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Given the widespread changes in climate and land use pat-
terns currently underway1,2, the estimation of future bio-
geochemical cycles requires an understanding of how 

efficiently biomes use local resources3, how the availability of these 
resources may be altered4 and also how resource-use efficiencies 
may be altered moving forward5. Water and carbon—key resources 
required throughout the biosphere—are principally linked through 
stomatal exchange, as the majority of water taken up by plants is 
lost through transpiration during photosynthesis. Accordingly, 
the net primary production (NPP) of ecosystems is known to 
peak in high precipitation tropical regions6, yet rainfall use effi-
ciency (the ratio of NPP/P) has been observed to decrease with 
increasing rainfall7. Field studies show a decrease in transpiration 
as rainfall becomes very large (for example, above 3,000 mm yr−1; 
Supplementary Fig.  1). This decline is attributed to sub-optimal 
conditions for photosynthesis and transpiration driven by factors 
such as lower atmospheric evaporative demand associated with ele-
vated cloud cover, waterlogged soils associated with reduced nutri-
ent cycling and the film of intercepted water on leaves blocking gas 
exchange8–10. However, temperature complicates this productivity–
rainfall interaction, as aboveground NPP declines occur primarily 
in cool, but not warm, tropical forests11. Additional research across 
biomes indicates that grassland NPP is highest at intermediate, and 
not large, precipitation amounts12.

In addition to annual precipitation totals, other factors are 
known to influence ecosystem productivity and water use. Soil tex-
ture determines the holding capacity of the rooting zone, and low 
precipitation grasslands (< 370 mm yr−1) in sandy soils are more 
productive than grasslands in loamy soils, while the opposite is true 
when precipitation increases (> 370 mm yr−1)13. The vertical dis-
tribution of roots within the soil column has also been positively 
correlated with productivity, as more diverse deeper-rooted ecosys-
tems have access to greater volumes of precipitation14. Intra-annual 
precipitation variability also influences ecosystems in significant  

ways and African locations with similar precipitation totals but 
more intense individual events have lower fractional woody cover15. 
While all ecosystems respond to changes in hydroclimate con-
ditions, analysis of tree rings suggests that both arid and humid 
regions respond to drought at shorter time scales than semi-arid 
and semi-humid regions16. Eddy covariance observations show a 
contrasting response in the ratio of gross primary production (GPP) 
to actual evapotranspiration (EA) between arid (GPP/EA increases 
with drought) and semi-arid or sub-humid (GPP/EA decreases with 
drought) regions17. Taken together, these results suggest complex, 
nonlinear interactions between ecosystem function and the hydro-
logical cycle, indicating that not only are dryland ecosystems sensi-
tive to and shaped by water availability3, but wet regions may be 
similarly sensitive to shifts in precipitation associated with climate 
change18,19. Finally, while trends in carbon fluxes (for example, NPP 
and GPP) have been shown to be nonlinear with precipitation across 
scales, the way in which biological water use varies with respect to 
hydroclimate remains poorly understood.

Linking biological water demands with atmospheric water  
supplies can be achieved through quantification of the fraction of 
precipitation used by vegetation; that is, ET/P. Attempts to partition 
the total surface-to-atmosphere water flux (EA) into its constituents 
of canopy interception (EI), plant transpiration and ground sur-
face evaporation (ES) have involved primarily in situ estimates20,21, 
but have also recently been implemented on a global scale using 
stable isotopes22 and remote sensing approaches23. A variety of 
mechanisms have been proposed to explain transpiration pat-
terns, including relationships between transpiration and season-
ality21, precipitation totals20, vegetation cover24, leaf area index25, 
latitude26 and connections with groundwater27, yet no consensus 
has been reached. However, transpiration is broadly understood to 
make up the majority of the global surface-to-atmosphere vapour 
flux, although landscape disturbance and conversion can lower the 
maximum transpiration at a given location28 and the interactions 
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between soil moisture availability, vegetation structure and plant 
water use have not yet been fully elucidated.

A mesic maximum in biological water use
A first-order approach to partitioning precipitation into runoff  
and non-runoff losses is provided by the Budyko framework29, 
which has served as a cornerstone of hydrological science for 
decades. The fundamental advance in Budyko’s approach is that the 
fraction of precipitation returning to the atmosphere (EA/P) has two 
theoretical upper bounds under equilibrium conditions: an energy 
limit (EA ≤ EP) and a water limit (EA ≤ P). When plotted against eco-
system aridity (EP/P), undisturbed biomes generally fall along a 
single smooth EP/P curve below these two bounds, such that runoff 
(Q =  P – EA) can be readily estimated given aridity (Supplementary 
Fig.  2) and precipitation. Based on a compilation of field obser-
vations, we show here that ET/P also generally falls along a single 
unimodal curve (Fig. 1a) constrained by inherent limits on transpi-
ration under both xeric and hydric climates. As such, we propose 
that a ‘mesic maximum’ occurs in the biological water use fraction 
and refine ecohydrological partitioning within the context of the 
Budyko framework.

We identify this mesic maximum in ET/P based on three pri-
mary lines of evidence: field studies, remotely sensed estimates and 
a minimalistic ecohydrological model. Field studies using a variety 
of methods, such as sap flow sensors, lysimeters and isotope tech-
niques, demonstrate low values in the ET/P ratio at both low and 
high aridity levels (Fig.  1a). These studies span a wide variety of 
biomes, from cloud forest to deserts, and represent the range of 
aridity values found globally. The highest ET/P value of 0.81 in these 
studies occurs in a lowland rainforest with an aridity value of 1.4 
(see Supplementary Table 1). However, we acknowledge that it is a 
challenge to ascribe precisely the value of aridity at which this peak 
occurs, given the wide assortment of experimental methods, obser-
vation techniques and limited spatial coverage.

To reinforce the sparse coverage of field studies relative to the 
total continental surface, we also examine the ET/P ratio based on 
three primary remote sensing algorithms, which are dedicated to 
estimating global evapotranspiration and the partitioning of this 
flux. These three approaches—the MODIS Penman–Monteith 
(PM-MOD) algorithm, Global Land Evaporation Amsterdam 
Model (GLEAM) and Jet Propulsion Laboratory Priestley–Taylor 
(PT-JPL) algorithm—all employ different methodologies to esti-
mate transpiration based on available remote sensing observa-
tions of its biophysical drivers23. Despite the differences in these 
approaches and in their estimates of total transpiration, all three 
demonstrate similar unimodal distributions in ET/P ratios (Fig. 1b), 
with the mesic maxima occurring at aridity values of 2.4, 1.7 and 2.6 
for PM-MOD, GLEAM and PT-JPL, respectively.

A third line of evidence is provided by extending a widely used 
ecohydrological modelling approach. The minimalistic approach of 
Porporato et al.30 used dimensional analysis based on climate forc-
ing, soil properties and vegetation structure to analytically derive 
a near-identical match to the empirically derived Budyko's curve 
for EA/P. Here, this model is extended (see Methods) to partition 
actual evapotranspiration into ground surface evaporation, tran-
spiration and interception relative to total precipitation (Fig. 1c) or 
total evapotranspiration flux (Supplementary Fig. 3). Using hydrau-
lic properties of a sandy loam soil31, canopy interception amounts 
of 15% of precipitation32, average storm depths of 7.4 mm (ref. 33) 
and average rooting depths of 67.8 cm (ref. 34), this model provides 
an excellent fit to measured ET/P ratios across multiple orders of 
magnitude in aridity (dashed lines in Fig. 1a,b and Supplementary 
Fig.  4). While many of the minimalistic model inputs (rooting 
depth, rainfall climatology and so on) vary significantly in space, 
parameterization with site-specific values requires downscaling 
and/or interpolation of datasets with large uncertainties; hence, 

we conservatively apply our model with average global values here. 
This simple model using average global values of dimensionless 
constants has a root-mean-square error of 0.13 in predicted ET/P 
across 45 studies (r2 =  0.57, probabilty value « 0.01). The resulting 
curve reaches its maximum value at EP/P = 1.9 and falls within the 
envelope of remote-sensing-based estimates.

Implications for current and future biomes
Fundamentally, arid regimes where potential evapotranspiration 
greatly exceeds precipitation are subject to large losses from ground 
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Fig. 1 | Transpired fraction of rainfall. a, Field studies of the biological water 
use fraction plotted with respect to aridity. See Supplementary Table 1 for 
classification of the field studies. b, Remote-sensing-based estimates of 
the biological water use fraction from the PM-MOD algorithm, GLEAM 
and the PT-JPL algorithm23. c, Modelled partitioning of rainfall based on 
a minimalistic model (see Methods). The dashed line in a and b traces 
the same region as the green area in c and the dotted line in a, b and c is 
Budyko’s curve29 for EA/P.
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surface evaporation before vegetation can take up any available 
water and thus the sparse coverage of plants in dry ecosystems arises 
due to the limited amount of water they are able to pass through 
their stomata. On the wet end of the spectrum, when precipita-
tion greatly exceeds potential evapotranspiration, little energy is 
available to vapourize water relative to the total volume and most 
precipitation exits as runoff. Furthermore, as canopies intercept 
precipitation before it reaches soils, a wet layer forms on leaves that 
inhibits leaf gas exchange10 and a large fraction of incident energy is 
consumed during vapourization of this water.

The aridity value where ET/P reaches its maximum varies with 
rainfall patterns, vegetation structure and soils properties and can 
be constrained based on our minimalistic model. After evaluation 
of a wide suite of possible climate, soil and vegetation configura-
tions, the aridity regime at which the mesic maximum occurs has 
an average value of EP/P = 1.5, with an interquartile range of 1.3 
to 1.9 across all simulations. The peak consistently falls near the 
intersection of global average aridity35, which is an EP/P value of 
~1.8, and the global average rooting strategy, which is represented  
here as the ratio of mean storm depth33 to effective root depth34  
(see magenta lines in Fig. 2a). This suggests that on a global scale 
plants allocate only enough roots to capture supplied water, allowing 
them to maximize ET/P near the current average global aridity—a 
conclusion that is both unsurprising and worrisome as aridity pat-
terns change1,2. Similarly, the magnitude of ET/P at the mesic maxi-
mum also varies with climate, soils and vegetation structure. Across 
the tested parameter space, a clear sigmoidal relationship becomes 
evident (Fig. 2b), with the observed global ratio of storm depth to 
rooting depth occurring near the upper inflection point (magenta 
line Fig. 2b). This also suggests that, on average, further investment 
in root growth by plants in undisturbed biomes is not likely to result 
in appreciably more transpiration.

Given global aridity levels35 (Fig.  3a), the presence of a mesic 
maximum in ET/P is intuitive and provides a simple, first-order pre-
diction of how soils, vegetation and climate interact to partition rain-
fall (Fig. 3b). In addition, it is also directly useful for predictions of 
future hydroclimate and biogeography. The local slope of the derived 
ET/P curve of Fig. 1, ∂ (ET/P)/∂ (EP/P), describes the sensitivity of the 
biological component of the hydrological cycle to altered aridity at 
each value of EP/P and is mapped globally (Fig. 3c). Because of the 
unimodal nature of the ET/P curve, more arid conditions locally are 
expected to cause a decrease (or increase) in the fraction of precipi-
tation that is transpired if the ecosystem currently has an EP/P value 
larger (or smaller) than that where the mesic maximum occurs.

The aridity value of the mesic maximum thus demarcates regions 
that would be positively and negatively impacted by an increase in 
local aridity. Regions that are most vulnerable are locations with 
the steepest slopes in the ET/P versus EP/P curve. A common yet 
actively debated summary of the effects of climate change on the 
hydrological cycle is that accelerated moisture transport drives wet- 
gets-wetter/dry-gets-drier shifts in climate2,36–38. If so, our results 
predict that many temperate, tropical and high-latitude forested 
ecosystems will suffer decreases in their transpiration ratio as their 
aridity decreases, while many grassland and savanna regions will 
also see decreases in their transpiration ratio as they are exposed 
to more arid conditions. Future predictions of ecosystems’ struc-
ture and function must account for shifts in both precipitation and 
evaporative demand, and our identification here of the general 
relationship between plant water use and aridity provides a concise 
framework, consistent with current observations of the biosphere’s 
reaction to changing climate.

Methods
Datasets used. The field-based observations originated from published studies 
spanning the 1970s to 2014 (see Supplementary Table 1). These studies are 
primarily based on annual scale estimates and are assumed to represent steady-state  

conditions for each location. The compilation of Schlesinger and Jasechko20 was 
used as an initial starting point, although many of these locations were excluded as 
they did not meet our standards due to incomplete data (we required both ET and 
ES, latitude and longitude coordinates, as well as EA), heavy vegetation management 
(for example, agriculture) or quality concerns (for example, if EA/P was reported as 
greater than 1 or if no observation of vegetation was used in the partitioning such 
that these estimates were purely a modelled result or solely based on groundwater 
or surface water). To these, additional studies found in the literature were added,  
to represent the widest possible range of P and best available estimates of ET at  
the stand scale. For each field site, the aridity index was derived from local 
P reported in the literature and EP from the CGIAR Consortium for Spatial 
Information Global Aridity and Global Potential Evapo-Transpiration Database35 
(http://www.cgiar-csi.org/).

The satellite-based evapotranspiration datasets were developed within the 
Water Cycle Multi-mission Observation Strategy—EvapoTranspiration project23 
and are available via http://wacmoset.estellus.eu. The three datasets were 
produced by running the corresponding models using a common forcing dataset 
mostly composed of satellite-observable variables. The PM-MOD model is based 
on the Penman–Monteith equation. The parameterizations of aerodynamic and 
surface resistances for each component of evaporation are based on extending 
biome-specific conductance parameters to the canopy scale using vegetation 
phenology and meteorological data. The model applies a surface resistance 
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Fig. 2 | Peak plant water use across possible soil, climate and vegetation 
structures. a, Aridity value where ET/P peaks for different soil types 
and interception values, with soil properties and wilting points from the 
literature31. b, The value of ET/P at its peak increases in a sigmoidal fashion 
with the ratio of the effective rooting depth (Zr) to storm depth (α ). The 
ratio of the global average rooting depth34 of 67.8 cm and storm depth33 of 
7.4 mm is shown as a vertical magenta line in a and b. The average global 
aridity value35 of 1.8 is shown as a horizontal magenta line in a. Derived 
values from field observations, the PM-MOD algorithm, GLEAM and the 
PT-JPL algorithm23 are shown as horizontal lines in a and b.
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scheme that uses the leaf area index, vapour pressure deficit and minimum 
temperature. GLEAM is a simple land surface model fully dedicated to deriving 
evaporation. Interception loss is independently calculated based on a Gash 
analytical model. The remaining evapotranspiration components are based on the 
formulation by Priestley and Taylor constrained by observations of the content of 
water in vegetation, precipitation and surface soil moisture. Finally, the PT-JPL 
model uses the Priestley and Taylor approach to estimate EP, but unlike GLEAM, 
it applies a series of empirical stress factors based on the vapour pressure deficit, 
relative humidity and optical vegetation indices to constrain these estimates.  
The partitioning between transpiration and interception is done using a threshold 
based on relative humidity.

Minimalistic ecohydrology model. At the daily timescale, the change in soil 
moisture, s, within a column with roots of depth, Zr, and porosity, n, is determined 
as the balance of input precipitation, and losses to runoff, (including downward 
leakage), interception, soil evaporation, and transpiration as

= − − − −nZ s
t

P t E s t E s t E t Q s t td
d

[ ] [ ( )] [ ( )] [ ] [ ( ), ] (1)r S T I

where the variables are a function of time t, soil moisture content, s(t), or both. 
Through the representation of P as a marked Poisson process, characterized by 
the frequency, λ, and depth, α, of precipitation events (derived from the mean 
and variance of daily precipitation33), analytical solutions of the stochastic soil 
water balance in equation (1) have previously been determined30. These simplified 
solutions have demonstrated the importance of various controlling parameters (for 
example, λ, α, n, Zr) on hydrological dynamics across a wide range of studies and 
provide a theoretical foundation for the empirical function derived by Budyko30. 
Applying dimensional analysis to the hydrological cycle, four parameters can be 
used to describe the partitioned water balance: (1) the aridity index ϕ = EP/P,  
(2) the ratio of soil storage capacity to average rainfall intensity γ = w0/α, (3) the ratio of 
canopy storage to average rainfall intensity δ = Δ/α and (4) the relative soil moisture 
content where transpiration stops ω  =  (sw–sfc)/(sh–sfc). In these dimensionless 
parameters, EP is the potential evapotranspiration and w0 =  (sh–sfc)nZr is the soil 
moisture holding capacity, with sh, sw and sfc as the hygroscopic, wilting and field 
capacity of soil saturation.

In this study, the minimalistic stochastic water balance of Porporato et al.30 
is expanded to fully partition the water balance and examine the role of biota on 
hydrology across climates. Budyko’s framework was derived based on hydrological 
partitioning under steady-state conditions29. Our model is evaluated on the 
annual timescale using annual observations and forcing data, and the effects of 

seasonality are not considered here. Strong seasonality in rainfall and potential 
evapotranspiration can alter the EA/EP ratio, particularly in drier climates, although 
some of these effects are mitigated by increased water storage associated with 
deeper rooting zones39. At the daily timescale, interception is treated as a censoring 
process31 that alters the statistics of rainfall arriving at the soil surface, with events 
less frequent, λ ′  =  λ e-δ. Throughfall (P′ ) has been shown to scale linearly with 
total precipitation, and the expected below-canopy average rainfall depth (α′ ) is 
represented as being proportional to the initial average depth40 as α′  = kI α, with kI 
taken to be (1–δ ). The average throughfall fraction, P′ /P, is then α′ λ  ′ /αλ   =  (1–δ )e–δ, 
with δ  defined between 0 and 1.

Similar to the energy limit within the Budyko framework (EA ≤ EP), on 
average, interception cannot exceed the evaporative capacity of the atmosphere 
(EI ≤  EP since EI is a subcomponent of EA). Because the evaporation of 
intercepted water requires energy, we assume here that some of the evaporative 
potential of the atmosphere is consumed by EI. The soil then experiences a 
slightly decreased potential evaporation, as EP′  = EP–EI. Our approach is only 
valid when the average potential evapotranspiration is greater than the average 
interception and, as a consequence, if δ  is held constant (unlikely), when EP 
becomes very small (below all our observed data points), EI makes up the 
entirety of EA, as shown on the left edge of Supplementary Fig. 3. Importantly, 
because of interception, the soil also experiences an altered dryness index, 
ϕ′  =  EP′ /P′  =  (ϕ− 1 +  (1− δ )e−δ)/((1− δ )e−δ) and γ  value, γ ′  =  γ /(1−δ ), than would 
occur without a vegetation canopy.

Evapotranspiration from the soil (ET +  ES) is treated as decreasing linearly from 
the maximum potential amount (EP) at sfc to 0 when the soil is at sh, Although 
evapotranspiration is known to be nonlinear at point-scales, temporal variation 
and spatial heterogeneity in hydrological processes at regional scales work to 
linearize soil moisture losses30 and this simplification is again used here. By 
defining the relative ‘effective’ soil moisture, x = (s–sh)/(sfc–sh), the probability 
density function of relative soil moisture, p(x), is given by a truncated gamma 
distribution as

γ
γ

= ′
Γ −Γ ′

′

′
′

′
′

γ γ
ϕ

γ
ϕ

γ
ϕ

− −
′
′

γ
ϕ

′
′

( ) ( )p x x( ) e

,
(2)

x1

where Γ (• ) and Γ (• ,• ) are the complete and upper incomplete gamma functions, 
respectively. Soil moisture losses through evapotranspiration therefore scale with x, 
as (ET +  ES) =  xEp. Equation (2) differs slightly from that originally derived by ref. 30 
because ϕ′  and γ′  now account for interception losses.
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Below the relative effective wilting point, ω, all evapotranspiration losses  
from the soil column are attributed to soil surface evaporation, as vegetation no 
longer removes water from the soil column. Above this point, any increase in soil 
moisture results in increased transpiration; that is, ET = (x–ω)EP for x >  ω and ET =  0  
otherwise. Ground surface evaporation losses are constant at ωEP when the relative 
soil moisture is above the wilting point, and ES =  xEP when x <  ω. This effectively 
splits ground surface evaporation into stage I and stage II soil moisture losses41, 
with an atmospheric limited stage I (constant at ES =  ωEP) and soil limited stage II 
(decaying from ωEP to zero as soil moisture falls below ω). A consequence of this 
approach is that once soils are wet enough for vegetation to transpire, soil surface 
evaporation ceases to increase as soil moisture increases. While it is possible that 
soil surface evaporation may continue to increase, remain constant (as modelled 
here) or decrease (unlikely) as relative soil moisture rises above the wilting 
point, specification of this additional slope adds complexity for which limited 
observations are available to support parameterization. A constant, atmosphere 
controlled soil surface evaporation rate41 when soil moisture is above the wilting 
point, with the transition from stage I to stage II occurring at the wilting point, is 
a parsimonious approach, and further studies should explore this transition point 
and slope in detail.

Because ES is constant above ω, the fraction of evapotranspiration leaving the 
soil as transpiration, f =  ET/(ET +  ES), is simply the ratio (x–ω)/x for relative soil 
moisture values above ω. The expected ratio of transpiration to evaporation plus 
transpiration can be calculated directly as

∫ ω

γ ω γ ωγ γ ω γ
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Note, that the denominator in the definition of f does not include interception. 
The average soil moisture can also be calculated directly as
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The average fraction of throughfall leaving the system as either ground surface 
evaporation or transpiration is equal to ϕ̄′x . Again, equation (4) differs slightly 
from that derived by ref. 30 because ϕ′  and γ ′  account for interception losses. The 
portion of precipitation that exits the system as runoff and interception can then be 
estimated as

ϕ̄ δ= − − δ′ −Q
P

x(1 )(1 )e (5)

and

δ= − − δ−E
P

1 (1 )e (6)I

In equation (5), 1– ϕ̄′x  is the throughfall fraction leaving as runoff, Q/P′ , and  
(1− δ )e–δ is P′ /P. Finally, we can calculate the fraction of input precipitation that 
exits the system as ground surface evaporation and transpiration as

ϕ̄ δ= − ′ − δ−E
P

f x(1 ) (1 )e (7)S

and

ϕ̄ δ= ′ − δ−E
P

f x (1 )e (8)T

where ϕ̄′x  is the ratio of (ES +  ET)/P′  and (1− δ )e–δ is P′ /P. Equations (5), (6), (7) and 
(8) represent a generalized theory of how input precipitation is partitioned by the 
characteristic of climate (ϕ, λ  and α ), soil (n and ω) and vegetation properties (Zr 
and Δ ).

Life Sciences Reporting Summary. Further information on experimental design 
and reagents is available in the Life Sciences Reporting Summary.

Data availability. Field observations of evapotranspiration components were 
compiled from previously published literature and are included in Supplementary 
Table 1. The remote sensing datasets used here may be obtained from the Water 
Cycle Multi-mission Observation Strategy—EvapoTranspiration project23 at  
http://wacmoset.estellus.eu
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Supplementary Table 1 | Compiled field observations of water fluxes. 

 
  

Biome P T ET T:ET ET:P PET PET:P T:P Methods Source

Cloud Forest 7471 349 898 0.39 0.12 1392 0.19 0.05 Sapflow McJannet et al 20071

Cloud Forest 5303 349 910 0.38 0.17 1504 0.28 0.07 Sapflow + other McJannet et al 20072

Cloud Forest 4450 484 674 0.72 0.15 1350 0.30 0.11 Micromet Ataroff and Rada 20003

Cloud Forest 3040 579 1459 0.40 0.48 1445 0.48 0.19 Sapflow McJannet et al 2007a
Cloud Forest 2983 591 1445 0.41 0.48 1461 0.49 0.20 Sapflow McJannet et al 2007a

Cloud Forest 1768 626 812 0.77 0.46 1616 0.91 0.35 Sapflow Tanaka et al 20114

Tropical Montane 4200 540 1004 0.54 0.24 1523 0.36 0.13 Sapflow, models Aparecido et al 20165

Tropical Montane 2833 579 882 0.66 0.31 1445 0.51 0.20 Sapflow + other McJannet et al 2007b
Tropical Montane 2420 591 1087 0.54 0.45 1461 0.60 0.24 Sapflow + other McJannet et al 2007b

Lowland Tropical 2851 884 1483 0.60 0.52 1675 0.59 0.31 Model (with met. data) Schlesinger and Jasechko 20146

Lowland Tropical 2740 1193 1545 0.77 0.56 1486 0.54 0.44 Models Kumagai et al 20057

Lowland Tropical 2484 587 1143 0.51 0.46 1502 0.60 0.24 Sapflow + other McJannet et al 2007b
Lowland Tropical 2232 893 1116 0.80 0.50 1605 0.72 0.40 Model (with met. data) Schlesinger and Jasechko 2014
Lowland Tropical 2209 1237 1480 0.84 0.67 1609 0.73 0.56 Model (with met. data) Schlesinger and Jasechko 2014

Lowland Tropical 2209 1244 1495 0.83 0.68 1613 0.73 0.56 Model (with met. data) Leopoldo et al 19958

Lowland Tropical 2000 980 1500 0.65 0.75 1605 0.80 0.49 Model (with met. data) Schlesinger and Jasechko 2014
Lowland Tropical 2000 1240 1620 0.77 0.81 1605 0.80 0.62 Model (with met. data) Schlesinger and Jasechko 2014
Lowland Tropical 1623 730 1639 0.45 1.01 1634 1.01 0.45 - Schlesinger and Jasechko 2014

Lowland Tropical 1571 1218 1548 0.79 0.99 1685 1.07 0.78 Model (with met. data) Tani et al 20039

Lowland Tropical 1019 825 948 0.87 0.93 1382 1.36 0.81 Radial flow meter Schlesinger and Jasechko 2014
Temperate 3482 90 225 0.39 0.20 886 0.25 0.03 Sap flow Schlesinger and Jasechko 2014
Temperate 2620 183 786 0.23 0.30 586 0.22 0.07 Model (with met. data) Schlesinger and Jasechko 2014
Temperate 2128 486 911.4 0.53 0.43 1122 0.53 0.23 Model (with met. data), sap flow Schlesinger and Jasechko 2014
Temperate 1333 253 440 0.58 0.33 1237 0.93 0.19 Model (with met. data), sap flow Schlesinger and Jasechko 2014
Temperate 1085 532 694 0.76 0.64 1637 1.51 0.49 Modelled (no observations) Schlesinger and Jasechko 2014
Temperate 763 252 366 0.69 0.48 787 1.03 0.33 Sap flow Schlesinger and Jasechko 2014
Temperate 725 268 428 0.63 0.59 767 1.06 0.37 Energy balance model Schlesinger and Jasechko 2014
Temperate 627 251 552 0.41 0.88 747 1.19 0.40 - Schlesinger and Jasechko 2014
Temperate 626 313 620 0.50 0.99 747 1.19 0.50 - Schlesinger and Jasechko 2014
Temperate 595 351 565 0.55 0.95 658 1.11 0.59 Model (with met. data) Schlesinger and Jasechko 2014
Temperate 549 296 346 0.86 0.63 562 1.02 0.54 Model (with met. data) Schlesinger and Jasechko 2014
Temperate 513 251 436 0.58 0.85 798 1.56 0.49 - Schlesinger and Jasechko 2014
Temperate 366 190 384 0.52 1.05 658 1.80 0.52 Model (with met. data) Schlesinger and Jasechko 2014
Boreal Forest 1237 235 557 0.42 0.45 588 0.48 0.19 - Schlesinger and Jasechko 2014
Boreal Forest 872 392 462 0.85 0.53 833 0.96 0.45 Isotope-based (catchment) Schlesinger and Jasechko 2014
Boreal Forest 340 241 303 0.81 0.89 425 1.25 0.71 Isotope-based (catchment) Schlesinger and Jasechko 2014
Boreal Forest 250 115 178 0.65 0.71 565 2.26 0.46 Sap flow Schlesinger and Jasechko 2014
Grassland 1019 591 703 0.84 0.69 1382 1.36 0.58 Radial flow meter Schlesinger and Jasechko 2014
Grassland 580 226 510 0.44 0.88 812 1.40 0.39 Model (with met. data) Schlesinger and Jasechko 2014
Grassland 275 151 245 0.62 0.89 806 2.93 0.55 Model (with met. data) Schlesinger and Jasechko 2014
Shrub 590 207 531 0.39 0.90 1304 2.21 0.35 Model (with met. data) Schlesinger and Jasechko 2014
Shrub 475 152 394 0.39 0.83 1188 2.50 0.32 Model (with met. data) Schlesinger and Jasechko 2014
Shrub 285 128 259 0.48 0.91 1404 4.93 0.45 Model (with met. data), sap flow Schlesinger and Jasechko 2014
Desert 260 55 148 0.42 0.57 1553 5.97 0.21 Model (with met. data), sap flow Schlesinger and Jasechko 2014
Desert 212 45 102 0.47 0.48 1626 7.67 0.21 Model (with met. data), sap flow Schlesinger and Jasechko 2014

7Kumagai, T. et al.  Annual water balance and seasonality of evapotranspiration in a Bornean tropical rainforest. Ag. and For. Met.  128, 81-92, (2005).
8Leopoldo, P. R., Franken, W. K. & Nova, N. A. V. Real Evapotranspiration and Transpiration through a Tropical Rain-Forest in Central Amazonia as 
Estimated by the Water-Balance Method. For. Ecol. and Mgmt.  73, 185-195, (1995).
9Tani, M. et al.  Long-term estimation of evapotranspiration from a tropical rain forest in Peninsular Malaysia. Water Res. Syst.--Water Avail. Global 
Change  267-274 (2003).

1McJannet, D. et al.  Measurements of transpiration in four tropical rainforest types of north Queensland, Australia. Hydrol. Proc.  21, 3549-3564, (2007).
2McJannet, D. et al.  Water balance of tropical rainforest canopies in north Queensland, Australia. Hydrol. Proc.  21, 3473-3484, (2007).
3Ataroff, V. & Rada, F. Deforestation impact on water dynamics in a Venezuelan Andean cloud forest. Ambio  29, 440-444 (2000).
4Tanaka, N. et al.  Relationships between rainfall, fog and throughfall at a hill evergreen forest site in northern Thailand. Hydrol. Proc.  25, 384-391, (2011).
5Aparecido, L. M. T., Miller, G. R., Cahill, A. T. & Moore, G. W. Comparison of tree transpiration under wet and dry canopy conditions in a Costa Rican 
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Supplementary Figure 1 | Evaporative fluxes across rainfall regimes. Based on field 
studies, both (a) total surface-to-atmosphere evaporation, and (b) only the transpiration, 
ET exhibit a decline in water fluxes as precipitation becomes very high. Symbols and 
colors depict different biomes.  



 

Supplementary Figure 2 | Rainfall fraction in Budyko space. The fraction of rainfall 
that returns to the atmosphere (EA/P) is plotted against the ecosystem aridity. The 
equilibrium EA/P ratio is primarily bound by both an energy availability limit, EA ≤ EP, 
and a water availability limit, EA ≤ P, with field studies generally following the curve 
offered by Budyko in 1974. Symbols are the same as in Figure S1. 
  



 

Supplementary Figure 3 | Partitioned evapotranspiration fluxes. Modeled fraction of 
total evapotranspiration fluxes that returns to the atmosphere as interception (red), ground 
surface evaporation (blue) and canopy transpiration (green), based the same model 
parameters as. Figure 1c. Because δ is held constant in this figure EI exceeds EP while ES 
and ET are zero at low aridity. 
  



 

Supplementary Figure 4 | Model-observation comparison. Field observations 
compared with estimates from the minimalistic model with average global parameters 
(see main text) for both ET/P and ET/EA. 
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