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Abstract. We consider computational modeling of flow with small and large velocities at
porescale and at corescale, and we address various challenges in simulation, upscaling, and modeling.
While our focus is on voxel-based data sets from real porous media imaging, our methodology is
verified first on synthetic geometries, and we analyze various scaling and convergence properties.
We show that the choice of a voxel-based grid and REV size can lead up to 10-20% difference in
calculated conductivities. On the other hand, the conductivities decrease significantly with flow
rates, starting in a regime usually associated with the onset of inertia effects. This is accompanied
by deteriorating porescale solver performance, and we continue our experiments up until about 50%
reduction in conductivities, i.e., to Reynolds number just under 1. To account for this decrease,
we propose a practical power-based fully anisotropic non-Darcy model at corescale for which we
calculate the parameters by upscaling.
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1. Introduction. It is well known that in the steady linear laminar regime, the
fluid momentum in saturated flow in porous media is described well by Stokes model
and at corescale by Darcy flow model. Large flow rates at which the linear models are
not adequate arise in the vicinity of wells, e.g., in gas reservoirs, as well as in large
porosity porous media such as gravel beds, unconsolidated sediments, or fibrous porous
media. The models used in nonlinear laminar regime are Navier-Stokes equations at
porescale and non-Darcy models at corescale. However, non-Darcy models at corescale
have not been unequivocally identified and the range of parameters for those that have
been proposed varies substantially. In this paper we link the porescale and corescale
by upscaling and propose a practical way to identify a non-Darcy model and its
parameters which fit well the computational data.

Various computational strategies can be used to simulate flow at porescale and
then to upscale the results to calculate corescale model parameters, e.g., Darcy con-
ductivities. Such simulations and calculations are very useful since they can be used
as non-destructive in-silicio experiments for porescale geometries dynamically chang-
ing due to deformation or chemical deposition, and thus can be used as a predictive
tool in various environmental, energy-related, and industrial applications. In addi-
tion, given imaging data, the computational experiments have the ability to calculate
some properties of the porous media which are hard to obtain experimentally, such
as hydraulic radius, or off-diagonal components of anisotropic tensors. However, one
has to assess the accuracy and efficiency of the computational experiments the same
way as it is done for physical experiments, and one has to be at least aware of the
computational errors that necessarily arise in porescale simulations and in upscaling.
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For the problem of interest in this paper, the modeling error has to be considered as
well.

Our approach to identify non-Darcy models is to use traditional continuum solvers
for porescale simulations with careful control of the quality of results. We then follow
with a pore–to–core upscaling methodology that we introduced in [34]. In [36, 33] we
applied it to synthetic 2D periodic geometries and carried out a suite of scaling and
convergence studies. Using a range of large flow rate simulations we also calculated
parameters of the quadratic isotropic non-Darcy model, i.e., Forchheimer model. In
[33, 35] we also speculated on the form of anisotropic non-Darcy flow model. Because
various authors indicated a qualitative difference between the 2D and 3D non-Darcy
models, we did not conclude our studies until we had enough realistic porescale data
to work with.

In this paper we assess the applicability of the methodology from [33] to complex
3D geometries based on voxel imaging data of real pore samples. The original voxel
data sets are large enough that only their reduced versions are amenable to computa-
tions but we test the influence of reductions. We also construct a slew of 3D synthetic
geometries for testing, important scaling studies, and convergence analyses.

We work under the assumption of linear or nonlinear laminar regime and of steady
flow. The steps in simulations involve setting up the computational grid, and bound-
ary conditions for the flow. These determine accuracy and solver performance and
are delicate especially at large flow rates. We also test whether the use of body-fitted
unstructured grids for voxel data versus the use of structured grids has any significant
advantages.

After porescale simulations are completed, the results are upscaled to deliver data
for the proposed non-Darcy model that can be used at corescale. We show that the
quadratic Forchheimer model is not in general adequate as its coefficients vary with
flow rates. Next we propose a practical non-Darcy model. We choose, among various
possibilities, a practical power model for which parameters can be easily calculated.
We also clearly identify the flow rate at which validity of the Darcy model ends.

Because of the enormous complexity of porescale geometries, it is crucial to find
practical ways to cut down computational cost without significant impact on the
accuracy of upscaled quantities. As concerns upscaling, it makes sense only over
a large enough Representative Elementary Volume (REV)[9], and this is especially
important for data sets with a large variety of geometric features. However, for
periodic media, we provide a comparison of one-pore and many-pore geometries since
it suffices to consider a very small REV of one periodicity cell only. While this
approach cannot be generalized to general non-periodic media, it provides a bridge
between studies over one-pore and many-pore geometries.

The paper is organized as follows. In Section 2 we recall known models for non-
linear laminar flow at porescale and corescale and we overview related literature. In
Section 3 we provide information about porescale data sets, and upscaling algorithm.
In Section 4 we give detailed results of simulations, and their complexity is discussed
in Section 5. The paper concludes in Section 6.

In the paper we use metric unit system unless otherwise explicitly stated.

2. Literature review. Porescale flow simulations conducted in order to iden-
tify macroscopic properties of porous medium were undertaken in various studies.
Discrete modeling using Lattice Boltzmann or pore network modeling has been very
popular, and it has advantages in several situations; see recent works [14, 5, 41] and
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references therein. In particular, pore network models have relatively small computa-
tional complexity since they do not aim to resolve the details of porescale pressures or
velocities in the pores or pore throats. In contrast, Lattice Boltzmann (LB) models
[45] provide these details. However, in complex geometries they require very small
time steps and thus are very computationally expensive.

In contrast, continuum models, i.e., direct discretizations of Stokes or Navier-
Stokes equations, provide approximate values of pore pressures and velocities, but
require a robust solver and a good grid with many degrees of freedom leading to con-
siderable computational complexity. While many proof-of-concept results have been
obtained with continuum models for 2D synthetic geometries and linear laminar flows,
large flow rate simulations in complex pore geometries have been much less common.
As alternative, Lagrangian particle methods such as Smoothed Particle Hydrodynam-
ics (SPH) [47, 46] can be used but these suffer from similar time step constraints as LB
as well as require care in handling the no slip condition on pore boundaries; thus they
are mostly effective for dynamically changing geometries. Another Lagrangian-based
approach combined with immersed boundary method of [43] was shown to be very
sucessful for low velocity simulations. An elegant approach related to the immersed
interfaces [43] which takes advantage of fictitious domain methods is compared to the
use of body-fitted grids for synthetic packed beds in [18], but we are not sure if the
body-fitted grids are needed for voxel-based data.

For small flow rates the recent work on porescale simulations in [52, 31, 51, 2] fo-
cused on concerns of accurate representation of pore geometries for a given numerical
approximation technique. For Finite Element or Finite Volume solvers, unstructured
tetrahedra-based meshes can be used to accurately describe geometries of porous
structures ranging from synthetically generated spheres through granular media to
complex structures representing sandstone [52]. On the other hand, Finite Difference
Method can use structured grids which fit in a natural way the given voxel-based ge-
ometries provided by micro-imaging [28, 26]. Generally tetrahedral meshes represent
very well arbitrary synthetic porescale geometries with a relatively low number of
computational degress of freedom. However, they are not as effective for geometries
arising from voxel-based data since they require tremendous mesh generation efforts
or they require some transformation of the original geometry. Given that voxel data
from imaging is obtained as an approximation of the true geometry, there is a concern
that investments in mesh generation for such data are not justified.

In this paper we are interested in linking the porescale flow simulations with
continuum models to find effective, i.e., upscaled, models at corescale, across a large
range of flow rates. Theoretical work on upscaling Stokes flow to determine parameters
of a Darcy model at corescale was inspired by Tartar’s analysis in [48] who used
homogenization theory for periodic porescale geometry. In other works [7, 9, 24] the
upscaling Stokes→Darcy was achieved for general geometries by volume averaging.

On the other hand, much work was denoted to theoretical, experimental, and
numerical issues as concerns modeling of flow with large flow rates at corescale. We
refer the reader for background to [17, 25] and to the references in [22, 44, 34, 36, 33].
Theoretical models for flow with inertia were developed as early as in [19, 16] for
scalar or 1D flow, and were later considered in [30, 20, 23, 13, 10]. The scalar inertia
model was extended to multidimensional isotropic media in [16, 7, 42, 15, 8]. However,
the form of non-Darcy’s law for general anisotropic 2D and 3D media has not been
unequivocally identified, and there exist controversies and inconsistencies as concerns
the form and measurements of the essential terms. In particular, in [44] we reported
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on a wide range of correlations for the inertia coefficient β and the fact that they
usually overpredict the experimental values. Based on 2D simulations, in [35] we
observed that even the form of the model is under question. In this paper our goal is
to identify a practical model for inertia with anisotropy for which coefficients are easily
calculated from porescale simulations; it turns out that our model extends/includes
as a special case the model from [9] and many results quoted above.

To our knowledge, our work on using continuum models for porescale simulations
in inertia regime and geometries with anisotropy has been preceded by relatively few
works. In [3, 20, 21] Forchheimer model was found adequate for a range of flow rates
up to a certain transition zone which is narrower in 3D flows compared to that in
2D flows. In [29, 12] Finite Element based porescale studies for periodic 2D and 3D
domains were conducted, and for very large flow velocities a turbulence model was
applied in [29]; these works conclude that no general upscaled model exists for a large
range of flow rates. On the other hand, anisotropy was taken into account in low
flow rate studies in [26, 28]. At the same time, anisotropic media are hard to study
experimentally [38] from which follows the aforementioned advantage of “in-silicio”
experiments.

In this paper we continue our computational study of flow with large flow rates in
realistic porescale geometries and propose a practical upscaled anisotropic non-Darcy
model for which coefficients are computed readily from porescale simulations.

2.1. Flow models at porescale and corescale. At porescale, we assume that
the pore pressures p and velocities v satisfy the stationary1 Navier-Stokes equations

ρv · ∇v − µ∇2v = −∇p, x ∈ ΩF , (2.1)

∇ · v = 0, x ∈ ΩF . (2.2)

Here we have assumed that there are no volume forces and, in particular, we ignored
gravity. When overall flow rate is small, we approximate (2.1) by the Stokes equation

−µ∇2v = −∇p, x ∈ ΩF . (2.3)

Now recall Darcy’s law which is written for macroscopic pressures P and velocities
V

V = K∇P =
k

µ
∇P, x ∈ Ω, (2.4)

where the conductivity K := k
µ
and k is the absolute permeability. The equation (2.4)

is coupled with ∇ · V = 0, and has been proven [10, 8] to be the macroscopic limit of
(2.3). Note that (2.3) and (2.4) hold in ΩF and Ω, respectively.

For large flow rates it is known that (2.4) must be extended so it can correspond
properly to the momentum conservation for larger flow rates at porescale (2.1). A
scalar extension, the Forchheimer model [19] extends (2.4) with the term β|V |V which
provides the quadratic correction to resistivity

(1 + β|V |)V = β|V |V + V = −K∇P (2.5)

Both K and β depend only on the geometry of porous medium. When different fluids

are involved, it makes sense to recognize that β = β̄
ν
and K = k

µ
, and to calculate the

absolute permeability k and absolute inertia parameter β̄.

1One can also use the non-stationary Navier-Stokes model but for the range of flow rates in this
paper it gives results nondistinguishable from the stationary approximation
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Mathematically equivalent to (2.5) is the notion of flow rate dependent resistivity
κ−1(V ) = K−1 + β̃I|V | of the porous medium which is linear in |V |; this notation
common in petroleum industry was used in [22, 34, 33], where instead of (2.5) we
write

κ−1(V )V = −∇P. (2.6)

In (2.6) the coefficient β̃ = K−1β is, however, of order O(K−1) and has a large
magnitude of O(1011) [17], which makes β̃ a suspect in any model fitting efforts.
Thus in this paper we extend (2.5) instead of (2.6).

There exists extensive theoretical work in [50, 30, 39, 40, 10, 27, 23] devoted
to various forms of non-Darcy law extending (2.6); see also [6] for theory combined
with some simulations. However, these results are largely inconclusive as concerns a
practical non-Darcy model that can be implemented in a corescale simulator.

Various sources [7, 42, 24] and our prior work in 2D [35] suggest that the model
(2.5) should include corrections to the left-hand side of (2.5) of power α 6= 1

(1 + β|V |
α
)V = −K∇P, (2.7)

with 1 ≤ α ≤ 3, which includes (2.5) as a special case with α = 1. The model (2.7)
requires three parameters (K,β, α).

More generally, a correction can be formulated

(1 + |V |ρ(|V |))V = −K∇P, (2.8)

where ρ(·) is some complete ρ(r) = β+γr, or incomplete ρ(r) = γr linear polynomial,
or some higher order polynomial, or a power function. Note that a constant ρ(r) = β
corresponds to Forchheimer law, i.e., an overall quadratic non-Darcy correction, while
an incomplete linear polynomial model gives a cubic correction discussed, e.g., in [24],
and is equivalent to (2.7) with α = 3. The model (2.8) requires three parameters
(K,β, γ), or more, if higher order polynomial is used; see the fitting experiments in
Section 4.4.1. The model (2.8) will be used in this paper only for isotropic media,
since its use for anisotropic media is too complicated.

A vector anisotropic version of (2.7) is readily available and can be written com-
ponentwise

∑

j

βij |V |
α
Vj + Vi = −

∑

j

Kij

∂p

∂xj

. (2.9)

In this equation both K and β are tensors, see the model in ([9], 4.3.6), for α = 1. A
further extension is possible by making α a vector, or a tensor, see Section 4.4.2.

3. Setup of simulations. The goal of our simulations is to determine the sat-
urated conductivity K values for a wide range of flow rates. The values of K are
computed using our virtual laboratory which consists of flow simulations at porescale
followed by a numerical upscaling step which in turn is used to identify the best-fitting
non-Darcy model.

The fluid flow model for simulations at porescale is that of stationary Navier-
Stokes model (2.1)–(2.2). The data for simulations with this model are i) the (ge-
ometry of) flow domain ΩF ∈ R

3, ii) the fluid properties, and iii) the appropriate
boundary conditions. For numerical model additionally we define iv) the grid over
ΩF , and v) the solver parameters such as tolerance criteria for the iterative solver.
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The numerical flow model is implemented in the ANSYS Fluent package [4] on gen-
eral unstructured staggered grids. It is a finite volume-based solver [32, 49] in which
the resulting set of nonlinear equations is solved by iteration. The iterations stops
when desired tolerance has been achieved or if a certain prescribed number of iter-
ations has been exceeded. Some flow simulations require many iterations and some
do not complete successfully; see Section 5. The items i)-v) are described in detail in
Sections 3.1–3.2.

The upscaling procedure in this paper is a volume averaging (VA) algorithm
first shown in [34] and later refined in [33, 36] for 2D simulations; it is a practical
implementation of standard VA definitions of K [9]. Our algorithm interprets and
calculates the macroscopic gradient of pressures in a way that allows to compute K
as a full tensor, see Section 3.3 for a 3D version of the algorithm. Furthermore, the
algorithm leads naturally to a proper identification of non-Darcy model.

In what follows we denote by superscripts the data such as geometry or boundary
conditions corresponding to particular experiments, and by subscripts their phys-
ical meaning. For example, ΩGB

F denotes the fluid domain for data set GB, and

v
GB,(j)
in , V

GB,(j)
1 denote, respectively, the inlet velocity for j’th flow rate and the first

component of the corresponding macroscale velocity for dataset GB. We omit sub-
scripts, superscripts, and annotations whenever the resulting more compact notation
does not lead to confusion.

3.1. Geometry and grid. The porespace ΩF in which the fluid flows is com-
plemented by the solid matrix ΩR so that the porous region Ω = ΩF ∪ ΩR. In this
paper we deal with voxel-based geometry of Ω =

⋃

ijk ωijk where each cell or voxel
ωijk is either entirely in ΩF or ΩR. For simplicity, we associate ωijk ≡ nijk where the
index nijk is defined

nijk =

{

1 cell Ωijk is void, i.e., : ωijk ⊂ ΩF

0 cell Ωijk is solid, i.e., : ωijk ⊂ ΩR
. (3.1)

The porosity of the porous sample Ω is thus

φ :=
|ΩF |

|Ω|
=

|nF |

|n|
=

∑

ijk nijk

|n|
, (3.2)

where |n| is the total number of voxels and |nF | is the total number of fluid voxels.
The “voxel-ization” of the porespace is very convenient for the setup of our sim-

ulations and it allows direct import of data from imaging. However, the rock-fluid
interface Γ = ∂ΩF ∩ ∂ΩR for voxel-based geometries has a particularly rugged geom-
etry which affects the quality of fluid flow simulations. In our previous work [33] we
did not use voxels but rather worked with idealized pore geometries whose bound-
aries were smoother than those considered here. We address the consequences of
voxelization in Section 4.1.

3.1.1. Data sets. We have worked with several voxel data sets, and we summa-
rize their properties and origin in Table 3.1. The data sets come from three different
sources which we refer to as B, GB, and HS. In the Table we summarize their original
properties as well as some derived quantities. For each dataset we know (or assume)
the actual physical size l := |ωijk| of a voxel so that the physical size of the pore
sample is |Ω| = l3|n|. The data sets undergo various transformations and reductions;
we denote the original data as Ω0,n0, l0 and by Ω1,n1, l1 the transformed data etc.
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When a particular data set D is considered, the transformed sets are labelled D-0,
D-1, and so on; the geometrical quantities are labelled with appropriate superscripts.
If no voxel reduction is needed, the notation D-0 is simply replaced by D.

Now we discuss the origin of the voxel-based data sets used in this paper denoted
by B, GB, and HS.

The synthetic dataset B was created as a regularly shaped |nB | = 41 × 41 × 41
matrix with a regular distribution of “sphere”-like solid shapes. The sets B1, B2, B3
were created from geometry of B in which some of the fluid cells were replaced by rock
cells randomly with probability 0.1, 0.2 and 0.3, respectively; thereby the connectivity
of pores and the porosity were reduced. We assumed lD = 5 ∗ 10−6 for D =B, B1,
B2, B3. The sets B are useful in testing as well as in scaling exercises whereby they
are referred to, e.g., as B1s10 etc., see Table 3.1.

The set GB obtained courtesy of Dorthe Wildenschild with |nGB | = 414× 414×
300 came from experiments in imaging glass beads. The set HS, courtesy of Brent
Lindquist, with |nHS | = 753 × 753 × 600 came from imaging Hanford sandstone
([11], set C1), and consisted of a grain-size mixture of gravel, sand, silt, and clay.

Datasets GB and HS correspond each to a cylindrically shaped domain Ω used
for porescale imaging, and the voxels surrounding the cylindrical porous sample were
fluid voxels. In order to simplify the setup of multiple independent flow expriments,
we cut out of each set a box of size Nx × Ny × Nz. Thus the original data sets
GB and HS underwent the first reduction from nGB ,nHS down to nGB−0,nHS−0,
respectively. Further, encouraged by our early experiments with HS, we considered
a small cut-out HSs of HS down to |nHSs,0| = 201× 201× 201.

REV size and reductions. When given a realistic porescale data set, we want to
simulate the flow in a domain as close as possible to the original one. In addition, we
want to make sure that the REV is large enough so that our REV averaged quantities
are reliable. At the same time, the complexity of simulations increases substantially
with |nF |, and for some data sets it is impractical or even impossible to compute
with the geometry corresponding to n0

F . Thus, if possible, one wants to identify some
reduced geometry in a REV as small as possible, i.e., use a transformed subset of the
original data in order to reduce computational time, as was done, e.g., in [41, 37].

Since the original size nB of B was relatively small, no further reductions were
necessary. However, while the samples GB and HS were physically small, we found it
necessary to reduce |nGB−0

F |, |nHS−0
F | by coarsening the original voxel grid based on

a simple criterium. Consider a box of 8 = 2 × 2 × 2 voxels in the original grid. It is
replaced by a fluid voxel in the new coarse grid provided the number of fluid voxels
in the box does not exceed 4; it is replaced by a solid voxel otherwise. For example,
we create new data set GB-1 with the corresponding nGB−1 out of the original GB-0
with nGB−0. With the necessary modifications at the boundaries, this reduces the
number of voxels approximately by a factor of 8, so that |n0| ≈ 8|n1|. To preserve
the physical size of Ω, we change l1 = 2l0. In some cases it was necessary to proceed
with another reduction step to obtain n2 from n1.

Clearly the process of reduction alters the geometry and the connectivity of pores-
pace. In particular, the coarsening–reduction step usually leads to a slightly increase
in porosity as compared to original data. We study the related effects along with grid
size effects in Section 4.

Looking at the physical size of Ω for each data set we see that it is was of the order
of around (0.1cm)3 which is quite small compared to the range [10cm− 1m]3 usually
considered to be the Darcy scale. Fortunately the volumes we were working with
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proved to be large enough with respect to their geometrical structure and this was
sufficient for the volume averaging procedures from this paper. This is not always
the case; another data set from imaging of volcanic tuff, also courtesy of Dorthe
Wildenschild, could not be used for pore-to-core upscaling and is not analyzed in this
paper.

3.1.2. Removal of dead-end pores. Given the original or reduced pore geom-
etry n, we need to remove the dead-end pores, i.e., pores or groups of pores completely
surrounded by rock grains which do not take part in fluid flow simulation. It is rel-
atively easy to determine the list of such pores using a simple iterative percolation
algorithm which we describe below.

Consider one of our computational experiments in which flow is from left to right.

We first set p
(0)
ijk = nijk for all voxels. We then seed the fluid cells on the left face of

the sample, i.e. with j = 1, with some unique numbers greater than 1, e.g, with an

index p
(0)
i,1,k = (i− 1) ∗Nz + k + 1, corresponding to the (i, k)’th cell on the left face.

Next we iterate it = 0, 1, 2, . . . looping over those pi,j,k which are positive and we set
in the new iteration

p
(it+1)
i,j,k = max(p

(it)
i,j,k; p

(it)
i−1,j,k, p

(it)
i+1,j,k, (3.3)

p
(it)
i,j−1,k, p

(it)
i,j+1,k, p

(it)
i,j,k−1, p

(it)
i,j,k+1).

For a cell on the boundary, the indices outside the region are eliminated. Algorithm
(3.3) typically completes in

O(max(Nx, Ny, Nz))

iterations; see Table 3.1.
The porespace has connectivity, i.e., percolates, if at least one of the nodes

(i,Ny, k) on the right face of sample satisfies that p
(it)
i,Ny,k

> 1. If we are only in-
terested in whether the sample percolates, the algorithm completes quickly. However,
to isolate the dead-end pores we have to continue iterations until p(nit) does not change
anymore. At this point we identify and remove those pores denoted by Ωdead ⊂ ΩF

that have not been visited, i.e., for which p
(nit)
i,j,k = 1 and there is no path connecting

it to any of the cells ni,Ny,k on the right face. Then we set Ωeff
F := ΩF \ Ωdead, with

the obvious notation of |neff | =
∑

ωijk∈Ωeff

F

nijk. Table 3.1. We also recompute the

porosity φeff and from that point on, we only work with the effective fluid space
Ωeff

F .
With a little extra effort we can compute from n some parameters characterizing

ΩF , e.g., its specific surface area Σvs defined as the solid total area per volume of
the solid matrix. The estimate of mean grain size dchar = 1/Σvs is then available as
suggested in ([9], p119); this value is reported in Table 3.1. We use dchar in Carman-
Kozeny correlation calculations and in the estimates of Reynolds numbers in Section 4.
From geometric inspection of the data sets one can also infer crude estimates of dchar
but they are typically far off those in Table 3.1. Alternatively, in ([9], p146) it is
proposed to use instead of dchar the hydraulic radius dh, i.e., the ratio of void volume
to the solid total area. This is also easily computed, see Table 3.1.

3.1.3. Grid. Given ΩF ≡ (n, l), the next step is to create a quadrilateral (hex-
ahedral) grid for flow simulations covering ΩF .

We choose the grid to be a union of regular hexahedral cells of size h3 into which
each of the fluid voxels in ΩF is divided. While the grid cells can be ’IJK’ numbered
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dataset Nx Ny Nz |ωdead| nit φ φeff 106l 106dchar 106dh

B 41 41 41 0 81 0.7243 0.7243 5 1.76 4.62
B1 41 41 41 9 82 0.6238 0.6237 5 2.36 3.91
B1s10 41 41 41 9 * 0.6238 0.6237 50 23.6 39.1
B1s100 41 41 41 9 * 0.6238 0.6237 500 231 391

B2 41 41 41 62 82 0.5253 0.5244 5 3.07 3.38
B3 41 41 41 160 82 0.4228 0.4205 5 4.11 2.98

GB-0 280 280 300 1574 589 0.3587 0.3586 17 - -
GB-1 141 141 150 281 294 0.3746 0.3745 34 116.95 70.03
GB-2 71 71 75 49 147 0.4003 0.4002 68 118.95 79.37

HS-0 520 520 600 60745 1232 0.3571 0.3568 3.97 - -
HS-1 257 257 300 4084 570 0.3715 ).3713 7.94 - -
HS-2 129 129 150 1646 280 0.3971 0.3964 15.88 25.21 16.56

HSs-0 201 201 201 2191 405 0.3827 0.3825 3.97 20.03 12.41
HSs-1 100 100 100 885 204 0.3994 0.3985 7.94 20.64 13.68
HSs-2 50 50 50 213 102 0.4300 0.4283 15.88 22.45 16.81

Table 3.1

Geometry information about data sets. The asterisk * denotes information repeated from a row
above. Some data sets were not converted to grids due to their size, and ’-’ denotes information not
available for these data sets.

as if they belonged to a structured grid, the grid is actually fully unstructured like
any other finite element/finite volume grid. The grid generation is a fairly standard
step in which one must properly account for the connectivity of the cells as well as
describe all the wall surface elements, i.e., those in Γ = ΩF ∩ ΩR. For large |n|
our grid generation algorithm may need large memory and it does require noticeable
computational time.

The choice of hexahedral meshes is made for convenience. It is in principle possible
to create a body-fitted grid for ΩF even if its geometrical features are already lost
in the voxel data given from imaging [52]. However, we believe it is not necessary in
practice, given the large additional computational burden and uncertainty this would
introduce to the entire imaging-voxel-mesh-upscaling loop. Instead, we try to assess
grid dependence and geometry voxelization effects as in Section 4.

We select the grid size h as follows. Assume the data set considered D-k has
undergone k reduction, i.e., the voxel size is lk. Since in ΩD−k several channels
of width of one voxel may be present, in order to properly resolve the details of
fluid pressure and velocities, it is necessary to use numerical quadrilateral grid size
hm = lk/m with at least m ≥ 2 refinement levels; we denote the resulting numerical
grid as nD−k−m.

Whenever possible, we consider several grid refinement levels. The details shown
in Table 3.2 and Section 5 give an idea of computational and data challenges and
those in Section 4 the impact of grid size.

3.2. Fluid properties, boundary conditions and regimes of flow rates.

As for fluid properties, we use water and methane at standard conditions with prop-
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dataset 106h # nodes # cells size[Gb]

B-6 0.83 11,884,223 10,782,936 2.882

B1-2 2.50 461,334 343,896 0,104
B1-3 1.67 1,433,092 1,160,649 0,332
B1-4 1.25 3,242,968 2,751,168 0,765
B1-5 1.00 6,148,884 5,373,375 1,467
B1-6 0.83 10,408,762 9,285,192 2,505
B1s10-6 8.30 10,408,762 9,285,192 2,505
B1s100-6 83.0 10,408,762 9,285,192 2,505

B2-6 0.83 8,906,885 7,807,320 2,127
B3-6 0.83 7,272,468 6,259,464 1,723

GB-1-2 17 10,124,671 8,937,336 2,424
GB-1-3 11.33 32,833,372 30,163,509 9,115
GB-2-2 34 1,495,806 1,210,456 0,392
GB-2-3 22.67 4,727,534 4,085,289 1,276

HS-2-2 7.94 9,895,594 7,915,912 2,583
HS-2-3 5.29 31,175,674 26,716,203 8.4

HSs-0-2 1.99 27,030,028 24,847,584 7,505
HSs-1-2 3.97 3,700,921 3,188,264 0,998
HSs-1-3 2.65 11,911,799 10,760,391 3,281
HSs-2-2 7.94 542,435 428,280 0,141
HSs-2-3 5.29 1,702,074 1,445445 0,456

Table 3.2

Grids used in simulations denoted by D-m-n where m refers to voxel coarsening level and n

to grid refinement level. Not all data sets from Table 3.1 are represented here since some were too
computationally complex. In addition, since the data sets B need not be reduced, B1-3 refers to grid
refinement level 3 for B1, etc.

fluid ρ µ ν = µ
ρ

water 1000 1.003 ∗ 10−3 1.003 ∗ 10−6

methane 0.6679 1.087 ∗ 10−5 1.6275 ∗ 10−5

Table 3.3

Fluid properties

erties as listed in Table 3.3. We assume both fluids have constant densities and vis-
cosities throughout all simulations, i.e., in particular incompressibility. For methane
this is clearly a convenient approximation rather than reality.

The boundary conditions that work well for the fluid domain geometries ΩF

considered in this paper are as follows. We impose the wall no-slip condition v = 0
on ∂ΩF ∩ ∂ΩR, and a combination of inflow and outflow condition. The external
boundary ∂ΩF ∩ ∂Ω is divided into the inflow Γin, wall no-flow Γ0, and outflow Γout

parts. We choose Γin to be part of one the faces of the rectangular box constituting
Ω, and Γout to be the opposite face. There are three pairs of inflow-outflow faces,
i.e. Γin–Γout, and we refer to them as ’LR’ (left-right), ’BT’ (bottom-top), and ’FB’
(front-back). For each pair, the remaining four faces are part of Γ0. We describe the
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inflow and outflow conditions in detail below, and comment on alternatives below.
Inflow conditions.. At inflow face, we impose the constant inlet velocity condition

v · n|Γin
= vin, (3.4)

where n, t are the normal and tangential directions to Γin, respectively, and vin is
some given constant. For the needs of our upscaling procedure discussed below we
need at least three independent experiments with different principal flow directions

for each overall flow rate v
(j)
in ; we associate these with the pair of inflow-outflow faces

’LR’,’BT’, and ’FB’, thereby denoting the flow experiments by v
(j)
in,LR, etc.

Range of inlet velocities.. The range of velocities v
(j)
in , j = 0, . . .MAX for each

data set corresponds to flow rates from linear laminar (Darcy) regime well into the
nonlinear laminar regime (non-Darcy). These could be characterized with the nondi-
mensional Reynolds number Re. However, its definition and use in porous media is
debated and non-unique [9], and some authors suggest that its microscopic equivalent
is more meaningful especially for large flow rates [5, 25]. In what follows we use the
porous media Reynolds number defined as in ([9], p146, eqn 4.3.1)

Re = Q
dchar
ν

= Q
dcharρ

µ
, (3.5)

where dchar is the characteristic length scale for the model, e.g., rock grain size, such
as given in Table 3.1, and Q = φV is the macroscopic flux corresponding to the
averaged macroscopic velocity V that is computed for each vin.

Difficulties with accurate resolution of pressure and velocity grow substantially
with flow rates. In practice we were able to run about MAX = 20 simulations.

Outflow conditions.. The boundary condtions at the outlet boundary Γout can
be defined in several ways. The standard outflow boundary condtion [49] imposes
zero diffusion flux for all flow variables. However, with outflow condition a signifi-
cant recirculation may occur near complex boundaries for high flow rates, and solver
performance deteriorates.

We found that a pressure outlet boundary condition in which we impose static
pressure equal to 0 at Γout works better than the outflow condition, especially at high
flow rates. Consequently, all the results in this paper are based on this option.

For velocities in the slow flow regime, the solver performance for both outflow
and pressure outlet conditions is similar.

Alternative boundary conditions set-up.. We found the setup described above to
be the most practical for the given complex geometries in 3D. Other possibilities which
we explored include the use of a parabolic rather than constant inlet velocity profile
as well as the use of an extended domain of flow Ω′ ⊇ Ω so that Ω′ \ Ω is entirely
made of fluid voxels.

As concerns inlet velocity profile, for synthetic regular patterns of ellipses or
circles regularly distributed within a fluid considered in [34, 36, 33], we used unstruc-
tured triangular or quadrilateral grids well representing shapes of domain boundaries.
Velocities at inlet are defined to ensure parabolic profiles and this works very well es-
pecially for one-pore geometries or with few pores. However, enforcing the parabolic
shape is quite cumbersome for the many-pore geometries such as GB or HS, while the
impact on the solutions is not really noticeable.

Next, the idea of extending the computational domain ΩF in the flow direction
resulting in Ω′ ⊇ Ω is a common technique used to stabilize the flow for complex
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flow geometries such as in arterial blood flow simulations. However, in a modest flow
rate range considered here, this extension does not result in significant improvement
of solver performance. At the same time, the volume of Ω′ \ Ω introduces additional
data and computational burden for 3D simulations. For example, the size of data file
for B1 nearly doubles when the original volume |n| = 41× 41× 41 is extended by 10
voxels on each end.

Overall, the alternative boundary options work well for 2D coupled flow and
transport simulations. However, we found them to be too complex for 3D simulations.

3.3. Upscaling to identify parameters of non-Darcy model. As a result
of our upscaling procedure we calculate all the necessary parameters for the chosen
non-Darcy model. As data for these calculations we use pressure and velocity values

from flow experiments corresponding to a unique v
(j)
in,DIR as described in Section 3.2.

First we average the pressure and velocity values over Ωr
F := ΩF ∩ ΩREV,r ⊂ ΩF

whose size relative to ΩF is dependent on a parameter 0 < r < 1/2. We choose
ΩREV,r to be a box-shaped subset of Ω with the same center as Ω, and with the sides
shorter than those of Ω by a factor of 1 − r on each side. We choose r > 0 to avoid
including cells close to ∂Ω where possible recirculation may occur and which, for large
flow rates, may lead to unstable averages.

Obtaining the averages V
(j)
DIR,k, k = 1, 2, 3 of velocities over Ωr

F is straightforward.
We can associate DIR = LR,BT, FB naturally with the coordinate axis x1, x2, x3,

respectively. If the porous medium is isotropic, the vectors V
(j)
DIR can only have one

nonzero principal component, e.g., V
(0)
LR = (V

(0)
1 , 0, 0). In general however, the non-

principal components have small but nontrivial magnitude.

To get pressure gradients G
(j)
DIR,k we average p over box-shape subsets of Ωr

F

arranged symmetrically across the planes bisecting the volume Ωr so as to obtain
cell-centered approximations of P . This method of averaging was proposed in [34];
more details can be found in [33].

After averaging, for each j we have nine V
(j)
DIR,k, k = 1, 2, 3 and nineG

(j)
DIR,k, k = 1, 2, 3.

3.3.1. Computing K. For the sake of exposition, we first discuss the compu-
tation of 9 components of tensor K for Darcy model, i.e., (2.9) with α = 1, β = 0.
This model is a good fit for the inlet velocities in the linear laminar regime, i.e., for
the first few of our experiments with j = 0, 1, 2, . . .. To calculate K, we rewrite (2.9)
swapping the left and right hand sides and rearranging the unknowns for clarity. For

every experiment j,DIR we use V
(j)
DIR,k in place of Vk and G

(j)
DIR,k in place of − ∂P

∂xk
.

We have, for each DIR = LR, TB, FB

G
(j)
DIR,1K11 +G

(j)
DIR,2K12 +G

(j)
DIR,3K13 = V

(j)
DIR,1, (3.6)

G
(j)
DIR,1K21 +G

(j)
DIR,2K22 +G

(j)
DIR,3K23 = V

(j)
DIR,2, (3.7)

G
(j)
DIR,1K31 +G

(j)
DIR,2K32 +G

(j)
DIR,3K33 = V

(j)
DIR,3. (3.8)

For each j we find the nine components ofK by solving the linear system of 9 equations
with 9 unknowns.

If the equations are rearranged so that all three equations for LR are followed by
those for TB and finally for FB, we see that the system has a three-block diagonal
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structure where all the three blocks consist of the same matrix 3× 3 matrix GG

GG =





GLR,1 GLR,2 GLR,3

GTB,1 GTB,2 GTB,3

GFB,1 GFB,2 GFB,3



 . (3.9)

Thus (3.6)–(3.8) is solvable as long as GG is nonsingular which in turn follows if GDIR

are linearly independent. The latter is guaranteed in practice for the experiments with
essentially orthogonal principal directions of flow.

More precisely, solving (3.6)–(3.8) we (A) calculate K(j) for each j so we can
study its dependence on the flow rate V (j). Alternatively, we can (B) group together
a few experiments, all with V (j) in the linear regime, and find K by a least squares
solution to the resulting overdetermined system.

3.3.2. Computing β. The model with inertia terms generalizes (3.6)–(3.8) to
the system, written for DIR = LR, TB, FB

G
(j)
DIR,1K11 +G

(j)
DIR,2K12 +G

(j)
DIR,3K13 − |V

(j)
DIR|

α
V

(j)
DIR,1β11 (3.10)

− |V
(j)
DIR|

α
V

(j)
DIR,2β12 − |V

(j)
DIR|

α
V

(j)
DIR,3β13 = V

(j)
DIR,1,

G
(j)
DIR,1K21 +G

(j)
DIR,2K22 +G

(j)
DIR,3K23 − |V

(j)
DIR|

α
V

(j)
DIR,1β21 (3.11)

− |V
(j)
DIR|

α
V

(j)
DIR,2β22 − |V

(j)
DIR|

α
V

(j)
DIR,3β23 = V

(j)
DIR,2,

G
(j)
DIR,1K31 +G

(j)
DIR,2K32 +G

(j)
DIR,3K33 − |V

(j)
DIR|

α
V

(j)
DIR,1β31 (3.12)

− |V
(j)
DIR|

α
V

(j)
DIR,2β32 − |V

(j)
DIR|

α
V

(j)
DIR,3β33 = V

(j)
DIR,3.

The equations (3.10)–(3.12) have 18 unknowns: nine components of each K and β. In
addition, α is either unknown or has to be assumed known. The system (3.10)–(3.12)
is linear in the components of K,β, nonlinear in α, and is undetermined. We need
therefore more information.

In this paper we take the approach of identifying α for each data set by trial and
error. Thus we assume α is known when solving (3.10)–(3.12).

To compute β, we can proceed in one of two ways.
We can (C) first use (A) to compute K = K(0) for j = 0 from (3.6)–(3.8); i.e.,

we implicitly assume that V (0) is in the Darcy regime. Next we identify some V (j)

in the non-Darcy regime, and set up (3.10)–(3.12), moving the now known quantities

involving G
(j)
DIR,k and K = K(0) to the right hand side. Then we solve the system

for the nine components of β. The solvability of this system depends again on the
structure of the block-diagonal matrix of the system which now includes the blocks

BB(j) := −







|V
(j)
LR |

α
V

(j)
LR,1 |V

(j)
LR |

α
V

(j)
LR,2 |V

(j)
LR |

α
V

(j)
LR,3

|V
(j)
TB |

α
V

(j)
TB,1 |V

(j)
TB |

α
V

(j)
TB,2 |V

(j)
TB |

α
V

(j)
TB,3

|V
(j)
FB |

α
V

(j)
FB,1 |V

(j)
FB |

α
V

(j)
FB,2 |V

(j)
FB |

α
V

(j)
FB,3






(3.13)

Since these blocks are nonsingular based on the same remarks as before, the system
is solvable.

Alternatively, (D) we choose two experiments j1, j2 and set up a system made of
(3.10)–(3.12) written for each of these two experiments. In practice, we choose j1 = 0
or some other j1 in the linear regime, and vary j2 over the nonlinear regime. The
solvability is guaranteed based on a similar analysis as before. The only difficulty
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may arise if j1, j2 are both in the linear regime so that BB(j2) is merely a multiple of
BB(j1) by a factor of (vj2in/v

j1
in)

1+α.
The fit of the model (2.9) can be considered adequate if the resultingK(j1,j2), β(j1,j2)

remain essentially fixed for a large range of j2.
The results of the calculations defined above can be found in Section 4. In par-

ticular, we found that a combination of (A) and (D) was most effective.

3.3.3. Symmetry of K, β. Last but not least, the following concern arises.
Clearly the tensors K,β should be symmetric but we do not enforce it when calcu-
lating these parameters from (3.10)-(3.12). The nonsymmetry however does arise in
practice and is due to a combination of various numerical errors including i) the er-
rors in pressures and velocities at microscale due to discretization and iterative solver
errors, as well as ii) those in numerical averaging and iii) in solving (3.10)–(3.12) nu-
merically, with i) being usually the most significant. Large nonsymmetry is generally
an indicator for poor porescale solver performance.

If we intend to use the values ofK,β in some corescale simulations, then they need
to be post-processed to enforce symmetry a posteriori, e.g., by using the symmetric
part 1

2 (K +KT ) of K.
As an alternative, we can add to (3.10)–(3.12) some additional equations enforcing

symmetry, e.g., requiring K12−K21 = 0, etc. The enlarged system (3.10)–(3.12) thus
becomes overdetermined but it can be solved by QR factorization, which is handled
routinely in MATLAB.

In this paper we do not directly use K,β in corescale solvers, and therefore we
report on the original and not post-processed (thus possibly nonsymmetric) tensor
values.

4. Results. In this section we describe our results. First we briefly compare
unstructured and structured discretizations for synthetic media because this is an issue
of current interest that needs to be addressed before more complicated geometries are
used. We also compare one-pore to many-pore realizations; here we restrict ourselves
to synthetic 2D geometries.

Second we focus on our main objective, i.e, the 3D studies of upscaled properties
of flow with a range of flow rates. We develop our methodology and test it on synthetic
geometries for which we verify various common sense properties. Next we demonstrate
that our methodology applies very well to voxel-based realistic pore geometries, and we
identify a practical non-Darcy model based on an anisotropic power-based extension
of quadratic Forchheimer model.

Given porescale flow results, i.e., the pressures and velocities, for a given flow rate

v
(j)
in and a particular experiment v

(j)
in,DIR, we calculate the average pressure gradients

G
(j)
DIR,k as well as velocities V

(j)
k,DIR over a selected REV as discussed in Section 3.3.

We also compute their magnitudes |V
(j)
DIR| as well as the overall flow rate V (j) =

1
3

∑

DIR |V
(j)
DIR| which is useful for overview of flow rates and plotting. Typically V (j)

slightly exceeds v
(j)
in which can be explained by the smallness of pore radii in the

interior of ΩF . The ratio V (j)/v
(j)
in grows with flow rates and with the corresponding

complexity of flow profiles in tight porespace.

Given G
(j)
DIR,k and V

(j)
k,DIR, k = 1, 2, 3, we calculate the conductivities K(j) as

described in Section 3.3.1. As an indicator of anisotropy, we calculate

η =
max{Kmn,m 6= n}

max{Kmm}
(4.1)
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Fig. 4.1. Illustration of simulation results for ellipsoidal synthetic region. Left: velocity magni-
tude profiles for small (top row) and large (bottom row) velocities; left column presents the profiles
for (q) body-fitted quadrilateral grid, and the right column those for (qv) quadriletral voxel-based
grid. Please note the qualitative difference between the small and large flow rates, and lack thereof
between (q) and (vq) grids. Right: conductivity K(j).

which measures the relative magnitude of off-diagonal components of the tensor K,
and

ζ =
max{|Kmn −Knm|,m 6= n}

max{Kmm}
(4.2)

which measures the relative magnitude of non-symmetry; large ζ indicates poor qual-
ity of porescale simulations and/or small REV.

4.1. 2D comparison of body-fitted and voxel grids. The motivation for
this brief section on 2D geometries ties to the studies in [26, 28, 52, 18] and our
earlier scaling experiments reported in [36]. In addition, the 2D results discussed here
are used as a reference to our subsequent 3D simulations.

We address the following concerns. First we want to know whether for a given
voxel geometry the use of structured rectangular grids leads to conductivities signifi-
cantly different than those computed for a body-fitted grid using triangles or quadri-
laterals.

Such a study is straightforward for a synthetic geometry. We choose here the
one-pore geometry of a single pore Np = 1 between solid ellipses of axes 9d× 5d, with
d = 10−4. For this region the periodic boundary conditions with an external pressure
jump are imposed.

Second, we compare computations for many-pore region where ΩR consists of
Np = 9×15 = 135 pores to those with one-pore Np = 1. For the many-pore geometry
we use inlet-outlet boundary conditions.

The simulation results and calculated K(j) for the usual wide range of flow rates
are shown in Figures 4.1. The data for K(0) is given in Table 4.1. The difference
between K(0) values for (vq) voxel- and body-fitted discretizations (q) is above 10%,
and this raises a concern. However, the values of K for (q-2) and (q-4) clearly get
closer to those for (qv) when grid size h is similar; the relative difference between the
results for (vq) and (q-4) is smaller than 10%.

At the same time, the differences between the results for unstructured grids with
one-pore or with many-pore geometries are insignificant and within the discretization
error envelope as discussed later.
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Np grid φ 105h 108K
(0)
11 108K

(0)
22 104η 105ζ

135 (t) 0.4146 2.1 422.4 325.2 2.11 15.5
1 (q) 0.4114 2.3 411.4 306.3 1.11 1.8
1 (q-2) 0.4114 1.1 406.1 300.7 0.16 0.51
1 (q-4) 0.4114 0.55 401.7 295.7 1.19 1.82
1 (vq) 0.4107 0.63 373.6 252.9 0.04 0.12

Table 4.1

Comparison of conductivities K(0) for many-pore Ne = 9× 5 and one-pore Ne = 1 geometries
for synthetic ellipsoidal ΩR and various grids. Here (t) refers to triangular grid, (q), (q-2), (q-4) to
quadrilateral basic and refined grids, respectively, and (qv) to the structured quadrilateral voxel-based
grid. Note that the differences in discretization are accompanied by slight differences in porosities.

The results are overall quite promising since they indicate that the results for
body-fitted grids are comparable to those for simple quadrilateral grids. In addition,
accuracy of less complex one-pore vs many-pore simulations in periodic media strongly
point at the superiority of the former.

4.2. 3D porescale geometries. This section deals only with 3D data sets. For
each grid listed in Table 3.2 we ran porescale flow simulations. The profiles of pressures
and velocities for some simulations are illustrated in Figures 4.2, 4.3, and 4.4; note the
complexity of the domain geometry and flow configurations. In Figure 4.5 we show
velocity magnitude profiles for three selected flow rates for this realistic 3D data. The
images show that the profiles change qualitatively with flow rate. However, unlike in
synthetic 2D geometries such as in Figure 4.1, we do not think one can associate the
change in a flow pattern in any individual pore unambiguously only to an increase in
the flow rate in that pore or its vicinity. Rather, we believe that the observed flow
patterns results from the combination of high flow rates and of viscous dissipation in
a very complex anisotropic flow geometry. Recall also that the images are produced
by a numerical flow solver which assumes the no-slip condition. This discussion is in
contrast with regular flow patterns discussed in [5, 12] but which would be hard to
reproduce in porous media with a large tortuosity.

We ran simulations with a range of inlet velocity values v
(j)
in , j = 0, 1, . . .(MAX)

spanning about 4-6 orders of magnitude, typically with MAX between 15 or 20. The
range was designed for each data set to include certain threshold flow rates around
which the qualitative nature of the porescale as well as the upscaled quantities changes.

The calculated conductivities are plotted in Figures 4.6, 4.8, 4.9. Their quali-
tative behavior with flow rate V (j) is similar to that reported in our previous studies
for synthetic 2D data sets in [33] and in Section 4.1. The conductivities are approxi-
mately constant in the “slow flow” regime and they decrease past a certain threshold
flow rate unique to a data set.

To support the forthcoming quantitative analyses in Tables 4.2, 4.3, and 4.4 we
report the diagonal values of K(j) as well as V (j) for a few selected j = 0, σ,MAX.
In addition, we provide η and ζ as measures of anisotropy and nonsymmetry. Here
j = σ corresponds approximately to the flow rate for which the principal values of K
are reduced by about 1%, and past which the profiles of K begin to “curve down”
as shown in Figures 4.6, 4.8, 4.9. The simulations for j = 0 correspond to the flow
rate safe in the linear laminar regime, while j = MAX to that for which we have
about 50% reduction in conductivity. Another characteristic flow rate denoted by V ∗

corresponds to a reduction of conductivities by 10%. Since it may not necessarily
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correspond to any particular v
(∗)
in , V ∗ is determined by interpolation, see Section 4.4.

The conductivities K(j) are analyzed in detail below. In Section 4.3 we calcu-
late the absolute permeabilities k from K(0) and discuss related scaling issues. In
Section 4.4 we propose a non-Darcy model for K(j) for j > 0.

4.3. Conductivities K(0) for small flow rates. Consider first the conductiv-
ities KD,(0) in Tables 4.2, 4.3, and 4.4 obtained for different fluids, datasets, grids,

voxel coarsening options, and REV parameter r, with v
(0)
in chosen differently for each

data set.

Absolute permeability.. For each KD,(0) we can calculate by simple scaling the
corresponding absolute permeability tensor kD = µKD,(0), and we verify a few com-
mon sense properties and scaling rules that are expected to hold.

For GB and HS data sets we can compare kGB and kHS to the typical experi-
mental values from literature such as in the diagram ([9], Fig. 2.4.1, Fig.4.1.7). The
physical structure (glass beads) of GB is similar to that of sand and clean gravel bed
of porosity φ ≈ 0.37. We see in Table 4.3 that kGB ≈ 150d which is well in the
range given in [9]. The porosity of φHS ≈ 0.39 is typical of sand/gravel rather than
sandstone, and the permeability kHS ≈ 8.5d fits well in the range (10− 1000)d.

Also, we can verify the proper trivial scaling between the two fluids considered:
water and methane. We recall that incompressibility was assumed; see Table 3.3 for

other parameters. For example, considerK
B1,(0)
22 with r=0.05, see Tables 4.2. For both

fluids we obtain kB1
22 ≈ 2.61d and the difference between the two fluid experiments is

in the third significant digit only. However, for large flow rates and j ≈ MAX this
scaling behavior does not hold; analysis will be pursued elsewhere.

Scaling with grain size.. Now consider kD for the scaled data sets D=B1, B1s10,
B1s100, with the corresponding dDchar given in Table 3.1. It is an immediate observa-
tion that the values of K(0) and thus also of k increase by a factor of 102, 104 when
dchar increases by a factor 10, 102, respectively. This is consistent with the scaling
O(d2char) as discussed in ([9], p136) by homogenization or as follows from experimental
correlations ([9], p119).

Carman-Kozeny and Collins correlations.. Now we take another look at kD col-
lected in Table 4.5, and which we want to compare to the permeabilities calculated
with empirical formulas known from literature. In particular, we consider Carman-

Kozeny correlation ([9], 4.1.20), and kCK := 0.2
φ3d2

char

(1−φ)2 which is given in Table 3.1.

In addition, the estimate dchar ≈
√

k
φ

of Collins provides a rough approximation

kC := φd2char for k. Note that both kDC and kDCK are calculated using only the geo-

metrical parameters on Ωeff
F given in Table 3.1 without any flow simulations.

For a simple data set D=B, the values kD are close to kDCK and to kDC . However,
for D=GB, HS, HSs, the simple correlations fail to incorporate the actual geometry
of the grids, and the differences between kD, kDC , and kDCK are large. Still, kD falls
between kDKC and kDC consistently for all data sets considered, so the latter can be
used as lower and upper bounds for the former.

Grid convergence.. We observe in Tables 4.2, 4.3, and 4.4 that conductivity values
calculated by the upscaling procedure depend, for a fixed ΩF ≡ (n, l), monotonically
on the grid size. In particular, we have KB1−2 > KB1−3 > . . .KB1−6. Generally,
coarse grid results overpredict those for finer grids, e.g., KHS−2−2 > KHS−2−3 and
KHSs−2−2 > KHSs−2−3, and KGB−2−2 > KGB−2−3. The differences between coarse
and fine grid values may be as high as around 10%.
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105v
(j)
in 105V 108K11 108K22 108K33 η ζ

B-6, r=0.05
1 1.44 0.3571 0.3571 0.3571 (a) (b)
1× 104 1.44× 104 0.3561 0.3561 0.3561 (a) (b)
1× 106 1.39× 106 0.239 0.239 0.239 (a) (b)

B-6, r=0.25
1 1.44 0.362 0.3619 0.3619 (a) (b)
1× 104 1.44× 104 0.3609 0.3609 0.3609 (a) (b)
1× 106 1.41× 106 0.2479 0.2479 0.2479 (a) (b)

B1-2, r=0.05
1 1.56 0.3923 0.3865 0.3945 0.04 0.02
4× 105 5.89× 105 0.2148 0.2043 0.2131 0.04 0.02
2× 106 2.81× 106 0.0735 0.0679 0.0730 0.05 0.02

B1-3, r=0.05
1 1.545 0.3204 0.3157 0.3221 0.04 0.02
4× 105 5.91× 105 0.1941 0.1847 0.1927 0.04 0.02
2× 106 2.83× 106 0.0685 0.0628 0.0678 0.05 0.01

B1-4, r=0.05
1 1.537 0.2908 0.2865 0.2924 0.04 0.02
4× 105 5.90× 105 0.1819 0.1733 0.1809 0.04 0.02
2× 106 2.83× 106 0.0642 0.0588 0.064 0.05 0.02

B1-5, r=0.05
1 1.533 0.2748 0.2708 0.2764 0.04 0.02
4× 105 5.90× 105 0.1759 0.1678 0.1753 0.04 0.02
2× 106 2.83× 106 0.0616 0.0565 0.0609 0.05 0.01

B1-6, r=0.05
1 1.53 0.2652 0.2613 0.2667 0.04 0.02
4× 105 5.89× 105 0.1727 0.1646 0.1719 0.04 0.02
2× 106 2.83× 106 0.0595 0.0548 0.0591 0.05 0.02

B1-6, r=0.05, methane
1 1.53 24.47 24.11 24.61 0.04 0.02
1× 106 1.52× 106 23.27 22.81 23.34 0.04 0.02
1× 107 1.46× 107 12.92 12.17 12.85 0.04 0.02

B1s10-6, r=0.05
0.1 0.153 26.52 26.13 26.67 0.04 0.02
1000 1529 26.42 26.02 26.56 0.04 0.02
1× 105 1.44× 105 10.32 9.598 10.24 0.044 0.02

B1s100-6, r=0.05
0.01 0.0153 2652 2613 2667 0.037 0.02
100 152.9 2642 2602 2656 0.037 0.02
1× 104 1.44× 104 1032 959.8 1024 0.043 0.02

B2-6, r=0.05
1 1.643 0.1914 0.1878 0.1987 0.06 0.03
1× 104 1.64× 104 0.1905 0.1867 0.1975 0.07 0.03
6× 105 9.28× 105 0.0839 0.0741 0.0854 0.09 0.04

B3-6, r=0.05
1 1.838 0.1323 0.1307 0.1277 0.13 0.05
4× 105 6.87× 105 0.0583 0.0511 0.0542 0.16 0.06
6× 105 1.02× 106 0.0434 0.0372 0.0399 0.16 0.06

Table 4.2

Conductivities for B, B1, B2, B3 computed for different grids, fluids, and with a different REV
parameter r. For each data set, the first row of values corresponds to j = 0, the second to j = σ,
and the last to j = MAX. We have in (a) η < 10−5, and in (b) ζ < 10−6.
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105v
(j)
in 105V 108K11 108K22 108K33 η ζ

GB-1-2, r=0.05
1 1.14 146.9 165.7 147.6 0.06 0.02
200 228.3 146.1 164.5 147 0.06 0.03
1× 104 1.12× 104 85.75 93.96 87.73 0.03 0.01

GB-1-2, r=0.25
1 1.11 141.4 183.8 138.1 0.14 0.12
200 221 141 183.3 137.5 0.14 0.12
1× 104 1.1× 104 84.16 101.8 84.12 0.18 0.12

GB-1-3, r=0.05
1 1.14 140.1 158.6 140.6 0.06 0.02
200 228.1 138.9 157 139.7 0.06 0.03
1× 104 1.12× 104 82.24 90.3 84.08 0.03 0.02

GB-1-3, r=0.25
1 1.10 134.4 176.2 132 0.14 0.13
200 221.4 134.1 175.8 131.2 0.15 0.12
1× 104 1.1× 104 80.52 98.14 80.73 0.17 0.12

GB-2-2, r=0.05
1 1.13 165.2 183.7 171.8 0.05 0.02
200 225.6 164.3 182.6 171.1 0.05 0.02
1× 104 1.1× 104 88.67 95.73 96.38 0.02 0.01

GB-2-2, r=0.25
1 1.11 162.7 205.6 167.3 0.17 0.13
200 220.8 161.6 204.3 166.4 0.16 0.13
1× 104 1.09× 104 88.02 104.3 94.87 0.19 0.12

GB-2-3, r=0.05
1 1.13 150.6 168.4 156.7 0.05 0.02
200 224.9 149.9 167.4 156.3 0.05 0.02
1× 104 1.1× 104 83 89.92 90.4 0.02 0.01

GB-2-3, r=0.25
1 1.106 147.4 188 153.7 0.17 0.14
200 221.1 146.7 187.3 152.9 0.17 0.14
1× 104 1.09× 104 81.95 97.75 88.64 0.18 0.13

Table 4.3

Conductivities for GB computed for different grids and with a different REV parameter r. For
each data set, the first row of values corresponds to j = 0, the second to j = σ, and the last to
j = MAX.

For data set B1 we can attempt an estimate of the order of convergence. Consider
the sequence of grids D=B1-m with m = 2, . . . 6 and the corresponding KB1−m,(0)

with l = lB1. We see that KB1−m,(0) appear to monotonically approach the finest grid
value KB1−6,(0). This justifies the following estimate of order of convergence. We fit
log(|KB1−m,(0) −KB1−6,(0)|) to the corresponding log(hm/l) for the first few values
hm/l = 1/2, 1/3, 1/4. As a result we obtain about order 2 convergence in KB1−m,(0).

These analyses suggest that one could use Richardson’s extrapolation to predict
a more accurate KD using only two or three refinement levels.

Repeating the same procedure forKB1−m,(σ) we see similar behavior. ForKB1−m,(MAX)

for which the porescale results are not as well resolved, the convergence order is about
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105v
(j)
in 105V 108K11 108K22 108K33 η ζ

HS-2-2, r=0.05
1 1.071 8.506 8.668 7.285 0.04 0.04
2000 2139 8.345 8.516 7.106 0.04 0.04
5× 105 5.214× 105 0.6852 0.7497 0.4379 0.04 0.02

HS-2-3, r=0.05
1 1.071 7.759 7.907 6.628 0.04 0.04
2000 2140 7.632 7.787 6.491 0.04 0.04
5× 104 5.263× 104 3.874 4.112 2.856 0.04 0.02

HS-2-3, r=0.25
1 1.12 8.557 8.46 7.178 0.06 0.03
2000 2230 8.385 8.306 7.023 0.06 0.03
5× 104 5.399× 104 4.091 4.299 3.053 0.04 0.04

HSs-0-2, r=0.05
1 1.08 4.667 4.822 4.513 0.20 0.22
2000 2162 4.566 4.719 4.415 0.19 0.21
5× 104 5.292× 104 2.456 2.556 2.208 0.21 0.23

HSs-0-2, r=0.25
1 1.204 6.291 4.377 3.75 0.22 0.22
2000 2372 6.065 4.211 3.651 0.21 0.23
5× 104 5.596× 104 3.13 2.366 1.948 0.32 0.33

HSs-1-3, r=0.05
1 1.072 4.996 5.081 4.916 0.21 0.20
2000 2141 4.906 4.992 4.82 0.19 0.20
5× 104 5.247× 104 2.586 2.647 2.328 0.20 0.23

HSs-2-2, r=0.05
1 1.06 7.537 7.171 7.306 0.18 0.17
2000 2116 7.384 7.035 7.129 0.17 0.17
5× 104 5.178× 104 3.597 3.436 3.071 0.18 0.20

HSs-2-3, r=0.05
1 1.06 6.852 6.496 6.642 0.19 0.17
2000 2121 6.738 6.393 6.51 0.18 0.17
5× 104 5.193× 104 3.404 3.241 2.902 0.19 0.20

Table 4.4

Conductivities for HS and HSs computed for different grids and with a different REV parameter
r. For each data set, the first row of values corresponds to j = 0, the second to j = σ, and the last
to j = MAX.

1.5.

Influence of voxel reduction.. As concerns voxel reduction levels, these are harder
to compare since the data sets differ both in geometry and grid size. Overall, voxel
reduction leads to higher porosity, more connectivity, and higher conductivities, as
seen, e.g., by KHSs−0−2 < KHSs−1−3 < KHSs−2−3. In addition, computations over
a smaller region apparently miss some of the connectivity of a large region, hence, e.g,
KHSs−2−2 < KHS−2−2.

Non-symmetry, anisotropy, and REV size.. The symmetry of K(j) is not enforced
in our computations, see the values ζ shown in Tables 4.2-4.4. Large ζ indicates poor
quality of results, i.e., large numerical errors. In addition, nonsymmetry appears
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D 106dDchar 1012kD 1012kDCK 1012kDC
B1 2.36 2.723 1.909 3.47
B1s10 23.6 272.3 190.86 347
B1s100 236 27,241.48 19,085.9 34,700
B2 3.07 1.88 1.20 4.94
B3 4.11 1.34 0.379 6.06

GB-1-3 11,694 1,760 367 5,120
GB-2-3 11,895 1,890 504 5,660

HSs-1-2 2.06 52.2 14.9 170
HSs-2-3 2.24 84.1 24.2 216

Table 4.5

Comparison of kD and experimental correlations.

larger if REV used for averaging is small.

Generally, the values computed over a smaller REV, i.e., with r = 0.25 instead
of r = 0.05, differ considerably in quality, see results for B and those for GB. Some
tensor components are smaller and some are larger, and ζ as large as 20% for small
REV appears unacceptable. We recommend thus to use r close to 0.

For HSs, regardless of REV size, the nonsymmetry of K(j) is considerable. Since
HSs is a cut-out itself, the nonsymmetry is likely due to poor resolution of average
pressure and velocity fields.

Last but not least, we discuss anisotropy. We see substantial anisotropy exhibited
by nontrivial η in GB and HS data sets as seen in Tables 4.3 and 4.4. Anisotropy
can be also clearly seen in Figures 4.8 and 4.9. It is interesting that its relative
magnitude does not decrease as much with increasing velocity as we expected based
on our experiments with 2D synthetic geometries in [33].

We study an anistropic model for large flow rates in what follows.

4.4. Conductivities for large flow rates and non-Darcy model. From our
calculations of K, we observe a steady increase of the drag and of the resistance
to flow with increasing velocity, see Tables 4.2–4.4 and Figures 4.6, 4.8, 4.9. The

icreased resistance, i.e., the reduction of K, is visible starting near v
(σ)
in , and continues

monotonically until vin reaches the v
(MAX)
in . Above v

(MAX)
in the porescale simulations

have poor performance, and v
(MAX)
in corresponds to about 50% decrease in K(MAX)

relative to K(0) versus about 1% decrease corresponding to K(σ).

In Darcy’s law, K(j) should be constant, thus a reduction of K requires a non-
Darcy model. Qualitatively non-Darcy effects begin to occur around the flow rate
V (σ) where we recall the reduction in K is about 1%. We are interested therefore in
some threshold value of v∗in and V ∗ for which the decrease in K∗ is significant. While
this is open to debate, in this paper we use as “significant” the flow rate for which the
reduction in K is by about s∗ = 10%. This choice makes sense in numerical upscaling
since K can vary by the factor s∗, e.g., when using different grids.

We declare further that a non-Darcy model is needed for flow rates in the range
(V ∗, V (MAX)), and that for higher flow rates in complex media other analyses are

needed. For a given data set, we can easily calculate the corresponding range (Re∗, Re(MAX))
as the range in which non-Darcy model should be used. In fact, these critical thresh-
old values should remain essentially the same across all data sets. We verify this
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D V ∗ Re∗ Re(MAX) α̃ β̃
B1 1.432 2.10 21.06 1.22 0.055
B1s10 0.1432 2.10 21.06 1.22 0.99
B1s100 0.0144 2.11 21.06 1.2 17.6
B1 methane 23.32 2.11 13.16 1.28 0.00154
B2 1.14 1.84 14.88 1.27 0.072
B3 0.866 1.27 14.97 1.35 0.084

GB 0.02 0.88 4.82 1.28 13.7
HS 0.073 0.73 5.24 1.23 2.64

Table 4.6

Threshold and maximal Reynolds numbers, and estimates α̃ and β̃ of the power α and coeffcient
β, respectively, obtained from fitting the non-Darcy model (2.7).

pressure
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Fig. 4.2. Pressure contours for B1-4. Slice in the back shows the geometry and grid.

expectation below.
To identify the flow rate V ∗ from those in the range V (j), j = σ, . . .MAX, we

use piecewise linear interpolation of K(j) and solve for V ∗. The corresponding flux
Q∗ = φeffV

∗ and Reynolds number Re∗ are calculated with (3.5), see Table 4.6. For
anisotropic K we need to analyze only one of the diagonal values; here, we use K22.

We see in Table 4.6 that Reynolds numbers corresponding to V ∗ are around 1
while those for V (MAX) are by about an order of magnitude higher than V ∗, and
around 10. This is consistent with the thresholds usually considered as the onset of
non-Darcy effects. For example, in ([9], p147) Darcy’s law is considered valid up to
around Re∗ = 10.

For scaled data sets such as B1, B1s10, B1s100, the threshold values Re∗ remain
constant. Since Re scales linearly with dchar, there is a similar implicit scaling of
threshold values of V ∗ related only to the nature of flow.

Non-Darcy model.. Since K(j) is not constant for V > V (j), we see that (2.4)
does not hold. We need to account for this decrease in conductivities K, i.e., propose
some non-Darcy model.

We observed already in [35] for synthetic 2D data sets that extensions of (2.5) are
well suited for modeling large flow rate regimes; see also [6]. In fact, it appears that
there may exist several regimes of flow rates beyond merely Darcy and non-Darcy.
With enough experiments and care, one can fit a particular power or polynomial
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Fig. 4.3. Pressure contours for GB-2-2. Slice in the back shows the geometry and grid.
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Fig. 4.4. Pressure contours for HS-2-2. Slice in the back shows the geometry and grid.

model in each of these ranges of flow rates. However, in practical applications in
porous media the flow rates vary; it may be difficult and unpractical to work with a
flow-regime dependent model. In the analysis below we advocate finding one simple
working model that can be practically implemented. Finally, any practical model
needs to have a reasonable anisotropic extension.

First we consider the results for data set B for which the macroscale quantities
appear isotropic as seen from η. Next we discuss data sets GB and HS which are
strongly anisotropic. For each data set we use the finest grid and the least reduced
voxel grid results available. Overall we find that the extended anisotropic power model
(2.7) seems most adequate. The resulting approximate values of the parameters α, β
are summarized in Table 4.6.

4.4.1. Isotropic non-Darcy model for B. Consider post-processed results
of simulations for D=B1-6 using method (D) from Section 3.3.2. Since the porous
medium corresponding to ΩB1 by construction is essentially isotropic, we focus on
a scalar non-Darcy law fitting one of the diagonal values of K(j) to V (j) using a
polynomial or power extensions of the scalar equation (2.5).

First, we caution the reader that the quality of any fit is strongly dependent on the
range of flow rates and the resolution of the data set, i.e., the number of experiments
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Fig. 4.5. Velocity magnitude in a slice across HS-2-2 for V ≈ V (0), V ∗, V (MAX), respectively.
Note the qualitative change with increasing flow rates, e.g., in the pore around x = 0.005, z = −0.002.
While these differences are clear, in general they are hard to charactertize using slices, since much
of the information on connectivity in 3D is lost.

j between V ∗ and V (MAX). In addition, a fit is only as good as the model to which
we are fitting. Finally, a proposed non-Darcy model should be not just an accurate
representation of upscaled values, but it should also be practical for implementation
of a Darcy-scale solver.

To find a plausible unique non-Darcy model for data set B1, we first calculate
tensor β using method (D) applied to (3.10)–(3.12), with α = 1. Since we have argued
for isotropy, let us focus on β22 only. We notice from Figure 4.6 that β22 increases
with flow rates by as much as a factor of 2 in the range of flow rates (V ∗, V (MAX)).
Since β is not constant, clearly the linear Forchheimer model is not adequate.

We then attempt different functional forms for ρ(r) in (2.8) with an overall
quadratic, or cubic polynomial growth, or with a simple power model (2.7). We
find that the cubic and power models provide the best fit, as shown in Figure 4.7.

However, a complete cubic polynomial model seems the least practical computa-
tionally even for isotropic media. In addition, it does not have a natural extension to
anisotropic data, as evident from our results for GB and HS data sets to be shown
below. So we settle on the power model for which we find αB1 ≈ 1.22. We verify
this by rerunning algorithm (D) with αB1 = 1.22 to identify another set of βB1, this
time expected to be essentially constant. This is eventually confirmed as shown in
Figure 4.7.
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Fig. 4.6. Top: conductivities for a range of flow rates for B1. Middle: anisotropy
and nonsymmetry in conductivities for B1. INDEX 1, 2, 3, 4, . . . 9 corresponds to the values of
K11,K12,K13,K21 . . .K33 arranged lexicographically as shown. Bottom: Coefficient β calculated
with Forchheimer model for B1.

The same calculation can be repeated for other data sets, as long as we ignore the
anisotropy of K. The corresponding estimates of αD and βD are shown in Table 4.6.
It is interesting that the power α ∈ (1.2, 1.3) seems to fit most data sets, but that β
varies significantly between the data sets. On the other hand, the results of scaling
experiments for D =B1 suggest that there is no systematic scaling of β with respect
to the fluid or grain size. We defer a detailed study of β and its correlation to K to
further work.

4.4.2. Anisotropic non-Darcy model for GB and HS. Now we consider
GB and HS data for which clearly anisotropy occurs. We attempt a fit to the model
(2.7), at first with α = 1, and we calculate the tensor β using algorithm (D).

The resulting values of β shown in Figures 4.8 and 4.9 show that nonsymmetry and
differences between the diagonal components decrease with flow rates. When fitting
with a power model and α = 1 we see also that the magnitude of the components of β
is not constant across the flow rates. A set of α1, α2, α3 in the following modification
of (2.9) may be in order

∑

j

βij |V |
αiVj + Vi = −

∑

j

Kij

∂p

∂xj

. (4.3)
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Fig. 4.7. Top: fitting β22 to V with various models proposed in Section 2.1 and (2.8). The best
practical fit is using α = 1.22 and (2.7). The original data is shown as seven points (black squares)
on the curve denoted as “linear Forchheimer fit”. Bottom: coefficient β recalculated with non-Darcy
power model and α = 1.22 for B1. INDEX as in Figure 4.6.

In particular, α1 = α2 ≈ 1.3 and α2 ≈ 1.1 gave reasonable results for D=GB. As
concerns HS, the corresponding results lead to α ≈ 1.2.

An even more complicated model than (4.3) can be sought in which (αi)
3
i=1 is

replaced by a collection (αim)3i,m=1. However, a macroscale implementation of (4.3)
alone may be already impractical and the components α may not be possible to find
experimentally.

Due to poor symmetry of results for HSs we do not have full confidence in any
model fit.

4.4.3. Principal analysis of K(j). In this Section we discuss the anisotropic
conductivities from another point of view spurred by our analyses in [33] for 2D data,
where we considered behavior of principal elements of K(j) for a synthetic 2D data set
with anisotropy. The conjecture was that the eigenvalues could be fitted to a power
model and thus they would decrease with flow rates. If the eigenvectors remained
stable with flow rates, one would then have a resulting simple anisotropic non-Darcy
model.

Now that we have realistic 3D data set we verify this hypothesis. Its visual
interpretation is most attractive if we consider 2 × 2 submatrices of K. Data GB is
perfect for this study because the x1 and x3 components appear similar. Thus we
extract

K
(j)
2×2 :=

[

K
(j)
11

1
2 (K

(j)
12 +K

(j)
21 )

1
2 (K

(j)
12 +K

(j)
21 ) K

(j)
22

]

, (4.4)

and proceed with the eigenvalue/eigenvector analysis of the symmetric part of K
(j)
2×2.

Of interest are the two principal eigenvalues e
(j)
1 , e

(j)
2 of K

(j)
2×2 and the angle φ that

the first principal eigenvector of K
(j)
2×2 makes with the x1 direction.

As shown in Figure 4.10, the eigenvalues decrease with flow rates as in [33].
However, the angle generally decreases with flow rates over the range (V (σ), V (MAX))
and thus the conjecture postulated for syntethic media in [33] does not hold for the
current complex 3D pore geometries. One can argue that this observation is consistent
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GB-2-3. Bottom: Coefficient β calculated with Forchheimer model. INDEX as in Figure 4.6.

with the qualitative behavior of K(j) in that the tortuous paths seem straightened
out with increasing flow rates, at least in the regime of flow we consider here.

5. Complexity of simulations. The computational challenges for this project
include the computational time and large amount of storage space needed to save
and post-process the results of simulations. Clearly, the actual computational time
depends on a particular architecture used, number of processors, and other factors
such as a queuing system. For reference, we provide details on the computational
effort; the systems are listed at the end of this Section.

Our simulations consisted of the steps as follows.
(i) Mesh generation.. As discussed Section 3.1, our algorithms perform first var-

ious transformations of a voxel data set including voxel reductions and elimination of
dead-end pores. Next we convert a voxel geometry to unstructured quadrilateral grid
in a format accepted by ANSYS Fluent software.

These algorithms can generally run on a simple support workstations. However,
for large meshes with |nF | > 30 ∗ 106 cells such as GB-1-3, HS-2-3, and HSs-0-2, it is
necessary to use computing nodes with large memory such as system (B).

(ii) Porescale simulations.. The simulations corresponding to each v
D,(j)
in,DIR are

clearly the most time consuming. For each simulation, the computational time grows
with the size of the problem and with the number of iterations Nit needed to achieve
assumed tolerance. Throughout all simulations we kept the tolerance fixed relative to
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D v
(0)
in v

(MAX)
in Np TAV E

Nit T Nit T
B1-2 40 0:01 66 0:02 8 (C) 0:02
B1-6 157 0:14 213 0:18 64 (C) 0:52
B1s100-6 157 0:15 213 0:19 64 (C) 0:52
B2-6 149 0:12 205 0:15 64 (C) 0:44
B3-6 135 0:08 221 0:12 64 (C) 0:35

GB-1-2 231 4:16 357 1:30 48 (B) 0:42
GB-1-3 362 1:08 606 1:42 128 (C) 2:37
GB-2-2 137 0.04 143 0:05 48 (B) 0:06
GB-2-3 198 0:36 246 1:03 48 (B) 0:29

HS-2-2 140 0:11 170 0:12 64 (C) 1:07
HS-2-3 283 0:55 289 0:53 64 (C) 3:29
HSs-0-2 456 1:31 798 2:18 96 (C) 3:21
HSs-1-2 215 0:06 338 0:09 64 (C) 0:27
HSs-1-3 276 0:38 582 0:58 64 (C) 1:27
HSs-2-2 125 0:01 140 0:01 32 (C) 0:04
HSs-2-3 183 0:04 241 0:05 32 (C) 0:12

Table 5.1

Complexity of simulations for pressure outlet boundary condition and selected V
(j)
in,BT

. Nit

is the number of iterations needed, T is the wall-clock time (in hours), and Np is the number of
processors used on a given HPC system.

a characteristic velocity magnitude for a given case. The number Nit depends on the
complexity of geometry of D and grows with the flow rate. To obtain well-resolved
porescale results with small ζ, we applied very stringent convergence tolerance criteria.

Generally, the simulations for flow rates in v
(0)
in , v

(σ)
in ) require fewer iterations than

those for j > σ. On the other hand, the appearance of nonlinear effects in K(j), j > σ,
is accompanied by a visible increase inNit and in a growing number of outlet boundary

faces where the recirculation occurs. For the flow rates above V
(MAX)
in the solver is

sometimes unable to find the solution within the desired tolerance.

(iii) Post-processing step.. In this step, all porescale results are averaged and
collected in a form convenient for upscaling and for further analysis as decribed

in 3.3. We compute averaged velocities V
(j)
DIR,k, k = 1, 2, 3 and pressure gradients

G
(j)
DIR,k, k = 1, 2, 3 and analyze them typically for a few values of r characterizing

REV size. Much of post-processing is done on one of the original computing nodes
since the data from multiprocessor runs has to be collected from the local disk space.
The approximate time Tave of averaging for one REV is given in Table 5.1. Note that
Tave is actually considerable compared to T .

(iv) Analysis, visualization, and non-Darcy models.. The final computations such
as solving (3.10)–(3.12) and the fitting of non-Darcy models is done in MATLAB
which has an abundant set of appropriate tools. The computational complexity was
negligible compared to (i)-(iii).

HPC systems.. In Table 5.1 we provide detailed report on the computational com-
plexity. For (ii)-(iii) we used exclusively the facilities of ICM, University of Warsaw
as follows. System (A) was used for testing various grids, geometries, and boundary
conditions, and systems (B)-(C) were used for production runs.
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(A) x86 cluster Halo2, Sun Constellation 6048 System based on AMD Quad-Core
Opteron 835X nodes x86 64 architecture.

(B) x86 cluster Hydra, HP BladeSystem/Actina based on AMD Opteron 2435/Intel
Xeon 5660/AMD Opteron 6132 nodes x86 64 architecture, nodes with 24/32/256
GB of memory.

(C) Power 775 IBM Supercomputer Boreasz, architecture based on Power7 supern-
odes.

6. Discussion, conclusions and future work. The main goal of this paper
has been to demonstrate that computational simulations at porescale as well as the
proposed upscaling and parameter identification methodologies work well for realistic
pore geometries over a substantial range of flow rates.

As an outcome of our pore-to-core methodology, we proposed a practical new
anisotropic non-Darcy flow model based on a power extension of Forchheimer model
with a power α ≈ 1.2, and with an anisotropic tensor coefficient β. The values of β
need further study since they vary considerably between geometries; some analyses in
this direction are underway.

We performed various studies with the voxel based data sets and various grids
as well as for a large range of flow rates. Several of our findings are unsurprising
and are summarized as follows. Solver performance deteriorates significantly with i)
increasing |n|, ii) decreasing porosity, and iii) increasing complexity of pore space,
iv) increasing flow rates, and v) decreasing h. For each dataset there is an upper (or
lower) limit on each of these parameters beyond which simulations are not reliable
and converged solutions are very hard to obtain.

The calculated conductivity values vary depending on the computational mesh,
on the degree to which the original voxel data set was transformed, as well as on the
REV size. The differences may be as high as 20%. On the other hand, we found that
difference in conductivities between body-fitting grids and voxel-based grids are about
10%, depending on grid size. Overall it is desirable, if at all possible, to use grids
resolved enough so that relative difference in conductivities between refinement levels
is around 1-2%. As a good indicator of quality of results, one should assess symmetry
of the resulting tensors. Large nonsymmetry indicates poor solver performance and/or
REV that is too small.

Overall, a departure from linear laminar model is apparent both from pointwise
fluid properties at porescale and from study of corescale conductivities. The onset
of inertia effects identified as 1% reduction in conductivities K value correlates with
the sudden decrease of solver performance.The regime up to which flow simulations
proceed reliably corresponds to reduction of K about 50%.

Since the values of K depend so much on the grid and other simulation parame-
ters, there arises a natural question of the regime where non-Darcy effects should be
considered significant enough to warrant the need for a flow model extending Darcy’s.
As a rule of thumb, we propose to consider the discrepancy from Darcy model sig-
nificant when the conductivities are reduced by around 10% which occurs for flow
rate dubbed V ∗. This reduction factor is on par with the differences due to different
discretizations.

The flow rate V ∗ corresponds to a Reynolds number specific to a data set but
generally close to Re∗ ≈ 1. For coupled flow and transport models when the flow
rates are about an order of magnitude smaller than Re∗ we still advocate the use of
a model with inertia effects at corescale and/or porescale. This is because inertia has
a distinct qualitative if not quantitative impact on fluid behavior which may affect
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transport properties. This aspect is part of our ongoing work.

More studies are needed for more complex geometries, realistic scenarios, and
macroscopically heterogeneous media. These studies need to identify, e.g., how to
handle flow systems with flow rates which are large only locally. In addition, it would
be desirable to compare computational studies directly with experimental data for
the same porous sample. In particular, we hope to be able to contribute and compare
our methodology within the porescale benchmarking project [1].
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[10] Bourgeat, A., Marusić-Paloka, E., Mikelić, A.: Weak nonlinear corrections for Darcy’s law.
Math. Models Methods Appl. Sci. 6(8), 1143–1155 (1996)

[11] Cai, R., Lindquist, W., W.Um, Jones, K.: Tomographic analysis of reactive flow induced pore
structure changes in column experiments. Advances in Water Resources 32, 1396–1403
(2009)

[12] Chaudhary, K., Cardenas, M., Deng, W., Bennet, P.: The role of eddies inside pores in the
transition from Darcy to Forchheimer flows. Geophysical Research Letters 38, L24,405
(2011). DOI doi:10.1029/2011GL050214

[13] Chen, Z., Lyons, S.L., Qin, G.: Derivation of the Forchheimer law via homogenization. Transp.
Porous Media 44(2), 325–335 (2001)

[14] Chu, J., Engquist, B., Prodanovic, M., Tsai, R.: A multiscale method coupling network and
continuum models in porous media i: Steady-state single phase flow. Multiscale Modeling
& Simulation 10(2), 515–549 (2012). DOI 10.1137/110836201. URL http://epubs.siam.

org/doi/abs/10.1137/110836201

[15] Dullien, F.: Porous media. Academic Press San Diego (1979)
[16] Ergun, S.: Fluid flow through packed columns. Chemical Engineering Progress 48, 89–94

(1952)
[17] Ewing, R.E., Lazarov, R.D., Lyons, S.L., Papavassiliou, D.V., Pasciak, J., Qin, G.: Numerical

well model for non-Darcy flow through isotropic porous media. Comput. Geosci. 3(3-4),
185–204 (1999)

[18] Finn, J., Apte, S.: Relative performance of body-fitted and fictitious-domain simulations of flow



32 M.PESZYNSKA AND A.TRYKOZKO

through porous media. Procededings of the ASME Fluids Engineering Summer Meeting
(FEDSM2012-72355) (2012)

[19] Forchheimer, P.: Wasserbewegung durch Boden. Zeit. Ver. Deut. Ing. (45), 1781–1788 (1901)
[20] Fourar, M., Lenormand, R., Karimi-Fard, M., Horne, R.: Inertia effects in high-rate flow

through heterogeneous porous media. Transport in Porous Media 60, 353–370(18) (2005).
DOI doi:10.1007/s11242-004-6800-6

[21] Fourar, M., Radilla, G., Lenormand, R., Moyne, C.: On the non-linear behaviour of a laminar
single-phase flow through two and three-dimensional porous media. Advances in Water
Resources 27, 669–677 (2004)
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