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ABSTRACT 
Motivation: The goal of any parentage analysis is to identify as 
many parent-offspring relationships as possible, while minimizing 
incorrect assignments. Existing methods can achieve these ends, 
but require additional information in the form of demographic data, 
thousands of markers, and/or estimates of genotyping error rates. 
For many non-model systems, it is simply not practical, cost-
effective, or logistically feasible to obtain this information. Here, we 
develop a Bayesian parentage method that only requires the sam-
pled genotypes in order to account for genotyping error, missing 
data, and false matches. 
Results: Extensive testing with microsatellite and SNP data sets 
reveals that our Bayesian parentage method reliably controls for the 
number of false assignments, irrespective of the genotyping error 
rate. When the number of loci is limiting, our approach maximizes 
the number of correct assignments by accounting for the frequen-
cies of shared alleles. Comparisons with exclusion and likelihood-
based methods on an empirical salmon data set revealed that our 
Bayesian method had the highest ratio of correct to incorrect as-
signments.  
Availability:  Our program SOLOMON is available as an R package 
from the CRAN website. SOLOMON comes with a fully functional 
graphical user interface, requiring no user knowledge about the R 
programming environment. In addition to performing Bayesian par-
entage analysis, SOLOMON includes Mendelian exclusion and a 
priori power analysis modules. Further information and user support 
can be found at https://sites.google.com/site/parentagemethods/.    
Contact: christim@science.oregonstate.edu   
Supplementary Information: Supplementary data are available at 
Bioinformatics online. 

1 INTRODUCTION  
Accurate parentage assignment and pedigree reconstruction are 
required to make correct inferences for a broad array of study ques-
tions (Pemberton, 2008). Parentage methods span a vast gamut of 
theoretical approaches from fractional to categorical allocation and 
simple exclusion to sophisticated likelihood-based approaches 
(Jones and Ardren, 2003; Jones et al., 2010). One area of parentage 
analysis that has been largely overlooked is a general Bayesian 
method for categorical allocation. This void is unfortunate as addi-
tional sampling or field information can be elegantly incorporated 
as priors into a Bayesian framework (Hadfield et al., 2006). Fur-
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thermore, the information present within the genotypic data itself 
can be used to calculate a prior analogous to a false discovery rate, 
which can be useful for the challenges associated with parentage 
analysis. As an illustrative example, consider a typical kinship data 
set consisting of 7 microsatellite loci and 750 individuals 
(Rieseberg et al., 2012). In this data set, a parent and offspring 
would share at least one allele across all loci following Mendelian 
inheritance. However, the probability of two unrelated individuals 
sharing alleles by chance at all loci is not trivial considering that 
hundreds of thousands of pair-wise comparisons are required. 
Thus, a primary challenge of parentage analysis in natural popula-
tions is to correctly identify the true parent-offspring pairs within a 
data set, while simultaneously excluding any pairs that share al-
leles by chance.   

The challenge of parentage analysis is further exacerbated by 
missing data and genotyping errors, which can erode the parent-
offspring “signal” of sharing at least one allele at all loci (Slate et 
al., 2000; Vandeputte et al., 2006). Because errors can create an 
incorrect record of genotypes, true parent-offspring pairs in an 
empirical data set may not share an allele at all loci despite that 
being the Mendelian expectation. Here, we address the challenges 
associated with parentage analysis by first calculating the prior 
probability of a dyad sharing an allele across all numbers of mis-
matching loci. The calculation of this prior (analogous to a false 
discovery rate) creates a systematic framework for determining 
how many loci to let mismatch and does not require any estimates 
of genotyping error. For each putative pair, we next employ Bayes’ 
theorem to calculate the posterior probability of a parent-offspring 
pair being false given the frequencies of shared alleles. Because the 
probability of sharing common rather than rare alleles is much 
greater for unrelated pairs, we can compare the frequencies of ob-
served shared alleles to a distribution of alleles shared by unrelated 
individuals.  By combining this information with Bayes’ theorem, 
we can maximize the identification of true parents and offspring in 
a data set, while minimizing the number of false assignments.  
Here, we overhaul the approach of Christie (2010) to (1) account 
for genotyping error and missing data, (2) reduce the computation-
al time by up to three orders of magnitude as measured in minutes, 
and (3) allow for one known parent or for known parent-pairs (i.e., 
known matings), which can substantially increase assignment 
power. We extensively test this methodology with data drawn from 
three empirical studies and use an empirical salmon data set to 
make comparisons to commonly implemented exclusion and like-
lihood-based methods. 
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Table 1.  Empirical data sets used to validate the Bayesian parentage meth-
od. NL refers to the total number of loci used in the study, NA equals the 
average number of alleles per locus, and Max equals the frequency of the 
most common allele in the data set. The retriever data set had a total of 
21,115 SNPs of which 200 were randomly selected. References are as 
follows: beech (Lander et al., 2011), steelhead (Araki et al., 2007), and 
retriever (Akey et al., 2010).  

Symbol Species Marker  NL NA  Max 

 

European Beech 
(Fagus sylvatica) μsat 13 11.08 0.66 

 

Steelhead Trout 
(Oncorhynchus 

mykiss) 
μsat 8 34.88 0.19 

 

Labrador Retriever 
 (Canis lupus  
familiarus) 

SNP 21,115 
(200) 2.00 0.98 

 

2 METHODS 
We created test data sets of multilocus genotypes with allele frequencies 
based on the site frequency spectra from three empirical studies. We chose 
empirical studies featuring three distinct taxonomic groups with two differ-
ent marker types, SNPs and microsatellites (Table 1). The test data sets  
were fully characterized such that we knew all true parents and offspring.  
For drawing comparisons between methods, we used complete genotype 
data from a summer-run steelhead (Oncorhynchus mykiss) data set (see 
details below).    

2.1 Bayesian parentage method 
To identify true parent-offspring pairs, we employed Bayes’ theorem to 
determine the posterior probability of a putative parent-offspring pair being 
false given the frequencies of shared alleles. For illustrative purposes, we 
first consider a scenario with no missing data, genotyping error, or known 
parents, though we expand upon each of these below. In accordance with 
Mendelian expectation, each parent-offspring pair will share at least one 
allele across all loci. If a limited number of loci are employed, then pairs of 
individuals can share alleles by chance alone. In fact, the rate of false 
matching increases exponentially with a linear increase in sample size 
(Christie, 2010). We first calculate a prior equal to the probability of any 
given putative pair sharing alleles by chance:       

Nputative
Fpairs

=)Pr(φ                                          (1) 

where Fpairs equals the expected number of false parent-offspring pairs 
and Nputative equals the total number of putative parent-offspring pairs.  
Here, we define a “false parent-offspring pair” to be a pair of unrelated 
individuals that share alleles by chance. A “putative parent-offspring pair” 
is any pair of individuals that share alleles across all loci and contains all 
true and false parent-offspring pairs. Thus, if a data set was expected to 
contain 10 pairs that shared alleles by chance, but was observed to contain 
100 pairs, then )Pr(φ would equal 0.1. Estimates for )Pr(φ are constrained 
to range between 0 and 1. To calculate the expected number of false pairs 
in a data set, we deviate from the approach presented in Christie (2010) and 
use simulations rather than allele frequencies. We chose to use simulations 
because they (1) facilitate the incorporation of genotyping error into a 
Bayesian framework and (2) substantially expedite the calculation of the 
posterior probability. 

To determine the expected number of false pairs we first calculate allele 
frequencies across all loci. For each locus separately, we calculate genotype 
frequencies in accordance with Hardy-Weinberg Equilibrium (HWE) and 
create a pool of genotypes where the rarest genotype occurs at least 100 
times. We next create simulated genotypes by sampling from this pool a 
number of individuals equal to the number genotyped in the empirical data 
set (randomly assigning individuals as adults and juveniles). We then make 

all pair-wise comparisons between adults and juveniles and calculate the 
number of times each allele is shared. If a shared allele is homozygous in 
an individual, then that allele is only counted once. If an adult and juvenile 
are heterozygous for the same alleles, then only the rarer of the two alleles 
is counted. The number of times that an allele is not shared between an 
adult and juvenile is also recorded. The user may choose how many simu-
lated data sets (hereafter, “simulations”) per locus that they wish to employ, 
though we recommend a minimum of 100 simulations for SNPs and 1000 
simulations for microsatellites to maximize precision for the posterior 
probability (Table S1). In the simulations, we examine each locus separate-
ly in order to expedite the calculation and reduce the amount of memory 
allocated by R (R Core Team, 2012).   

We next create a user-defined number of multilocus “genotypes” by us-
ing the output of the simulations. Assuming independence across loci, we 
sample alleles at each locus by the average frequencies that they were 
observed to be shared between two unrelated individuals. Included in the 
sampling process is a dummy variable that represents the frequency of 
dyads that did not share an allele. This process simultaneously creates a 
distribution of frequencies of alleles shared among false parent-offspring 
pairs, while also creating a distribution of the number of false pairs that 
share at least one allele at 0,1,2…L loci, where L equals the total number of 
genotyped loci. We calculate the expected number of false pairs as:                                                                                                        

21 nnNLsimFpairs ⋅⋅=                                      (2) 

where NLsim equals the frequency of the simulated multilocus genotypes 
that shared at least one allele at all loci and 1n  and 2n equal the empirical 
sample sizes of the adults and juveniles.  After Fpairs is calculated, the 
number of observed putative pairs (Nputative) is calculated using Mendeli-
an incompatibility and used to calculate the prior, ).Pr(φ   

Most, if not all, observed false pairs will share common alleles, since the 
probability of sharing an allele by chance is approximately proportional to 
the square of the allele frequency. In contrast, the probability that a true 
parent-offspring pair will share a particular allele is simply proportional to 
the allele frequency. Therefore, pairs sharing rare alleles are much more 
likely to be true parent-offspring pairs. We exploit this principle by em-
ploying Bayes’ theorem to calculate the probability of a putative parent-
offspring pair being false given the frequencies of shared alleles:    

)Pr()|Pr()Pr()|Pr(

)Pr()|Pr()|Pr( cc φφλφφλ

φφλλφ
⋅+⋅

⋅
=                      (3) 

where )Pr(φ is calculated as described above and )Pr( cφ  is the comple-
ment.  )|Pr( φλ  equals the probability of sharing the observed alleles given 
that the putative pair in question is false. We calculate this value for each 
putative pair using the multilocus “genotypes” where each locus contains a 
single value representing the frequency of an allele shared by a false pair.  
To create a distribution of frequencies of shared alleles among false parent-
offspring pairs, we multiply these values across all loci (“false-pair prod-
ucts”). We similarly calculate the product of the shared allele frequencies 
among all putative parent-offspring pairs (“putative-pair products”). To 
calculate )|Pr( φλ for each putative pair, we count the number of false-pair 
products that were less than or equal to the observed putative-pair products 
and divide by the total. Notice that when a putative pair shares the most 
common alleles across all loci that 1)|Pr( =φλ , and consequently  

)Pr()|Pr( φλφ = . To calculate )|Pr( cφλ , which is the probability of shar-
ing alleles given that a putative pair is true, we employed the same ap-
proach, but use the observed allele frequencies rather than the frequencies 
at which alleles were shared. 

2.2 Genotyping error 
Using the simulations, we calculate )Pr(φ for every number of mismatching 
loci (0,1,..,L). When )Pr(φ equals unity, the expected number of false pairs 
equals the total number of putative pairs within the data set. Mathematical-
ly speaking, when the prior )Pr(φ equals 1, the posterior, )|Pr( λφ , also  
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Fig 1: Number of observed putative (Nputative, green points) and expected 
false (Fpairs, brown points) parent-offspring pairs in the test data sets 
derived from three empirical studies (Table 1).  The left-hand plots repre-
sent data sets with no genotyping error and the right-hand plots represent 
data sets with 3% genotyping error.  Each panel represents 100 test data 
sets with 100 adults, 100 juveniles, and 50 true parent-offspring pairs.  The 
dashed line corresponds with the right-hand axis and represents the proba-
bility of a parent-offspring pair occurring by chance, )Pr(φ , estimated as 
Fpairs/Nputative.  The number of true parent-offspring pairs is estimated as 
the difference between Nputative and Fpairs.  Thus, whenever Nputative is 
greater than Fpairs, )Pr(φ is less than one, and a nonzero proportion of true 
parent-offspring pairs can be inferred. 
 
equals 1. Consequently when )Pr(φ is equal to 1 there is insufficient power 
to distinguish between true and false parent-offspring pairs (Fig. 1). In 
high-power data sets, the expected number of false parent-offspring pairs 
will be low for the first several mismatching loci. SOLOMON calculates 

)Pr(φ for every number of mismatching loci and calculates )|Pr( λφ  for all 
putative pairs where )Pr(φ is less than 1. Notice that the number of loci 
allowed to mismatch depends on the genotyping error rate and the power of 
the data set. If a data set has no genotyping error, then )Pr(φ will equal 1 
when allowing a single locus to mismatch because the expected number of 
false pairs will equal the total number of putative pairs (i.e., all true pairs 
will not mismatch at a locus and consequently all putative pairs will be 
false pairs for a positive number of mismatching loci). Conversely, if the 
same data set has a high rate of genotyping error, then there will be more 
true pairs mismatching at a single locus. When there are more true pairs, 
the total number of putative pairs will increase and )Pr(φ will be less than 
one provided that the expected number of false pairs is low, and the locus 
will be allowed to mismatch (Fig. 1). Thus the number of loci allowed to 
mismatch is dictated by the genotyping error rate and the expected number 
of false pairs. In the above framework, missing data is simply treated as a 
mismatch as there is no way to know whether a putative pair would or 
would not share have shared an allele where an individual is missing data.  

Null alleles can be accounted for by loading in adjusted estimates of allele 
frequencies from programs that specialize with such data types (e.g., 
MICROCHECKER, van Oosterhout et al. (2006)). To our knowledge, this 
is the first parentage method that can account for genotyping errors without 
needing estimates of the genotyping error rate. 

2.3 Microsatellites versus SNPs 
Using hundreds of thousands to millions of SNPs can allow for the elucida-
tion of first, second and third order relatives (Manichaikul et al., 2010).  
Nevertheless, for most species it is not yet cost effective to genotype hun-
dreds or thousands of individuals at so many markers. SOLOMON cannot 
expediently process millions of SNPs, but rather can accommodate large 
SNP data sets by performing a priori power analyses to determine a mini-
mum number of SNPs for the given sample sizes to capture all true parent-
offspring pairs. After a conservative number of SNPs is determined, the 
appropriate number of loci can be selected.  

The precision associated with the posterior probabilities is increased by 
increasing the number of simulated data sets and genotypes. Because of the 
greater number of alleles and lower numbers of loci typically found in 
microsatellite studies, these markers require more simulations than SNPs 
for comparable levels of precision (see Table S1 for details and guidelines).  

2.4 Validation 
We use hypothesis-testing nomenclature to define the null hypothesis as no 
relationship between a putative parent-offspring pair (i.e., the pair is unre-
lated). In this framework, a type I error occurs when a putative pair are 
unrelated, but are falsely identified as a true pair for a given alpha. For 
example, a type I error would occur if alpha was set to 0.05 and an unrelat-
ed adult and juvenile were assigned a )|Pr( λφ value less than 0.05. Be-
cause lower )|Pr( λφ values represent a reduced probability of sharing 
alleles by chance, a lower posterior probability represents a reduced proba-
bility of committing a type I error. For most methods the type I error should 
be less than or equal to the chosen alpha, else too many alternative hypoth-
eses will be falsely accepted. A type II error occurs when a true parent-
offspring pair are not identified for a given alpha (i.e., αλφ >)|Pr(   for a 
true parent-offspring relationship). We determined the properties of our 
method by measuring the type I and type II errors across a range of alpha 
levels.  

To examine the relationship between alpha and type I and II errors, we 
used the per locus allele frequencies from the empirical studies (Table 1) to 
construct test data sets.  For each of the three empirical studies we created 
100 test data sets with 100 adults, 100 juveniles and 50 true parent-
offspring pairs. The adult and juvenile genotypes were created in accord-
ance with Hardy-Weinberg Equilibrium (HWE). The parents and offspring 
were created by randomly selecting 50 adults and 50 juveniles and, for each 
pair, randomly copying one allele from the adult to the juvenile at each 
locus. For each of the 100 test data sets, the posterior probabilities were 
calculated and type I and type II errors were identified. Precision of the 
posterior probability was calculated by measuring the range of posterior 
probabilities across identical pairs from 100 replicate runs of a single test 
data set from each of three study species (Table S1). We also created test 
data sets with varied numbers of unrelated individuals and offspring per 
parent (Tables S2 and S3).   

We examined the effects of genotyping error by introducing errors into 
the test data sets. We defined the genotyping error rate as the proportion of 
all alleles that were called incorrectly (Bonin et al., 2004; Pompanon et al., 
2005). To add error to the test data sets, we randomly sampled a single 
allelic position from the multilocus data set. We treated the data set as a 
matrix with m rows and n columns and randomly selected allele mna . We 

next replaced allele mna with a randomly selected allele from the same 
locus. This process was repeated until the desired genotyping error rate was 
obtained. Because alleles were randomly selected, an allele chosen to con-
tain an error could be replaced with the same allele. We chose genotyping 
error rates of 0, 0.005, 0.01 and 0.03 because they encompass the average 
documented error rates for SNPs and microsatellites (Pompanon et al., 
2005; Saunders et al., 2007). 
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Fig. 2.  The relationship between alpha and the type I and II error rate.  
Genotyping error rates were varied from 0 to 3%.  Each panel represents 
100 test data sets with 100 adults, 100 juveniles and 50 true parent-
offspring pairs. The maximum observed type I error was plotted as a 
dashed gray line.  Type I error is consistently at or below α (solid line), 
indicating that our method is conservative and does not produce an excess 
of false positive parent-offspring pairs.  For the steelhead and Labrador 
retriever datasets, an increase in alpha beyond 0.05 recovers few additional 
true parent-offspring pairs. The lowest alpha value plotted is 0.001 and the 
0.5% genotyping error was omitted from the retriever data set for visual 
clarity. See figure S1 to view these results on a logarithmic scale. 

2.5 Number of known parents 
The approach presented above is general in that no information about the 
sample of adults is required. We expanded the above approach to two spe-
cific parentage applications. First, we expanded the method to situations 

where one parent is known and it is possible to genotype the parent and 
their offspring. For example, many young mammals remain closely associ-
ated with their mothers. After genotyping both the mother and their off-  
spring, it is possible to exclude the maternal alleles from the offspring.  
This reduces the number of alleles to search for in putative fathers and can 
greatly increase the power for assignment (Christie et al., 2011; Jamieson 
and Taylor, 1997). Second, we expanded the approach to include known 
parent-pairings, where it is known which males mated with which females.  
For example, captive-breeding and livestock programs often specifically 
cross certain males to females and keep detailed records of such pairings.  
Knowing which females and males are paired can substantially increase 
assignment power because it (1) reduces the number of pair-wise compari-
sons and (2) each allele in the offspring must match one allele in each 
parent. To allow researchers to take advantage of the increased power and 
reduced type I error from such study designs, we appropriately modified 
the simulation and posterior probability calculation algorithms. We tested 
these modified approaches with 100 test data sets created from the Europe-
an beech study because it had the lowest power of the three data sets (and 
thus the most to gain from additional information). For validation purposes 
we set the genotyping error rate to 1% and created 100 mothers and 100 
fathers, each of which produced a single offspring.    

2.6 Siblings and other relatives 
Although full-siblings differ from parents and offspring in the way that 
alleles are shared by descent (Blouin 2003), they can share alleles across 
large numbers of loci, particularly when including alleles that are shared by 
chance.  This is only a concern if full siblings can occur in both the sam-
pled adults and juveniles (e.g., species with lengthy and overlapping gener-
ation times), and if they occur at high frequency.  To account for full-
siblings, we additionally calculate a modified Bayesian prior that includes 
alleles that are both identical-by-state and identical-by-descent.  This modi-
fication results in a more conservative test that prevents full-siblings from 
be assigned as parent-offspring pairs.  We tested both the modified and 
unmodified approach on data sets as described above, but where we intro-
duced pairs of full siblings as 5, 15, 25, and 50 percent of the sampled 
individuals.  Additionally, we tested whether more distant kinship pairs 
(e.g., aunts/uncles to nieces/nephews, half-siblings) would be falsely identi-
fied as parent-offspring pairs.  

2.7 Comparison with existing methods 
We next analyzed empirical data by examining paternity assignments for 
four run-years of summer-run steelhead collected from the Hood River, 
Oregon. This is a new dataset that has not been previously analyzed. Tissue 
samples from all returning anadromous steelhead were collected as the fish 
were passed over the Powerdale dam en route to their spawning grounds. 
The dam was a complete barrier to migrating fish. All 1702 summer-run 
steelhead were genotyped at the same 8 polymorphic loci used in the win-
ter-run steelhead examples above (Araki et al., 2007). This data set presents 
a rigorous test for two reasons. First, not all candidate fathers were sampled 
because resident steelhead (i.e., rainbow trout) that remained above the 
dam could also have sired offspring (Christie et al., 2011). Second, any 
given offspring may have aunts and uncles competing for parentage as-
signments (Olsen et al., 2001). 

Direct and equitable comparisons between parentage methods can be 
challenging because each method represents different theoretical approach-
es. Furthermore, each method often makes different assumptions and re-
quires different input information. We first used Mendelian incompatibility 
(exclusion) to assign offspring to putative fathers. We allowed one locus to 
mismatch to account for genotyping error. We next used the most-
frequently used parentage program, CERVUS 3.03 (Kalinowski et al., 
2007; Marshall et al., 1998), to perform the same assignments. CERVUS 
employs a simulation procedure to determine the significance of log-
likelihood scores for candidate parent-offspring pairs. This program re-
quires the estimates of three parameters: (1) the number of candidate par-
ents, (2) the proportion of candidate parents sampled and (3) the genotyp-
ing error rate. Because we did not have estimates of these parameters (they 
require substantial observational data), we set the number of candidate 
parents to the number of adults sampled in our data set and chose a small  
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Fig. 3. Relationship between the number of used SNPs and the percentage 
of true parent-offspring pairs that were correctly identified in the retriever 
data sets.  Genotyping error rates were varied from 0 to 3%, and all parent-
offspring pairs were correctly identified with 250 SNPs.  Notice that small 
amounts of error do not substantially affect the assignment rate with inter-
mediate numbers of loci. 
 
and large proportion of candidate parents sampled (0.1 and 0.9, respective-
ly). We set our genotyping error rate to 1%, which is the default setting, 
and included assignments with 95% or higher confidence. Lastly, we used 
SOLOMON to analyze the same sets of samples, using an alpha of 0.05.   

To verify our assignments with these three methods, we genotyped all 
individuals at 5 additional microsatellite loci (see SI for details). To deter-
mine which pairs were definitively true, we performed exclusion at all 13 
loci and allowed for one locus to mismatch. For matches at both 12 and 13 
loci, the average expected number of false pairs was less than one. For all 
three methods we measured the total number of assignments and the total 
number of correct assignments as determined by comparison to the pairs 
identified with the additional loci.  

3 RESULTS 
3.1 Validation 
For all three empirical studies used to generate test data sets, the 
type I error rate was always equal to or less than the desired alpha  
(Fig. 2). The beech data sets had the highest type II error rate (low-
est power) of the three studies. The steelhead data sets had a lower 
type II error rate, despite having 5 fewer loci than the beech study.  
Thus, in these two cases, increased marker polymorphism resulted 
in greater power for parentage analysis than did additional loci.  
Lastly, the retriever study with 200 SNPs had the lowest type II 
error rate (highest power), further confirming that SNPs can be 
useful markers for parentage analysis (Anderson and Garza, 2006).  
The inherent tradeoffs between type I and II errors revealed that 
there is a marked decrease in type II error (increase in power) by 
changing the alpha threshold from 0.001 to 0.01. Further increases 
in alpha from 0.01 to 0.1 yielded marginal increases in power for 
the steelhead and retriever data sets, but provided consistent in-
creases in power for the beech data set. In general, a good tradeoff 
between type I and II errors can be obtained by setting alpha at 
0.05, but this value should ultimately be decided by weighing the 
relative risks of committing type I and II errors for a particular 
study (Sokal and Rohlf, 1994). Not surprisingly, the likelihood of 
committing type I errors increases with low-power data sets that  

 
 
Fig. 4.  The relationship between alpha and the type I and II error rate for 
three parentage scenarios: No known parents (orange circles), known par-
ent-pairs (blue circles), and one known parent (brown circles).  Notice that 
type I and II errors are reduced as additional parentage information is uti-
lized. For each parentage scenario, 100 test data sets were constructed with 
100 adults, 100 juveniles and 100 true parent-offspring pairs.   
 
have high values for the prior. As such, we recommend reporting 
both the prior and posterior probabilities.   
 
Table 2. Comparison of Exclusion, CERVUS, and SOLOMON on a 
summer-run steelhead data set.  ‘Adults/Juvs’ represents the sample sizes 
of adults and their putative offspring, respectively.  ‘Assigned’ refers to the 
total number of assignments.  ‘Correct’ refers to the number of assignments 
that were correct after genotyping all putative pairs at 5 additional loci.  For 
CERVUS, we estimated the proportion of candidate parents sampled to be 
0.1 or 0.9, though we did not possess demographic estimates of this param-
eter (results for 0.9 are presented in parentheses).    
 

Runyear Adults/Juvs Method Assigned Correct 

2001 201/227 Exclusion 79 38 

2001 201/227 CERVUS 35 (98) 23 (37) 

2001 201/227 SOLOMON 29 27 

2002 343/285 Exclusion 141 90 

2002 343/285 CERVUS 47 (151) 39 (78) 

2002 343/285 SOLOMON 63 61 

2003 144/216 Exclusion 73 49 

2003 144/216 CERVUS 44 (83) 34 (49) 

2003 144/216 SOLOMON 28 28 

2004 90/196 Exclusion 56 36 

2004 90/196 CERVUS 32 (65) 27 (35) 

2004 90/196 SOLOMON 20 20 

All years 778/924 Exclusion 349 213 

All years 778/924 CERVUS 158 
(397) 

123 
(199) 

All years 778/924 SOLOMON 140 136 
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In all three data sets, genotyping error increased the number of 
type II errors. Because the retriever data set could allow for the 
greatest number of mismatching loci (Fig. 1), this data set was the 
least affected by genotyping error. In general, genotyping error 
rates of 0.005 or 0.01 did not drastically increase the type II error 
rate. A genotyping error rate of 3%, however, did result in substan-
tial increases in type II error for all three data sets. We further ex-
amined the tradeoff between genotyping error rates and power in 
the retriever data set. All data sets, regardless of the genotyping 
error rate, identified all true parent-offspring pairs with 250 loci 
(Fig. 3). As expected, the number of loci required to identify all 
true parent-offspring pairs increased with an increase in the geno-
typing error rate.   

Additional samples of a single known-parent or information 
about putative parent-pairings greatly reduced the type I and II  
error rates (Fig. 4). Both the type I and type II errors were highest 
when no known parents were sampled. Having a known sample of 
one of the parents or knowing the parent-pairs reduced the type II 
error by nearly 60% for the beech study. Thus, when possible, we 
recommend collecting this additional data in order to maximize 
power for parentage analysis. 

In general, pairs of simulated full siblings that were split be-
tween adult and juvenile files did not get assigned in large numbers 
until they represented more than 25% of the individuals in a data 
set (Table S4).  Adjusting the prior for alleles that were identical-
by-state as well as those that were identical-by-descent resulted in 
fewer sibling pairs with a posterior probability less than 0.05 (Ta-
ble S5). Accounting for alleles that are identical-by-descent comes 
at the cost of assigning true parents, however, as it can be difficult 
to distinguish between full-siblings and parent-offspring pairs with 
genotyping errors with limited numbers of loci.  As such, we rec-
ommend using the modified sibling approach only when large 
numbers of siblings are expected to be sampled.  Other levels of 
relationship, that share fewer alleles than full-sibs (e.g., 
aunts/uncles to nieces/nephews) were not falsely identified using 
the unmodified approach.  

3.2 Empirical data  
Across all four run-years of our summer-run steelhead data set, we 
found that using simple exclusion for 7 of 8 loci (i.e., allowing one 
locus to mismatch) resulted in a high type I error rate. Using exclu-
sion, a total of 349 offspring were assigned to a father, of which 
213 were later confirmed to be true assignments with genotyping at 
the 5 additional loci (Table 2). Thus, exclusion produced a total of 
136 false assignments yielding a type I error rate of 0.39.  
CERVUS had type I error rates of 0.22 and 0.49 when we set the 
estimates of the proportion of candidate parents sampled to 0.1 and 
0.9, respectively. In contrast, SOLOMON had a type I error rate of 
0.029 for an alpha set to 0.05. Consistent with the results from the 
test data sets (see Figs. 2,4), varying the alpha in this empirical 
data set resulted in an observed type I error less than or equal to 
alpha in all 4 years (Table S6). It is worth noting that in some years 
CERVUS had a higher number of false assignments than exclusion 
because the program sometimes allowed for up to two loci to mis-
match.   

Previous studies have shown that the performance of CERVUS 
is robust and we suspect that the possible presence of aunts and 
uncles among the candidate parents coupled with an unknown 
percentage of sampled parents provided challenging conditions. In 
general, SOLOMON performed favorably by minimizing the num-
ber of false assignments while maximizing the number of correct 
assignments (Table 2). 

4 DISCUSSION 
Accurate parentage assignments are necessary in order to appropri-
ately address a wide range of research questions (Jones and 
Ardren, 2003; Pemberton, 2008). Here, we provide a Bayesian 
method that can account for genotyping error, missing data, and 
false matches without requiring estimates of any non-genetic pa-
rameters (i.e., all analyses simply use the provided genotypic data). 
These methods can be applied to a vast array of data sets ranging 
from samples of large, wild, populations with unknown numbers of 
sampled parents to carefully controlled crosses with detailed pedi-
gree records. To our knowledge, this is the first parentage program 
that does not require direct estimates of genotyping error. This 
solution represents a significant advance because choosing the 
appropriate method for estimating genotyping error rates can be 
ambiguous and is further obfuscated by the different types of geno-
typing errors that can occur (Pompanon et al., 2005). Furthermore, 
the estimation of error rates typically involves the genotyping of 
additional (or duplicate) samples, which is costly from both a time 
and monetary standpoint. Because this method was designed with a 
null hypothesis of no relationship, it may not be ideally suited for 
data sets with large numbers of related individuals. Future im-
provements could include specifying different null hypotheses of 
relationship and evaluating them in a likelihood-based framework.    

Our analyses revealed that, for a given data set, the Bayesian 
approach appropriately minimizes false assignments while maxim-
izing the number of correct assignments. The number of true par-
ent-offspring relationships correctly identified depends upon the 
sample sizes, the number of loci, the allele frequencies, and the 
genotyping error rate. For a given marker set, larger sample sizes 
rapidly increase the number of pairs that share alleles by chance 
(Christie 2010) and increases in genotyping error can diminish 
power (Fig. 2, Fig. 3). Furthermore, the number and frequency 
distribution of alleles at each locus contribute to the rate of false 
matching. Uniform allele frequencies result in the greatest power 
for parentage analysis, but are rarely observed in genetic markers. 
On the other hand, SNPs with a minor allele frequency less than 
1% will contribute little information to the elucidation of parent-
offspring pairs. Given the multitude of factors that contribute to 
false matching and reduced power, we suggest that researchers 
conduct a priori power analyses before designing a study that in-
volves parentage analysis. Such power analyses can dictate pre-
cisely how many loci would be required for given sample sizes. 

We provide a module for a priori power analysis as part of our 
program SOLOMON, which is available as a freely distributable R 
package (R Development Core Team, 2012). SOLOMON is run 
with a graphical user interface (GUI) written with the TL/TCK 
package provided by R. SOLOMON performs the described 
Bayesian parentage analysis for data sets with no known parents, 
one known parent, or known parent-pairs. Using an Intel core i7TM 
processor with eight gigabytes of RAM, the average run-time was 
11 minutes for the beech data sets, 8 minutes for the steelhead data 
set, and 13 minutes for the retriever data set (with larger sample 
sizes resulting in increased run times). Furthermore, the program 
performs exclusion for the three types of parentage analysis, and 
the exclusion interfaces allow for user-defined numbers of loci to 
mismatch.  In summary, the Bayesian approach implemented in 
SOLOMON can be applied to a wide variety of data sets resulting 
in robust parentage assignment.  
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