas various proxies
are weighted towards a seasonal temperature such as grow-
ing season for tree ring proxies and snow season for ice cores.

We have shown that the average reduced temperature
profile is sensitive to, and compares well with, the Northern
Hemisphere SAT record from a comparable latitude band.
Our analysis indicates 0.7 ± 0.1◦C of ground warming be-
tween preindustrial time and the interval 1961-1990. SAT
data show another 0.4◦C of most recent warming (Figure 3).
Thus the total surface warming in the Northern Hemisphere
from preindustrial time to the end of the 20th century may

Table 1. Estimated Warming Magnitudes.

Time Series ∆T, ◦Ca

Overpeck et al. [1997] 0.9b

Huang et al. [2000] 0.9
POM-SAT model 0.7
Jones et al. [1998] 0.4
Mann et al. [1999] 0.3
Crowely and Lowery [2000] 0.3
a∆T = 1960-1991 mean temperature - 1500-

1700 mean temperature.
b∆T = 1960-1991 mean temperature - 1500-

1600 mean temperature.
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be as much as 1.1◦C, although it will take some time to see
if the extreme warming in the 1990s is sustained.
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