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Abstract (max 250 words)

Models relating species distribution records toiemmental variables are increasingly
applied to biodiversity conservation. Such techegjoould be valuable to predict the
distribution, abundance or habitat requirementspeicies that are rare or otherwise difficult
to survey. However, despite widely-documented pasittraspecific relationships between
occupancy and abundance, few studies have demiaust@nvincing associations between
models of habitat suitability based on species meoge, and observed measures of habitat
quality such as abundance. Here we compared mbdséi on field-derived abundance and
distribution (presence-absence) data for a rarentagubutterfly in 2006-08. Both model
types selected consistent effects of environmesatiahbles, which corresponded to known
ecological associations of the species, suggetiaigabundance and distribution may be a
function of similar factors. However, the modelsé&@ on occurrence data identified stronger
effects of a smaller number of environmental vdaapindicating less uncertainty in the
factors controlling distribution. Furthermore, cseslidation of the models using observed
abundance data from different years, or averagexbsagears, suggested a marginally
stronger ability of models based on occurrence tiapaiedict observed abundance. The
results suggest that, for some species, distributiodels could be efficient tools for
estimating habitat quality in conservation plannimgnanagement, when information on
abundance or habitat requirements is costly oractpral to obtain.
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Introduction

Understanding patterns and mechanisms of spe@#diion and abundance is a central
issue in ecology and conservation (Brown 1984)ti8pgatterns in the distribution of
individuals may have important effects not onlytbe occupancy and abundance of single
species (Lawton 1993), but also on interspecifoupancy-abundance relationships (He and
Gaston 2000, Holt et al. 2002) and community spgealundance distributions (McGill et al.
2007). In practical terms, conservation plannirguress the identification of sites whose
environmental characteristics allow them to suppostainable populations of focal species
(e.g. Aratdjo and Williams 2000). However, for mapecies and parts of the world,
information on distribution, abundance, and theirmmmental determinants of these, is far
from comprehensive.

Species distribution models could help to overctmeeproblem of incomplete information
on species distributions and abundance, becaugedlate occurrence or abundance data
with the environmental attributes of known locaspand use the relationships to estimate
occurrence or abundance more widely (Guisan anan&mann 2000; Guisan and Thuiller
2005; Elith and Leathwick 2009; Schréder et al. 08Vith rapid recent advances in large
data-base management, statistical techniques,qathggography and geographic information
systems, species distribution models are now widséd for explaining and predicting
occurrences (and to a much lesser degree, aburgjdacenany biological groups, over a
wide range of spatial scales and environmentsh(@litd Leathwick 2009).

Due to data availability, species distribution miedge most commonly based on
occurrence data (presence-absence or presence-amdybherefore estimates of habitat
suitability often consist of predicted probabilgtief occurrence (Guisan and Zimmermann
2000). Predicted habitat suitability may subsedydre used for evaluating the impact of

environmental change on species distributions @bweiger et al. 2008), supporting
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management plans for species recovery and reinttioehu(e.g. Willis et al. 2009), selecting
reserves (e.g. Araudjo and Williams 2000; Cabezd. €2010) and assessing species invasion
(e.g. Peterson and Vieglais 2001). All these apgres assume that habitat suitability from
models is positively correlated with habitat qualliut testing this assumption is by no means
straightforward. Empirical estimation of habitatdjty (sensu Van Horne 1983) involves
detailed information on density, mean individuaivseal, and mean expectation of future
offspring, and these demographic parameters magydsebitively intensive and costly to
collect over a large number of sites at broad apatales (e.g. EImendorf and Moore 2008;
St-Louis et al. 2010). As an alternative, populatiensity might be assumed to be positively
correlated with habitat quality, but there are tations to this approach, such as in temporally
variable environments where abundance varies grizgath year to year (Van Horne 1983).
Nevertheless, positive intraspecific occupancy-aamce relationships suggest that
common environmental factors may indeed govern tahdistribution and abundance of
individual species (Gaston et al. 2000; Holt eaD2). Analyses based on time-series data
suggest that this relationship is stronger for ggeshowing positive or negative trends in
distribution and abundance than for species whopelptions are fluctuating in response to
interannual stochasticity (Gaston et al. 1998, 2601t et al. 2002). There is also less
evidence for positive intraspecific occupancy-alana relationships using spatial data for
single time periods (but see Venier and Fahrig 1,99&n though relationships of abundance
and occupancy over spatial environmental gradieawe important implications for the
structure of species’ geographic ranges (e.g. $agad Gaines 2002) and species responses
to environmental change (e.g. Maclean et al. 20hifact, despite the potential importance
of a positive correlation between abundance anddtauitability, few distribution-
modelling studies have validated the relationsBiménez-Valverde 2011). Furthermore, for

a substantial number of species, predicted hatiigability does not appear to be
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significantly correlated with observed abundaneetipularly when restricting analyses to
occupied, potentially habitable sites (Pearce arddr 2001; Nielsen et al. 2005; Jiménez-
Valverde et al. 2009; Duff et al. 2011; Guarin@et2012; but see VanDerWal et al. 2009;
Oliver et al. 2012). Limitations to these habitaitability models may result from inadequate
survey techniques, or inappropriate choice of susgale and available environmental
variables (Pearce and Ferrier 2001). For instastett®, pooled from surveys conducted over a
number of years may obscure the effects of envierial variables on abundance by
combining variation in space and time (e.g. PearntkFerrier 2001; Jiménez-Valverde et al.
2009). Furthermore, refinement of habitat pred&foom the broad abiotic and vegetation
information used in some studies, to variablededircimportance to focal species, could also
improve abundance-habitat suitability correlati¢eg. Pearce and Ferrier 2001; Jiménez-
Valverde et al. 2009; Oliver et al. 2012).

In this paper, we develop models of abundancedastdbution for adults of the apollo
butterfly, Parnassius apollo, in a mountain area of central Spain. The systemiges
considerable environmental variation over spacevéion, topography and vegetation
structure), and time (interannual weather varighifiGutiérrez Illan et al. 2010. apollo is
appropriate for the research because there aablelnethods for estimating abundance and
distribution (Pollard and Yates 1993), it is aniljadetectable species in the field (Sanchez-
Rodriguez and Baz 1996), and relevant environmeatables can be deduced from larval
habitat requirements at local scales (Ashton 2G09). For this system, we (1) compared the
consistency of variables selected in abundancaelmstabution models based on empirical
data for a single year, under comparable envirotaheonditions; and (2) evaluated the
models’ predictive power using observed abundanckscted in the same year and in two
subsequent years, allowing us to account for dpathtemporal environmental variation in

the region.
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Methods

Study system
Parnassius apollo (L.) is a predominantly mountain species, whoseala feed orsedum spp.
and sometimes other Crassulaceae (Deschamps-€p#in1997)It has one adult generation
per year (June-August), and hibernates as a samadl In the eggshell (Tolman and
Lewington 1997). Its European population is esteddb have declined by almost 30% since
2000, with greatest declines at low elevations @amay et al. 2010). Climate warming is
thought to be implicated in the loss of low-elewatpopulations (Descimon et al. 2005), but
land use change and pollutants have also beerdliikiés decline (Gomariz Cerezo 1993;
Sanchez-Rodriguez and Baz 1996; Nieminen et all,20@ see Fred and Brommer 2005).
The Sierra de Guadarrama (central Spain) is aroappately 100 x 30 km mountain
range located at 40°45’ N 4°00" W. The mountaingeimcludes 25 separate 10 km grid
squares in whicP. apollo has been recorded historically, in a populationvoek that is
geographically separated from all other recordhefspecies in Spain (Garcia-Barros et al.
2004). The mountain range is bordered by plaink elg¢vations o€. 700 m (to the north)
andc. 500 m (to the south) and reaches a maximum etevafi2428 m (Fig. 1). The main
regional host plant reported fBr apollo is Sedum amplexicaule (Sanchez-Rodriguez and Baz
1996), although larvae have also been observediged S brevifolium, S. forsterianum and
S album (Ashton et al. 2009). Recent phylogeographic aedyhave shown that
southwestern European populations retain a lasgidén of genetic variation &. apollo,
highlighting their conservation value (Todisco et2810).

#Fig. 1 approximately here#
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Abundance and distribution of P. apollo

In 2006, butterflies (including. apollo, if presentwere counted on standardised 500 m long
by 5 m wide transects (Pollard and Yates 1993)\etven weeks at 43 sites (random sites
henceforth; elevation range 550-2250 m), of whi@lwére also sampled in 2007 and 2008
(in total, 246 visits over the. apollo flight period). HoweverP. apollo is rare in the study
system (only a maximum of 5 occupied sites fromdiBeites visited in 2006), so it would
have been necessary to sample very many randosrigigehieve 20 or more presences, an
appropriate minimum number for abundance and digion models (e.g. Wisz et al. 2008).
Therefore, in 2006 we visited 47 additional locasido increase our sampleRfapollo
presences, selected using PLpapollo records from butterfly surveys in 2004 and 2005
(Gutiérrez lllan et al. 2010), or (8 amplexicaule records from 2005. Our 90 (43 + 47)
sample sites were located in 29 UTM 10 km grid seggian total, including 17 of the 10 km
grid squares where. apollo has ever been recorded (Garcia-Barros et al. 2004)

At each additional site, we walked the 500 m trahseice (usually 1-2 weeks apart,
weather permitting) around thre apollo peak flight period expected for the elevation ldase
on preliminary data from 2005 and by walking wedkénsects at four, nine and seven sites
in 2006, 2007 and 2008, respectively, between ane and mid-August (Ashton et al.
2009). We sampled fd?. apollo at all 90 sites in 2006, 62 sites in 2007, aneh5Z008 (40
of the 43 random sites plus 22 or 19 additionalssitespectively). BecauBeapollo
frequently occurs in low density populations (lmieasily visually detected), it was
considered present where one or more individuate weunted (including records before or
after the transect count in a few cases), and aldare no individuals at all were observed.

Spatial autocorrelation can influence the religpitif biogeographic analyses, because it
potentially inflates Type | errors in null hypotiesignificance testing and generates longer

models in information theoretic approaches (e.gidkilho et al. 2008). We ensured that
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survey sites were selected to be located in separain grid squares, corresponding to a
distance travelled by fewer than 10% of adult bflies in another study (Brommer and Fred
1999). In addition, to test formally for spatiatacorrelation, we generated all-directional
correlograms (Legendre and Legendre 1998) for admureldata in 2006 by plotting values of
Geary’sc coefficient (recommended for variables departiognf normality) against

Euclidean distances between sites. Geargalculation and significance testing were
performed using 4999 Monte Carlo permutations indbadd-in Rookcase (Sawada 1999).
No correlogram was globally significant, indicatitigat spatial autocorrelation i apollo

abundance data was negligible.

Environmental variables

Universal Transverse Mercator (UTM) coordinatesenreicorded every 100 m along
transects using a handheld Garmin GPS unit, and ussd to plot transects in a geographic
information system (ArcGIS) (ESRI 2001). The averatpvation of 100 m cells intercepted
by transects was determined using a digital elemanodel (Farr et al. 2007).

We estimated insolation as the total direct s@dration per 100 m grid cell during the
whole year using the Solar Analyst 1.0 extensioAieView GIS (Fu and Rich 2000), based
on latitude, slope, aspect, and elevations of smding cells in a 110 km x 155 km area.
Insolation variables were estimated as the meah@dm grid cells intercepted by each
transect.

In the study area, elevation is related to clinpgteameters (annual mean temperature: 5.8-
5.9°C/km decrease; annual rainfall 683-767 mm/kenéaseR? = 0.94 in both cases; Wilson
et al. 2005), but these gradients are based otivediafew meteorological stations (10-11).
Hence, we use elevation and modelled insolatiansity instead of estimated temperature

and rainfall in our models.
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We used twenty 0.25 Tjuadrats (50 x 50 cm) per transect at 25 m intetgeestimate
percentage cover of ea8bdum species in 2006. Vegetation height at the cerfteach
quadrat (in 2006), and bare ground and shrub dave&008) were also recorded. A site
average was taken for each varialle 20 quadrats). We also estimagdum frequency,
the proportion of quadrats occupied by each spéaege 0-1), as a measure of the host
plant distribution over each transect site. As stim@ate of the total host plant resource
available forP. apollo at each site, we calculated percentage coverragddncy for the four
Sedum species known to be eaten by larvae (see abollepeasured variables in our study
have biological significance (Ashton et al. 2008 detailed in Table 1.

#Table 1 approximately here#

Abundance and distribution models

To analyseP. apollo abundance, we used GLMs applying a quasi-likelhestimation of
regression coefficients using a log-link and settime variance equal to mean (quasi-Poisson
regression, McCullagh and Nelder 1989; Ver Hoef Badeng 2007). FoP. apollo

distribution, we performed GLMs with logit-link armnomial error (logistic regression).
Sample size was = 90 sites in both cases. We included six candidatiables foP. apollo
abundance and distribution models (Table 1). Wecsedl only one (host plaBédum
frequency) from the two potential host plant valeslin Table 1 because univariate analyses
showed stronger relationshipskfapollo abundance and distribution with that variable than
with host plantSedum cover (results not shown) and they were highlyalated (s= 0.92,P

< 0.001). Only one pair-wise correlation betweenrgmaining independent variables had
absolute values higher than 0.7 (the most commambjied threshold, Dormann et al. 2012),
elevation-vegetation heights(= -0.75,P < 0.001). However, we did not exclude these
variables from analyses because they had potgntidiérent biological significance (see

Dormann et al. 2008).
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We used the information-theoretic approach (Bumbad Anderson, 2002) to model
abundance and distribution Bf apollo. We included linear and quadratic terms for the 5
condition variables and only linear terms for taeaurce variable (Table 1). For each
response variable, we fitted all possible combarettiof linear and quadratic terms (subject in
the last case to the condition that the correspanliivear term was included in the model),
with no interactions, and used the Akaike InformatCriterion, adjusted for small sample
size (QAIC for abundance and AlQor distribution; Burnham and Anderson 2002) tokra
models. To obtain our model confidence sets, wectsll models that were within six
A(Q)AIC. units of the top-ranked model (Richards 2005)/weding more complex models
that do not have A(Q)AIC. which is lower than all the simpler models witlwhich they are
nested (Richards 2008). This procedure guards stgdi@ selection of over-parameterised
models whilst maintaining a high probability ofegting the true best model (Richards 2008).
The adequacy of quasi-Poisson regression for modelbundance data was examined using
estimated and empirical variance-mean plots fofuhenodel (Ver Hoef and Boveng 2007).

Following model selection, we used model-averagingbtain model coefficients based
on the confidence sets. Doing so incorporates msmlettion uncertainty whilst weighting
the influence of each model by the strength a$uggporting evidence (Burnham and
Anderson 2002). Model-averaged coefficients werevee by weighting using Akaike
weights and averaging coefficients over all modekhe confidence set. Averaging over all
models means that in those cases in which a vanai$ not in a particular model, its
coefficient value was set to zero. This servesnel@rate much of the model selection bias
of coefficients (Burnham and Anderson 2002). We alstimated relative variable importance
by summing the Akaike weights across all modelh@confidence set that contain that
variable. This parameter lies in the range O-1@odides evidence for the importance of

each variable relative to the other variables endbntext of the set of models considered.
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Model selection and model averaging were performi¢id “MuMIn” package version 1.6.6

(R Development Core Team 2011; Bar012).

Model evaluation

Abundance and distribution models were evaluatédiinways, verification and cross-
validation (Araujo and Guisan 2005). For verifioati we calculated Spearman’s rank
correlation coefficientsr{) for predicted abundance or probability of occnoe (from model-
averaged coefficients) against observed abundaadoes/in 2006, 2007, 2008 and averaged
for 2006-2008 (Guisan and Zimmermann 2000; Pottistdith 2006). Correlations for 2006-
2008 average abundance were calculated for tetstengffect of interannual variability in
abundances on model predictions: we would expegetaorrelations with averaged than
with individual annual abundances. We used ranketations between predicted and
observed values because our transect counts wateeestimates of local abundance rather
than absolute densities or population sizes (Peardd-errier 2001).

Given that there were insufficient sites to hayeasate calibration and evaluation data
sets, we used a Jackknife procedure for crossataiiu (e.g. EImendorf and Moore 2008;
Jiménez-Valverde et al. 2009). This method corgisfagenerating N confidence set models,
sequentially omitting one site, where N is the nemdf sites. We then calculated model-
averaged coefficients for each confidence set. asahose coefficients, we calculatgdor
predicted abundance and probability of occurremg@aenast observed abundance values for
each omitted site. We examined the relationshipsd®n observed abundances and predicted
values (abundance or probability of occurrencelgisivo tests (e.g. Pearce and Ferrier 2001;
Nielsen et al. 2005): (1) observed abundance Miittaanples (including absences) against
predicted values; and (2) observed abundance-wiresent (omitting absences) against
predicted values. Both tests represent the modtibation to explaining abundance, but

only the first one includes the discrimination bsant locations (Nielsen et al. 2008).
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coefficients were calculated with “pspearman” pagkaersion 0.2-5 (Savicky 2009; R

Development Core Team 2011).

Results

Abundance and distribution models

In 2006, a total of 23P. apollo were counted in 26 of the combined sample of 48oan

sites and 47 targeted sites, with a maximum ldoahdance of 36 individuals. The lowest
elevation presence was at 1287 m. In 2007 and 2088punted 184 (21 out of 62 sites) and
98 (21 out of 59 sited). apollo butterflies, with maximum local abundances of Ad &8
individuals, respectively. The species was obsemdd separate 10 km grid squares.

Abundance and distribution models were based dti-model inference with (Q)AIE
(Table 2). The dispersion parameter for the fuligjtPoisson model was 3.20, indicating that
the data were not excessively over-dispersed (gabeve 4 would suggest that model
structure could be inadequate; Burnham and Ande2668). Estimated and empirical
variance-mean plots for the full model suggested guasi-Poisson regression was
appropriate for this data set (results not shown).

#Table 2 approximately here#

For abundance, the confidence set consisted ofdd®is. The final model included
quadratic relationships with elevation, bare grooader, shrub cover, vegetation height (all
with positive linear and negative quadratic coéfnts) and insolation intensity (with
negative linear and positive quadratic coefficigraad a positive linear relationship with host
plantSedum frequency. Relative variable importance was higbeelevation, shrub cover
and their corresponding quadratic terms, and Hast fedum frequency (values 0.90;

Table 2).
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For distribution, the confidence set consistedoof fmodels. The final model included
quadratic relationships with elevation and shrubecdwith positive linear and negative
quadratic coefficients) and a positive linear iielahip with host planedum frequency.
Relative variable importance was higher for elevafind its quadratic term, shrub cover and

host plantSedum frequency (values 0.90 in all cases; Table 2).

Model evaluation

The performance of abundance and distribution nsodak evaluated by testing the
correlation of predicted abundances and probadslibf occurrence against observed
abundances (Table 3). For the complete data sedfit@dsampled in 2006), predicted
abundance from the final model was significantlgipeely correlated with observed
abundance, with smaller values for cross-validati@m for verification (Fig. 2). Including
only those sites in whicB. apollo was present, produced smaller correlation coeffitsi
between predicted and observed abundance valgesfiant for verification and non-
significant for cross-validation, Fig. 2). The @att was very similar for the correlations
between predicted probability of occurrence anceolexd abundance, but in this case all
coefficients were significant. The scatter plotgesis larger variability in observed
abundance values for higher predicted probabildfesccurrence (Fig. 2).

#Table 3 approximately here#

#Fig. 2 approximately here#

For the reduced data sets (59 sites sampled 8-2008), all correlations were on average
higher than their corresponding correlations penfeat with the complete data set (90 sites in
2006). This was due probably to the fact thathenreduced data sets, a relatively large
number of sites with high probability of occurreroé unoccupied b#. apollo were
excluded from analyses (Fig. 2). Apart from thig pattern shown by correlation values was

also similar to that for the complete data sethwib apparent trend over the sampling years.



10

15

20

14

The only non-significant correlation coefficientens those between predicted and observed

abundances for cross-validations for occupied §e2006, 2007 and 2006-2008 average.

Discussion

Ecological significance of abundance and distribution models

Most studies to date concerning correlations betvageindance and modelled habitat
suitability have provided no details of comparisbesveen abundance and distribution
models (Pearce and Ferrier 2001), or have perfompeabundance models at all (Jiménez-
Valverde et al. 2009; VanDerWal et al. 2009; Oligeal. 2012). The exceptions are more
specific studies involving a few species, whichgasj that environmental factors influencing
abundance may differ from those limiting distrilouttiat least in some cases (Nielsen et al.
2005; Duff et al. 2011). In this study, there waghitoncordance in the variables selected by
the two different approaches using count and peeEsabsence data, suggesting that
abundance and distribution of the buttePBrnassius apollo were associated with similar
environmental factors. This supports the idea¢batmon environmental factors govern both
the abundance and distribution of individual spgorhich may result in positive

intraspecific occupancy-abundance relationshipsi{@eet al. 2000), contributing to positive
interspecific occupancy-abundance relationshipst(étal. 2002).

Models from our study consistently identified quatdr relationships foP. apollo
abundance and distribution with elevation and sloaier, and linear positive relationships
with host plantSedum cover (with coefficients of similar magnitude —thre link scale — and
large relative variable importance). In the casaemfndance, there were also quadratic
relationships with the remaining environmental &akes (insolation intensity, bare ground

and vegetation height) but with smaller relativeialale importance.
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The modelled relationships with environmental valea are supported by our knowledge
of the ecology oP. apollo. The association d?. apollo with intermediate elevations suggests
a restriction to relatively cold sites in the ragipossibly because of direct effects of
temperature oR. apollo individuals. Larvae appear to select for microtetbiwith
temperatures in the range 20-28°C, and occupy ttmagere cooler than ambient above 27°C
(Ashton et al. 2009). For adults, the informatismiuch sparser, but they may be quite
vulnerable to dehydration under warm temperatuBaz 002). An alternative explanation is
thatP. apollo requires cold sites through indirect effects ofiperature and humidity on host
plant phenology, because its main asimplexicaule senesces in spring-early summer.

P. apollo abundance and distribution were also associatddimtermediate cover of
shrubs. In sites whel® amplexicaule is the main host plant, shrubs may be importagt eg
substrates (shrubs received 32% of eggs; S. Ranpaplished data from female trackimg,
= 71) because eggs laid on the host plant itsejhtrbe displaced on senescent tissue away
from the following year’s growth (Fordyce and N2@03). In addition, larvae appear to use
shrubs to provide shade when the ambient temperatdnigh, and shelter during cold
conditions (Ashton et al. 2009). Larvae bask orelggound during cold but sunny weather,
so excessively dense shrub could be detriment&.fapollo larvae (Ashton et al. 2009), and
dense shrub could also be unsuitable because sh@lot species (particularBedum
amplexicaule, S. brevifolium andS. album) are generally associated with open areas.

Local site frequency of host plants was more irtgodrthan its overall abundance,
suggesting that sites with widespread but low dgmsdants were more favourable than those
with relatively few high density patches of plankbis result could reflect oviposition and
larval behaviour in the species, since femalesalday eggs on host plants (see above;
Gomariz Cerezo 1993; Deschamps-Cottin et al. 18884 and Brommer 2003). Although we

do not know the dispersal ability of newly hatchedae, it seems unlikely that they could
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successfully locate host plants more tha@.5 m awayFred and Brommer 2010). Older
larvae move between different microhabitats relébegimbient temperature (Ashton et al.
2009). Hence, host plants which are both widelyrithsted (for newly hatched larvae) and

growing in a range of microhabitats (for later ars) may be important.

Estimating abundance from abundance and distribution models

A key finding from this study was that, fBr apollo, predicted probabilities of occurrence
from logistic regression models performed as coasisy when considering all test data, or
even better when considering presence data orawy, itidices of abundance derived from
quasi-Poisson regression models. Encouragingly$pgearman’s correlation coefficients
obtained from our study were on average larger thase previously shown in comparable
studies (e.g. Pearce and Ferrier 2001; EImendaiMoore 2008; Guarino et al. 2012). Thus,
a model of probability of occurrence based on presa@absence data might serve as a
surrogate for estimates Bf apollo abundance. Guarino et al. (2012) suggested thgtlsa
size might influence the detection of relationslhpsnveen abundance and predicted
probability of occurrence when comparing completadets with those with absences
excluded, but this does not appear to be the caseliecause correlations were of similar
magnitudes and significance (Table 2).

The smaller predictive ability of the abundance elgdlative to the presence-absence
model could be due to larger model uncertaintyhanfirst caseP. apollo is an annual species
which shows marked yearly fluctuations in abundaAdthough insect populations show
synchronic dynamics over regional scales, locabdyias are likely to depend on habitat
differences (Powney et al. 2010). Variables meaktoehabitat models are frequently
assumed constant in ecological time and are coesglgjunable to explain yearly
fluctuations in abundance, which can be the regulieather variability or demographic

factors (Jiménez-Valverde et al. 2009). The latgeertainty in modelling abundance was
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reflected in the size of the confidence set andehA#aike weights relative to that for
presence-absence models (Table 2). Neverthelesgntouraging that despite the large
population fluctuations shown 8 apollo, observed abundance was still correlated with
predicted occurrence, in contrast with the obsemgtom comparative analyses that positive
occupancy-abundance relationships may be maskeddygnnual population variability
(Gaston et al. 1998, 2000).

It is worth noting that abundance variability wasger for those sites with higher
probability of occurrence (Fig. 2), suggesting thabitat suitability could indicate the upper
limit of abundance, rather than average abundaviaelerWal et al. 2009). Hence, when
habitat suitability is low, abundance is considieliw. However, when habitat suitability
and potential abundance are high, other envirormhéndtors (e.g. adult resources) or
unmeasured constraints (e.g. biotic interactiomh s1$ parasitism, dispersal limitations —see
below-) may limit abundance in some sites (VanDdrgYal. 2009; Oliver et al. 2012). Our
results (Fig. 2) tally with the polygonal distrilut of points over the space defined by
abundance and predicted habitat suitability foup&yanDerWal et al. (2009).

The positive relationship between abundance amdiqiesl probability of occurrence
suggests the possibility of using predicted distidns for ranking habitat quality. Sampling
presence-absence may often be easier than samaplimglance, such as in our system for a
species with many populations located in remotentan sites. Abundance surveys are
extremely time limited because the flight periodPoépollo is shorter than one month in
many populations; and for transects to be comparthiely must be walked during a limited
period around the peak of the flight season, duttiedimited time of day when temperatures
are warm enough for butterfly activity. In contrastcurrence can be sampled on the basis of

adult data collected during the whole flight periodimmature stage data (in the cas®.of
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apollo, mostly larvae) recorded during spring. This applocould also be applicable to other

annual species in which the realistic time periagilable for sampling is limited.

Landscape-scale persistence and conservation

Apart from methodological issues, the positivetreteships between abundance and
predicted probability of occurrence suggest sonmomant points concerning ttie apollo
distribution. Firstly, based on a minimized diffece threshold value of 0.366 (Sing et al.
2005; Jiménez-Valverde and Lobo 2007), there wayecBipied sites for which the
distribution model predicteH. apollo to be absent (Fig. 2). All these sites showedively

low P. apollo abundance, suggesting lower habitat quality, hatigresence might partly
depend on immigration. Secondly, using the sanestiuid, there were 14 unoccupied sites
for which the distribution model predict&lapollo to be present (Fig. 2). Although we
cannot entirely rule out the possibility that somg@ortant habitat variables were missing
from the model, this could also suggest theadpollo was absent from some suitable habitat.
P. apollo almost certainly inhabits a discontinuous patdiwvoek in the Sierra de
Guadarrama, in which metapopulation processes mayportant for persistence (e.g. Hoyle
and James 2005). Nevertheless, to evaluate thetampe of such processes Rirapollo
persistence would require further data on dispdrstaveen different areas (e.g. Brommer and
Fred 1999). In this context, the role of metapopoitadynamics on the relationship between
observed abundance and predicted probability airoence is an additional issue that
remains to be examined (e.g. Hanski et al. 1993).

Our results suggest that distribution models cadyce estimated probabilities of
occurrence that are reasonable predictors of almzedankings. This is encouraging because
occurrence models are widely used in conservat@mnng, in which their outputs are used
to estimate persistence (e.g. Aradjo and Willia®B® Cabeza et al. 2010). Nevertheless, we

focused only on abundance, which is just one corapbof persistence. Other factors such as
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population stability are known to influence persigte in other animal populations (Oliver et
al. 2012), and may indeed be important to locabdyies in environmentally variable areas
such as mountains. We conclude that in this cadghiition models may be useful for
predicting habitat suitability in a rare insectf that their wider use may require further

validation in terms of abundance and populationatslity.
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Table 1. List of environmental variables included in thegent study, classified by their

biological significance (Ashton et al. 2009). Védulies included in the final multivariate

analyses are those with code.

Environmental variable (units) Code

Mean (min-max)

Macroclimate conditions: adult thermoregulation and
larval development
Elevation (km) Elev

Insolation intensity (kWh fper day) Insol

1.43 (0.56-2.25)

2.81 (2.04-3.38)

Microclimate conditions: larval thermoregulation

Bare ground cover (percentage cover) Bor
Shrub cover (percentage cover) Shr
Vegetation height (cm) Heig

21.3B(ID65)
15.91 (0-60.80)

9.96 (2.00-30.90)

Resources: larval host plants
Host plantSedum cover (percentage cover)

Host plantSedum frequency (proportion occupied) Sedf

5.35 (0-38.20)

0.27 (0-0.95)
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Table 2. Confidence set GLM models f& apollo (a) abundance (quasi-Poisson error and log-link) (&) distribution (binomial error and
logit-link) in 2006 1 = 90 in both cases). The table indicates the blasaincluded in the model and the direction ofrtheefficients (+/-; codes
in Table 1); number of parameters (K, including er&ra parameter for over-dispersion factor in QA#ee below); Akaike Information
Criterion for small sample size [(Q)AdCcorrected for over-dispersed count data)]; déifee in (Q)AIG between current and best model
[A(Q)AIC.]. Confidence sets are within six (Q)AlGnits of the top ranked model, excluding modelgctviare higher-ranking nested variants of
simpler models with lowet(Q)AIC. (Richards 2008). Relative importance (Imp), maaetraged coefficients (Coef) and unconditional
standard errors (SE) for each variable are alsasho

a)

Rank Elev Elev Insol Insof Bgr Bgr Shr Sht Heig Heig Sedf K QAIG AQAIC. QAICw

1 + - - + + - + - + 11 129.94 0.00 0.16
2 + - - + + - + + 10 130.06 0.12 0.15
3 + - - + + - + + 10 130.37 0.43 0.13
4 + - - + - + - + 10  130.73 0.80 0.11
5 + - - + - + + 9 130.90 0.96 0.10
6 + - - + + - + 9 131.03 1.09 0.09

7 + - + - + - + 9 131.93 2.00 0.06



8 + -

9 + - -

10 + -

11 + -

12 + -

13 + -

Imp 1 099 080 040

132.19

132.19

132.20

133.64

135.21

135.73

2.26

2.26

2.26

3.70

5.27

5.79

22

0.05

0.05

0.05

0.03

0.01

0.01

Coef 3168 -861 -3.74 0.58

SE 11.72 3.24 4.92 0.79

-0.000D.12

0.0007 4 0.20.01

Intercept (SE) =-25.89 (11.13)



b)

Rank Elev Elev2 Shr Shr2 Sedf K AIC  AAIC, AlIC.w

1 + - + - + 6 74.37 0 0.61
2 + - + + 5 76.56 2.19 0.20
3 + - + 4 77.94 3.58 0.10
4 + + - + 5 78.35 3.98 0.08
Imp 1 0.92 0.90 0.69 1

Coef 31.17 -883 0.14 -0.0023.92

SE 17.13 4.53 0.09 0.001 141

Intercept (SE) = -30.15 (14.16)
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Table 3. Spearman’s rank correlation coefficients betwdmmdance observed in 2006,

2007, 2008 and 2006-2008 average, and (a) abungaadieted by quasi-Poisson GLM and

(b) probability of occurrence predicted by binom@lM (further details in Table 2). Results

are presented for all sites in 2006 and for sié@spded in 2006-2008 (separate and averaged).

V: verification; CV: cross-validation. n® > 0.1; +:P < 0.1; *: P < 0.05; **: P < 0.01; ***: P

< 0.001.

a) Predicted abundance

Data set All sites Occupied sites

\% CcVv n \% CVv n
2006 all sites 0.660***  0.580*** 90 0.619*** 0.28%8 26
2006 0.759*** 0.671*** 59 0.695*** 0.383+ 24
2007 0.669*** 0.571*** 59 0.589**  0.409+ 20
2008 0.674** 0.581*** 59 0.643**  0.553* 21
2006-2008 average 0.756*** 0.669*** 59 0.658*** 3bl+ 24

b) Predicted probability of occurrence

Data set All sites Occupied sites

\% CcVv n \% CVv n
2006 all sites 0.654*** 0.571*** 90 0.548** 0.561* 26
2006 0.762*** 0.711** 59 0.639**  0.669*** 24
2007 0.691*** 0.659*** 59 0.655**  0.625** 20
2008 0.702*** 0.666*** 59 0.680*** 0.650** 21
2006-2008 average  0.766*** 0.714** 59 0.679** @Rl*** 24




10

25

Figure captions

Figure 1. Site distribution folP. apollo in 2006-08. Squares show 2006-2008 random sites (
= 43) and circles additional 2006 sites=(47) for modellingP. apollo distribution. Filled
symbols are sites wheRe apollo was observed, open symbols where absent. EleVadiods
are shown as 0.25 km increments from < 0.75 knme(gedy) to > 2 km (black). The inset
map shows the geographical context of the study iar&pain. Georeferencing units are in

UTM (30T).

Figure 2. Relationships between observed abundance in 2@d@radicted abundance (a:
verification; b: cross-validation), and predictedipability of occurrence (c: verification; d:
cross-validation) (see methods for details). Spearoorrelation coefficients are shown in
Table 3. Empty symbols: unoccupied sites; fillethbgls: occupied sites; circles: sites

sampled in 2006-2008; triangles: sites sampled@62r 2006-2007 only.



26

4569000

4520000

T

Elevation (km)

4489000

AV o

I 0

[ ]
[ ]
10km I
[ ]

eservoirs

400000 440000



5

Fig. 2

Observed abundance

c)

Observed abundance

40
®
30 —
[ ]
[ ]
20 ©
t IS
10— @
[ ]
[ ] A [ ] ‘
@
b @ A
0 | | | | |
0 10 20 30 40 50
Predicted abundance
40 4
[ ]
30 —
[ ]
[ ]
20 - i
g [ J
10 — [ ]
[ ]
[ ] A .. [ ]
® ‘. b °
el L oo o_ A
0 | i ml = AI |
0 0.2 0.4 0.6 0.8 1

Predicted probability of occurrence

b)
40 —
[ ]
30 —
®
[ ]
20- ®
d [ ]
10—e®
[ ]
[ ] A [ ) [ ] d
(J
oo -
| | | | |
0 10 20 30 40 50
Predicted abundance
d)
40
®
30
[ ]
o
20— i
b o0
10— [ ]
®
® .. ®
° A
[ )
{ (] o ()

o—Mwmlh /\I/\n m/\/i Q0 A ﬁA A |
0 0.2 0.4 0.6 0.8 1
Predicted probability of occurrence



10

15

20

25

28

References

Araujo MB, Guisan A (2005) Five (or so) challendesspecies distribution modelling. J
Biogeogr 33: 1677-1688

Araujo MB, Williams PH (2000) Selecting areas fpesies persistence using occurrence
data. Biol Conserv 96: 331-345

Ashton S, Gutiérrez D, Wilson RJ (2009) Effectdeshperature and elevation on habitat use
by a rare mountain butterfly: implications for sjgscresponses to climate change. Ecol
Entomol 34: 437-446

Barton K. (2012) MuMIn: Multi-model inference. R packagersion 1.6.6. Available at

http://CRAN.R-project.org/package=MuMIn

Baz A. (2002) Nectar plants for the threatened Aploltterfly (Parnassius apollo L. 1758)
in populations of central Spain. Biol Conserv 1P37-282

Brommer JE, Fred MS (1999) Movement of the Apollidtérfly Parnassius apollo related to
host plant and nectar plant patches. Ecol Entool25-131

Brown, JH (1984) On the relationship between aboodand distribution of species. Am Nat
124: 255-279

Burnham KP, Anderson DR (2002) Model selection emudtimodel inference: a practical
information-theoretic approach’®&dition. Springer, New York

Cabeza M, Arponen A, Jaattela L, Kujala H, van feeh A, Hanski | (2010) Conservation
planning with insects at three different spatiales. Ecography 33: 54-63

Deschamps-Cottin M, Roux M, Descimon H (1997) Vakeophique des plantes nourricieres
et préférence de ponte chiearnassius apollo L. (Lepidoptera, Papilionidae). CR Acad Sci
Paris, Sciences de la vie 320 : 399-406

Descimon, H., Bachelard, P., Boitier, E. and Pieia(2005) Decline and extinction of

Parnassius apollo populations in France - continued. In: Kihn EdRgnn R, Thomas



29

JA, Settele J (ed) Studies on the Ecology and Geasen of Butterflies in Europe Vol. 1:
General Concepts and Case Studies, PENSOFT PubliSdia, pp 114-115

Diniz-Filho JAF, Rangel TFLVB, Bini LM (2008) Modelelection and information theory in
geographical ecology. Global Ecol Biogeogr 17: 488

5 Dormann C, Purschke O, Garcia Marquez JR, LauténBa&chrdder B (2008) Components

of uncertainty in species distribution analysisaae study of the great grey shrike.
Ecology 89: 3371-3386

Dormann CF, Elith J, Bacher S, Buchmann C, CaC&ré G, Garcia Marquéz JR, Gruber
B, Lafourcade B, Leitdo PJ, Minkemdller T, McCl€&nOsborne PE, Reineking B,

10 Schréder B, Skidmore AK, Zurell D, Lautenbach S120Collinearity: a review of
methods to deal with it and a simulation study e&thg their performance. Ecography 35:
1-20-EV

Duff TJ, Bell TL, York A (2011) Patterns of planbandances in natural systems: is there
value in modelling both species abundance andldigion? Aust J Bot 59: 719-733

15 Elith J, Leathwick JR (2009) Species distributioadels: ecological explanation and

prediction across space and time. Annu Rev Ecol 8yst 40: 677-697

Elmendorf SC, Moore KA (2008) Use of community-carapion data to predict the
fecundity and abundance of species. Conserv Biol 223-1532

ESRI (2001) ArcGIS 8.1. Environmental Systems Resehostitute Inc., Redlands, CA

20 Farr TG, Rosen PA, Caro E, Crippen R, Duren R, eSS, Kobrick M, Paller M, Rodriguez
E, Roth L, Seal D, Shaffer S, Shimada J, Umlandekner M, Oskin M, Burbank D,
Alsdorf D (2007) The Shuttle Radar Topography MissiRev Geophys 45: RG2004

Fordyce JA, Nice CC (2003) Variation in butterflygeadhesion: adaptation to local host

plant senescence characteristics? Ecol Lett 6:723-2



10

15

20

30

Fred MS, Brommer JE (2003) Influence of habitatliggiand patch size on occupancy and
persistence in two populations of the Apollo budlyefParnassius apollo). J Insect
Conserv 7: 85-98

Fred MS, Brommer JE (2005) The decline and cumlesttibution ofParnassius apollo
(Linnaeus) in Finland: the role of Cd. Ann Zool Rem42: 69-79

Fred MS, Brommer JE (2010) Olfaction and visiomast plant location biparnassius
apollo larvae: consequences for survival and dynamicenAehav 79: 313-320

Fu P, Rich PM (2000) The solar analyst 1.0 userualamielios Environmental Modelling

Institute, LLC, Lawrence, KS. Available http://www.hemisoft.com/

Garcia-Barros E, Munguira ML, Cano JM, Romo H, GaRereira P, Maravalhas ES (2004)
Atlas of the butterflies of the Iberian Peninsula and Balearic Islands (Lepidoptera:
Papilinoidea & Hesperioidea). Sociedad Entomoldgica Aragonesa, Zaragoza (Spain)

Gaston K, Blackburn TM, Gregory RD (1998) Interspedifferences in intraspecific
abundance-range size relationships of British bnegliirds. Ecography 21: 149-158

Gaston KJ, Blackburn TM, Grenwood JJD, Gregory RDinn RM, Lawton JH (2000)
Abundance-occupancy relationships. J Appl EcolS#6l. 1): 39-59

Gomariz Cerezo G (1993) Aportacion al conocimiadeda distribucion y abundancia de
Parnassius apollo (Linnaeus, 1758) en Sierra Nevada (Espafia meatjidrepidoptera:
Papilionidae). SHILAP Revta lepid 21: 71-79

Guarino ESG, Barbosa, AM, Waechter, JL (2012) Qerwre and abundance models of
threatened plant species: Applications to mitiglagimpact of hydroelectric power dams.
Ecol Model 230: 22-33.

Guisan A, Thuiller W (2005) Predicting species mlgttion: offering more than simple

habitat models. Ecol Lett 8: 993-1009



10

15

20

31

Guisan A, Zimmermann NE (2000) Predictive habitatrdbution models in ecology. Ecol
Model 135: 147-186

Gutiérrez Illan J, Gutiérrez D, Wilson RJ (2010 Tdontributions of topoclimate and land
cover to species distributions and abundance:réselution tests for a mountain butterfly
fauna. Global Ecol Biogeogr 19: 159-173

Hanski I, Kouki J, Halkka A (1993) Three explanasmf the positive relationship between
distribution and abundance of species. In: RickiefSchlueter D (ed) Species Diversity in
Ecological Communities: Historical and GeographRaispectives, University of Chicago
Press, Chicago, pp 108-116

He F, Gaston KJ (2000) Occupancy-abundance refdtips and sampling scales. Ecography
23: 503-511

Holt AR, Gaston KJ, He F (2002) Occupancy-abundaealzionships and spatial
distribution: A review. Basic Appl Ecol 3: 1-13

Hoyle M, James H (2005) Global warming, human papoih pressure, and viability of the
World’s smallest butterfly. Conserv Biol 19: 111324

Jiménez-Valverde A (2011) Relationship betweenllpoaulation density and environmental
suitability estimated from occurrence data. FroigBogr 3.2: 59-61

Jiménez-Valverde A, Lobo JM (2007) Threshold ciétéor conversion of probability of
species presence to either—or presence—abseneeOacbl 31: 361-369

Jiménez-Valverde A, Diniz F, Azevedo EB, Borges PAR009) Species distribution models
do not account for abundance: the case of arthopodrerceira Island. Ann Zool Fennici
46; 451-464

Lawton JH (1993) Range, population abundance anderwation. Trends Ecol Evol 8: 409-

413



10

15

20

25

32

Legendre P, Legendre L (1998) Numerical Ecology English edn. Elsevier Science B.V.,
Amsterdam

Maclean, IMD, Wilson RJ, Hassall M (2011) Predigtrchanges in the abundance of African
wetland birds by incorporating abundance-occupaelationships into habitat association
models. Divers Distrib 17: 480-490

McCullagh P, Nelder JA (1989) Generalized lineadeis, 2nd edn. Chapman & Hall/CRC,
Boca Raton

McGill BJ, Etienne RS, Gray JS, Alonso D, Ander8ah Benecha HK, Dornelas M, Enquist
BJ, Green JL, He F, Hurlbert AH, Magurran AE, MatRA, Maurer BA, Ostling A.,
Soykan CU, Ugland KI, White EP (2007) Species alamgé distributions: moving beyond
single prediction theories to integration withinesological framework. Ecol Lett 10: 995-
1015

Nielsen SE, Johnson CJ, Heard DC, Boyce MS (20@5)rGodels of presence-absence be
used to scale abundance? Two case studies congi@gatremes in life history. Ecography
28:197-208

Nieminen M, Nuorteva P, Tulisalo E (2001) The efffeicmetals on the mortality of
Parnassius apollo larvae (Lepidoptera: Papilionidae). J Insect ConSe1-7

Oliver TH, Gillings, S., Girardello M, Rapacciuol®, Brereton TM, Siriwardena GM, Roy
DB, Pywell R, Fuller RJ (2012) Population densiti hot stability can be predicted from
species distribution models. J Appl Ecol 49: 580-59

Pearce J, Ferrier S (2001) The practical valueadetiing relative abundance of species for
regional conservation planning: a case study. 8mtserv 98: 33-43

Peterson AT, Vieglais DA (2001) Predicting spedmessions using ecological niche
modelling: new approaches from bioinformatics &ta@ressing problem. Bioscience 51:

363-371



10

15

20

25

33

Pollard E, Yates TJ (1993) Monitoring butterflies €cology and conservation. Chapman &
Hall, London

Potts JM, Elith J (2006) Comparing species abunelamadels. Ecol Model 199: 153-163

Powney GD, Roy DB, Chapman D, Oliver TH (2010) Sywoay of butterfly populations
across species ' geographic ranges. Oikos 119:-1696

R Development Core Team (2011) R: a language avidoement for statistical computing.
R foundation for Statistical Computing. R Foundatior Statistical Computing, Vienna.

Available at:http://www.R-project.orf

Richards SA (2005) Testing ecological theory usheginformation-theoretic approach:
examples and cautionary results. Ecology 86: 2842

Richards SA (2008) Dealing with overdispersed calata in applied ecology. J Appl Ecol
45: 218-227

Sagarin RD, Gaines SD (2002) The ‘abundant cedistfibution: to what extent is it a
biogeographical rule? Ecol Lett 5: 137-147

Sanchez-Rodriguez JF, Baz A (1996) DeclinBarhassius apollo in the Sierra de
Guadarrama, Central Spain (Lepidoptera: Papilia)iddolarct Lepid 3: 31-36

Sawada M (1999) Rookcase: an Excel 97/2000 VisaaldB(VB) add-in for exploring global
and local spatial autocorrelation. Bull Ecol Soc 8t 231-234.

Sawicky P (2009) pspearman: Spearman's rank cborel@st. R package version 0.2-5.

Available athttp://CRAN.R-project.org/package=pspearman

Schrdder B, Strauss B, Biedermann R, Binzenhtf&etele J. (2009) Predictive species
distribution modelling in butterflies. In: Settele Shreeve T, Kontka M, Van Dyck H
(ed) Ecology of Butterflies in Europe, Cambridgeiémsity Press, Cambridge, pp 62-77

Schweiger O, Settele J, Kudrna O, Klotz S, Kih200g8) Climate change can cause spatial

mismatch of trophically interacting species. Ecgl8§: 3472-3479



10

15

20

25

34

Sing T, Sander O, Beerenwinkel N, Lengauer T (2B08LR: visualizing classifier
performance in R. Bioinformatics 21: 3940-3941

St-Louis V, Pidgeon AM, Clayton MK, Locke BA, Bagh Radeloff VC (2010) Habitat
variables explain Loggerhead Shrike occurrencbembrthern Chihuahuan Desert, but
are poor correlates of fitness measures. Landdeaple25: 643-654

Todisco V, Gratton P, Cesaroni D, Sbordoni V (20RBylogeography dParnassius apollo:
hints on taxonomy and conservation of a vulnergtaeial butterfly invader. Biol J Linn
Soc 101: 169-183

Tolman T, Lewington R. (1997) Butterflies of Britadnd Europe. HarperCollins Publishers,
London

Van Horne B (1983) Density as a misleading indicafdabitat quality. J Wild Manag 47:
893-901

Van Sway C, Cuttlelod A, Collins S, Maes D, Lopeaduira M, SagiM, Settele J,
Verovnic R, Verstrael T, Warrwn M, Wiemers M, Wyrii¢2010) European Red List of
butterflies. Publications Office of the Europeanidsm Luxembourg

VanDerWal J, Shoo LP, Johnson CN, Williams SE (30&&undance and the environmental
niche: environmental suitability estimated fromh@anodels predicts the upper limit of
local abundance. Am Nat 174: 282-291

Venier LA, Fahrig L (1998) Intra-specific abundardistribution relationships. Oikos 82:
483-490

Ver Hoef JM, Boveng PL (2007) Quasi-Poisson vsatigg binomial regression: how should
we model overdispersed count data? Ecology 88:-276@

Willis SG, Hill JK, Thomas CD, Roy DB, Fox R, Bldkg DS, Huntley B (2009) Assisted
colonization in a changing climate: a test-studpgiswo U.K. butterflies. Conserv Lett 2:

45-51



35

Wilson RJ, Gutiérrez D, Gutiérrez J, Martinez Dudg R, Monserrat VJ (2005) Changes to
the elevational limits and extent of species rarags®ciated with climate change. Ecology
Letters 8: 1138-1146

Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham Gidisan A, NCEAS Predicting Species

5 Distribution Working Group (2008) Effects of samglee on the performance of species

distribution models. Divers Distrib 14: 763-773



