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Abstract (max 250 words) 

Models relating species distribution records to environmental variables are increasingly 

applied to biodiversity conservation. Such techniques could be valuable to predict the 

distribution, abundance or habitat requirements of species that are rare or otherwise difficult 

to survey. However, despite widely-documented positive intraspecific relationships between 5 

occupancy and abundance, few studies have demonstrated convincing associations between 

models of habitat suitability based on species occurrence, and observed measures of habitat 

quality such as abundance. Here we compared models based on field-derived abundance and 

distribution (presence-absence) data for a rare mountain butterfly in 2006-08. Both model 

types selected consistent effects of environmental variables, which corresponded to known 10 

ecological associations of the species, suggesting that abundance and distribution may be a 

function of similar factors. However, the models based on occurrence data identified stronger 

effects of a smaller number of environmental variables, indicating less uncertainty in the 

factors controlling distribution. Furthermore, cross-validation of the models using observed 

abundance data from different years, or averaged across years, suggested a marginally 15 

stronger ability of models based on occurrence data to predict observed abundance. The 

results suggest that, for some species, distribution models could be efficient tools for 

estimating habitat quality in conservation planning or management, when information on 

abundance or habitat requirements is costly or impractical to obtain.  

Keywords (max 10 words) 20 

Apollo butterfly · Conservation planning · Distribution · GLM · Iberian Peninsula · 

Information-theoretic approach · Lepidoptera · Mountains 
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Introduction 

Understanding patterns and mechanisms of species distribution and abundance is a central 

issue in ecology and conservation (Brown 1984). Spatial patterns in the distribution of 

individuals may have important effects not only on the occupancy and abundance of single 

species (Lawton 1993), but also on interspecific occupancy-abundance relationships (He and 5 

Gaston 2000, Holt et al. 2002) and community species-abundance distributions (McGill et al. 

2007). In practical terms, conservation planning requires the identification of sites whose 

environmental characteristics allow them to support sustainable populations of focal species 

(e.g. Araújo and Williams 2000). However, for many species and parts of the world, 

information on distribution, abundance, and the environmental determinants of these, is far 10 

from comprehensive. 

Species distribution models could help to overcome the problem of incomplete information 

on species distributions and abundance, because they relate occurrence or abundance data 

with the environmental attributes of known locations, and use the relationships to estimate 

occurrence or abundance more widely (Guisan and Zimmermann 2000; Guisan and Thuiller 15 

2005; Elith and Leathwick 2009; Schröder et al. 2009). With rapid recent advances in large 

data-base management, statistical techniques, physical geography and geographic information 

systems, species distribution models are now widely used for explaining and predicting 

occurrences (and to a much lesser degree, abundances) for many biological groups, over a 

wide range of spatial scales and environments (Elith and Leathwick 2009). 20 

Due to data availability, species distribution models are most commonly based on 

occurrence data (presence-absence or presence-only), and therefore estimates of habitat 

suitability often consist of predicted probabilities of occurrence (Guisan and Zimmermann 

2000). Predicted habitat suitability may subsequently be used for evaluating the impact of 

environmental change on species distributions (e.g. Schweiger et al. 2008), supporting 25 
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management plans for species recovery and reintroduction (e.g. Willis et al. 2009), selecting 

reserves (e.g. Araújo and Williams 2000; Cabeza et al. 2010) and assessing species invasion 

(e.g. Peterson and Vieglais 2001). All these approaches assume that habitat suitability from 

models is positively correlated with habitat quality, but testing this assumption is by no means 

straightforward. Empirical estimation of habitat quality (sensu Van Horne 1983) involves 5 

detailed information on density, mean individual survival, and mean expectation of future 

offspring, and these demographic parameters may be prohibitively intensive and costly to 

collect over a large number of sites at broad spatial scales (e.g. Elmendorf and Moore 2008; 

St-Louis et al. 2010). As an alternative, population density might be assumed to be positively 

correlated with habitat quality, but there are limitations to this approach, such as in temporally 10 

variable environments where abundance varies greatly from year to year (Van Horne 1983). 

Nevertheless, positive intraspecific occupancy-abundance relationships suggest that 

common environmental factors may indeed govern both the distribution and abundance of 

individual species (Gaston et al. 2000; Holt et al. 2002). Analyses based on time-series data 

suggest that this relationship is stronger for species showing positive or negative trends in 15 

distribution and abundance than for species whose populations are fluctuating in response to 

interannual stochasticity (Gaston et al. 1998, 2000; Holt et al. 2002). There is also less 

evidence for positive intraspecific occupancy-abundance relationships using spatial data for 

single time periods (but see Venier and Fahrig 1998), even though relationships of abundance 

and occupancy over spatial environmental gradients have important implications for the 20 

structure of species’ geographic ranges (e.g. Sagarin and Gaines 2002) and species responses 

to environmental change (e.g. Maclean et al. 2011). In fact, despite the potential importance 

of a positive correlation between abundance and habitat suitability, few distribution-

modelling studies have validated the relationship (Jiménez-Valverde 2011). Furthermore, for 

a substantial number of species, predicted habitat suitability does not appear to be 25 
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significantly correlated with observed abundance, particularly when restricting analyses to 

occupied, potentially habitable sites (Pearce and Ferrier 2001; Nielsen et al. 2005; Jiménez-

Valverde et al. 2009; Duff et al. 2011; Guarino et al. 2012; but see VanDerWal et al. 2009; 

Oliver et al. 2012). Limitations to these habitat suitability models may result from inadequate 

survey techniques, or inappropriate choice of survey scale and available environmental 5 

variables (Pearce and Ferrier 2001). For instance, data pooled from surveys conducted over a 

number of years may obscure the effects of environmental variables on abundance by 

combining variation in space and time (e.g. Pearce and Ferrier 2001; Jiménez-Valverde et al. 

2009). Furthermore, refinement of habitat predictors from the broad abiotic and vegetation 

information used in some studies, to variables of clear importance to focal species, could also 10 

improve abundance-habitat suitability correlations (e.g. Pearce and Ferrier 2001; Jiménez-

Valverde et al. 2009; Oliver et al. 2012). 

 In this paper, we develop models of abundance and distribution for adults of the apollo 

butterfly, Parnassius apollo, in a mountain area of central Spain. The system provides 

considerable environmental variation over space (elevation, topography and vegetation 15 

structure), and time (interannual weather variability) (Gutiérrez Illán et al. 2010). P. apollo is 

appropriate for the research because there are reliable methods for estimating abundance and 

distribution (Pollard and Yates 1993), it is an easily detectable species in the field (Sánchez-

Rodríguez and Baz 1996), and relevant environmental variables can be deduced from larval 

habitat requirements at local scales (Ashton et al. 2009). For this system, we (1) compared the 20 

consistency of variables selected in abundance and distribution models based on empirical 

data for a single year, under comparable environmental conditions; and (2) evaluated the 

models’ predictive power using observed abundances collected in the same year and in two 

subsequent years, allowing us to account for spatial and temporal environmental variation in 

the region. 25 
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Methods 

Study system 

Parnassius apollo (L.) is a predominantly mountain species, whose larvae feed on Sedum spp. 

and sometimes other Crassulaceae (Deschamps-Cottin et al. 1997). It has one adult generation 

per year (June-August), and hibernates as a small larva in the eggshell (Tolman and 5 

Lewington 1997). Its European population is estimated to have declined by almost 30% since 

2000, with greatest declines at low elevations (van Swaay et al. 2010). Climate warming is 

thought to be implicated in the loss of low-elevation populations (Descimon et al. 2005), but 

land use change and pollutants have also been linked to its decline (Gomariz Cerezo 1993; 

Sánchez-Rodríguez and Baz 1996; Nieminen et al. 2001, but see Fred and Brommer 2005). 10 

The Sierra de Guadarrama (central Spain) is an approximately 100 x 30 km mountain 

range located at 40°45’ N 4°00’ W. The mountain range includes 25 separate 10 km grid 

squares in which P. apollo has been recorded historically, in a population network that is 

geographically separated from all other records of the species in Spain (García-Barros et al. 

2004). The mountain range is bordered by plains with elevations of c. 700 m (to the north) 15 

and c. 500 m (to the south) and reaches a maximum elevation of 2428 m (Fig. 1). The main 

regional host plant reported for P. apollo is Sedum amplexicaule (Sánchez-Rodríguez and Baz 

1996), although larvae have also been observed feeding on S. brevifolium, S. forsterianum and 

S. album (Ashton et al. 2009). Recent phylogeographic analyses have shown that 

southwestern European populations retain a large fraction of genetic variation of P. apollo, 20 

highlighting their conservation value (Todisco et al. 2010). 

#Fig. 1 approximately here# 
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Abundance and distribution of P. apollo 

In 2006, butterflies (including P. apollo, if present) were counted on standardised 500 m long 

by 5 m wide transects (Pollard and Yates 1993) every two weeks at 43 sites (random sites 

henceforth; elevation range 550-2250 m), of which 40 were also sampled in 2007 and 2008 

(in total, 246 visits over the P. apollo flight period). However, P. apollo is rare in the study 5 

system (only a maximum of 5 occupied sites from the 43 sites visited in 2006), so it would 

have been necessary to sample very many random sites to achieve 20 or more presences, an 

appropriate minimum number for abundance and distribution models (e.g. Wisz et al. 2008). 

Therefore, in 2006 we visited 47 additional locations to increase our sample of P. apollo 

presences, selected using (1) P. apollo records from butterfly surveys in 2004 and 2005 10 

(Gutiérrez Illán et al. 2010), or (2) S. amplexicaule records from 2005. Our 90 (43 + 47) 

sample sites were located in 29 UTM 10 km grid squares in total, including 17 of the 10 km 

grid squares where P. apollo has ever been recorded (García-Barros et al. 2004). 

At each additional site, we walked the 500 m transect twice (usually 1-2 weeks apart, 

weather permitting) around the P. apollo peak flight period expected for the elevation based 15 

on preliminary data from 2005 and by walking weekly transects at four, nine and seven sites 

in 2006, 2007 and 2008, respectively, between early June and mid-August (Ashton et al. 

2009). We sampled for P. apollo at all 90 sites in 2006, 62 sites in 2007, and 59 in 2008 (40 

of the 43 random sites plus 22 or 19 additional sites, respectively). Because P. apollo 

frequently occurs in low density populations (but is easily visually detected), it was 20 

considered present where one or more individuals were counted (including records before or 

after the transect count in a few cases), and absent where no individuals at all were observed. 

Spatial autocorrelation can influence the reliability of biogeographic analyses, because it 

potentially inflates Type I errors in null hypothesis significance testing and generates longer 

models in information theoretic approaches (e.g. Diniz-Filho et al. 2008). We ensured that 25 
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survey sites were selected to be located in separate 1 km grid squares, corresponding to a 

distance travelled by fewer than 10% of adult butterflies in another study (Brommer and Fred 

1999). In addition, to test formally for spatial autocorrelation, we generated all-directional 

correlograms (Legendre and Legendre 1998) for abundance data in 2006 by plotting values of 

Geary’s c coefficient (recommended for variables departing from normality) against 5 

Euclidean distances between sites. Geary’s c calculation and significance testing were 

performed using 4999 Monte Carlo permutations in Excel add-in Rookcase (Sawada 1999). 

No correlogram was globally significant, indicating that spatial autocorrelation in P. apollo 

abundance data was negligible. 

Environmental variables 10 

Universal Transverse Mercator (UTM) coordinates were recorded every 100 m along 

transects using a handheld Garmin GPS unit, and were used to plot transects in a geographic 

information system (ArcGIS) (ESRI 2001). The average elevation of 100 m cells intercepted 

by transects was determined using a digital elevation model (Farr et al. 2007). 

We estimated insolation as the total direct solar radiation per 100 m grid cell during the 15 

whole year using the Solar Analyst 1.0 extension for ArcView GIS (Fu and Rich 2000), based 

on latitude, slope, aspect, and elevations of surrounding cells in a 110 km x 155 km area. 

Insolation variables were estimated as the mean for 100 m grid cells intercepted by each 

transect. 

In the study area, elevation is related to climate parameters (annual mean temperature: 5.8-20 

5.9°C/km decrease; annual rainfall 683-767 mm/km increase; R2 = 0.94 in both cases; Wilson 

et al. 2005), but these gradients are based on relatively few meteorological stations (10-11). 

Hence, we use elevation and modelled insolation intensity instead of estimated temperature 

and rainfall in our models. 
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We used twenty 0.25 m2 quadrats (50 x 50 cm) per transect at 25 m intervals to estimate 

percentage cover of each Sedum species in 2006. Vegetation height at the centre of each 

quadrat (in 2006), and bare ground and shrub cover (in 2008) were also recorded. A site 

average was taken for each variable (n = 20 quadrats). We also estimated Sedum frequency, 

the proportion of quadrats occupied by each species (range 0-1), as a measure of the host 5 

plant distribution over each transect site. As an estimate of the total host plant resource 

available for P. apollo at each site, we calculated percentage cover and frequency for the four 

Sedum species known to be eaten by larvae (see above). All measured variables in our study 

have biological significance (Ashton et al. 2009), as detailed in Table 1. 

#Table 1 approximately here# 10 

Abundance and distribution models 

To analyse P. apollo abundance, we used GLMs applying a quasi-likelihood estimation of 

regression coefficients using a log-link and setting the variance equal to mean (quasi-Poisson 

regression, McCullagh and Nelder 1989; Ver Hoef and Boveng 2007). For P. apollo 

distribution, we performed GLMs with logit-link and binomial error (logistic regression). 15 

Sample size was n = 90 sites in both cases. We included six candidate variables for P. apollo 

abundance and distribution models (Table 1). We selected only one (host plant Sedum 

frequency) from the two potential host plant variables in Table 1 because univariate analyses 

showed stronger relationships of P. apollo abundance and distribution with that variable than 

with host plant Sedum cover (results not shown) and they were highly correlated (rs = 0.92, P 20 

< 0.001). Only one pair-wise correlation between the remaining independent variables had 

absolute values higher than 0.7 (the most commonly applied threshold, Dormann et al. 2012), 

elevation-vegetation height (rs = -0.75, P < 0.001).  However, we did not exclude these 

variables from analyses because they had potentially different biological significance (see 

Dormann et al. 2008). 25 
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 We used the information-theoretic approach (Burnham and Anderson, 2002) to model 

abundance and distribution of P. apollo. We included linear and quadratic terms for the 5 

condition variables and only linear terms for the resource variable (Table 1). For each 

response variable, we fitted all possible combinations of linear and quadratic terms (subject in 

the last case to the condition that the corresponding linear term was included in the model), 5 

with no interactions, and used the Akaike Information Criterion, adjusted for small sample 

size (QAICc for abundance and AICc for distribution; Burnham and Anderson 2002) to rank 

models. To obtain our model confidence sets, we selected models that were within six 

∆(Q)AICc units of the top-ranked model (Richards 2005), excluding more complex models 

that do not have a ∆(Q)AICc which is lower than all the simpler models within which they are 10 

nested (Richards 2008). This procedure guards against the selection of over-parameterised 

models whilst maintaining a high probability of selecting the true best model (Richards 2008). 

The adequacy of quasi-Poisson regression for modelling abundance data was examined using 

estimated and empirical variance-mean plots for the full model (Ver Hoef and Boveng 2007). 

Following model selection, we used model-averaging to obtain model coefficients based 15 

on the confidence sets. Doing so incorporates model selection uncertainty whilst weighting 

the influence of each model by the strength of its supporting evidence (Burnham and 

Anderson 2002). Model–averaged coefficients were derived by weighting using Akaike 

weights and averaging coefficients over all models in the confidence set. Averaging over all 

models means that in those cases in which a variable was not in a particular model, its 20 

coefficient value was set to zero. This serves to ameliorate much of the model selection bias 

of coefficients (Burnham and Anderson 2002). We also estimated relative variable importance 

by summing the Akaike weights across all models in the confidence set that contain that 

variable. This parameter lies in the range 0-1 and provides evidence for the importance of 

each variable relative to the other variables in the context of the set of models considered. 25 
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Model selection and model averaging were performed with “MuMIn” package version 1.6.6 

(R Development Core Team 2011; Bartoń 2012). 

Model evaluation 

Abundance and distribution models were evaluated in two ways, verification and cross-

validation (Araújo and Guisan 2005). For verification, we calculated Spearman’s rank 5 

correlation coefficients (rs) for predicted abundance or probability of occurrence (from model-

averaged coefficients) against observed abundance values in 2006, 2007, 2008 and averaged 

for 2006-2008 (Guisan and Zimmermann 2000; Potts and Elith 2006). Correlations for 2006-

2008 average abundance were calculated for testing the effect of interannual variability in 

abundances on model predictions: we would expect larger correlations with averaged than 10 

with individual annual abundances. We used rank correlations between predicted and 

observed values because our transect counts were relative estimates of local abundance rather 

than absolute densities or population sizes (Pearce and Ferrier 2001). 

Given that there were insufficient sites to have separate calibration and evaluation data 

sets, we used a Jackknife procedure for cross-validation (e.g. Elmendorf and Moore 2008; 15 

Jiménez-Valverde et al. 2009). This method consisted of generating N confidence set models, 

sequentially omitting one site, where N is the number of sites. We then calculated model-

averaged coefficients for each confidence set. Based on those coefficients, we calculated rs for 

predicted abundance and probability of occurrence against observed abundance values for 

each omitted site. We examined the relationships between observed abundances and predicted 20 

values (abundance or probability of occurrence) using two tests (e.g. Pearce and Ferrier 2001; 

Nielsen et al. 2005): (1) observed abundance with all samples (including absences) against 

predicted values; and (2) observed abundance-where-present (omitting absences) against 

predicted values. Both tests represent the model contribution to explaining abundance, but 

only the first one includes the discrimination of absent locations (Nielsen et al. 2005). rs 25 
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coefficients were calculated with “pspearman” package version 0.2-5 (Savicky 2009; R 

Development Core Team 2011). 

Results 

Abundance and distribution models 

In 2006, a total of 231 P. apollo were counted in 26 of the combined sample of 43 random 5 

sites and 47 targeted sites, with a maximum local abundance of 36 individuals. The lowest 

elevation presence was at 1287 m. In 2007 and 2008, we counted 184 (21 out of 62 sites) and 

98 (21 out of 59 sites) P. apollo butterflies, with maximum local abundances of 43 and 18 

individuals, respectively. The species was observed in 15 separate 10 km grid squares. 

 Abundance and distribution models were based on multi-model inference with (Q)AICc 10 

(Table 2). The dispersion parameter for the full quasi-Poisson model was 3.20, indicating that 

the data were not excessively over-dispersed (values above 4 would suggest that model 

structure could be inadequate; Burnham and Anderson 2002). Estimated and empirical 

variance-mean plots for the full model suggested that quasi-Poisson regression was 

appropriate for this data set (results not shown). 15 

#Table 2 approximately here# 

For abundance, the confidence set consisted of 13 models. The final model included 

quadratic relationships with elevation, bare ground cover, shrub cover, vegetation height (all 

with positive linear and negative quadratic coefficients) and insolation intensity (with 

negative linear and positive quadratic coefficients), and a positive linear relationship with host 20 

plant Sedum frequency. Relative variable importance was higher for elevation, shrub cover 

and their corresponding quadratic terms, and host plant Sedum frequency (values ≥ 0.90; 

Table 2). 
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For distribution, the confidence set consisted of four models. The final model included 

quadratic relationships with elevation and shrub cover (with positive linear and negative 

quadratic coefficients) and a positive linear relationship with host plant Sedum frequency. 

Relative variable importance was higher for elevation and its quadratic term, shrub cover and 

host plant Sedum frequency (values ≥ 0.90 in all cases; Table 2). 5 

Model evaluation 

The performance of abundance and distribution models was evaluated by testing the 

correlation of predicted abundances and probabilities of occurrence against observed 

abundances (Table 3). For the complete data set (90 sites sampled in 2006), predicted 

abundance from the final model was significantly positively correlated with observed 10 

abundance, with smaller values for cross-validation than for verification (Fig. 2). Including 

only those sites in which P. apollo was present, produced smaller correlation coefficients 

between predicted and observed abundance values (significant for verification and non-

significant for cross-validation, Fig. 2). The pattern was very similar for the correlations 

between predicted probability of occurrence and observed abundance, but in this case all 15 

coefficients were significant. The scatter plot suggests larger variability in observed 

abundance values for higher predicted probabilities of occurrence (Fig. 2). 

#Table 3 approximately here# 

#Fig. 2 approximately here# 

 For the reduced data sets (59 sites sampled in 2006-2008), all correlations were on average 20 

higher than their corresponding correlations performed with the complete data set (90 sites in 

2006). This was due probably to the fact that, in the reduced data sets, a relatively large 

number of sites with high probability of occurrence but unoccupied by P. apollo were 

excluded from analyses (Fig. 2). Apart from this, the pattern shown by correlation values was 

also similar to that for the complete data set, with no apparent trend over the sampling years. 25 
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The only non-significant correlation coefficients were those between predicted and observed 

abundances for cross-validations for occupied sites for 2006, 2007 and 2006-2008 average. 

Discussion 

Ecological significance of abundance and distribution models 

Most studies to date concerning correlations between abundance and modelled habitat 5 

suitability have provided no details of comparisons between abundance and distribution 

models (Pearce and Ferrier 2001), or have performed no abundance models at all (Jiménez-

Valverde et al. 2009; VanDerWal et al. 2009; Oliver et al. 2012). The exceptions are more 

specific studies involving a few species, which suggest that environmental factors influencing 

abundance may differ from those limiting distribution at least in some cases (Nielsen et al. 10 

2005; Duff et al. 2011). In this study, there was high concordance in the variables selected by 

the two different approaches using count and presence-absence data, suggesting that 

abundance and distribution of the butterfly Parnassius apollo were associated with similar 

environmental factors. This supports the idea that common environmental factors govern both 

the abundance and distribution of individual species, which may result in positive 15 

intraspecific occupancy-abundance relationships (Gaston et al. 2000), contributing to positive 

interspecific occupancy-abundance relationships (Holt et al. 2002). 

Models from our study consistently identified quadratic relationships for P. apollo 

abundance and distribution with elevation and shrub cover, and linear positive relationships 

with host plant Sedum cover (with coefficients of similar magnitude – in the link scale – and 20 

large relative variable importance). In the case of abundance, there were also quadratic 

relationships with the remaining environmental variables (insolation intensity, bare ground 

and vegetation height) but with smaller relative variable importance. 
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The modelled relationships with environmental variables are supported by our knowledge 

of the ecology of P. apollo. The association of P. apollo with intermediate elevations suggests 

a restriction to relatively cold sites in the region, possibly because of direct effects of 

temperature on P. apollo individuals. Larvae appear to select for microhabitats with 

temperatures in the range 20-28°C, and occupy those that are cooler than ambient above 27°C 5 

(Ashton et al. 2009). For adults, the information is much sparser, but they may be quite 

vulnerable to dehydration under warm temperatures (Baz 2002). An alternative explanation is 

that P. apollo requires cold sites through indirect effects of temperature and humidity on host 

plant phenology, because its main host S. amplexicaule senesces in spring-early summer.  

P. apollo abundance and distribution were also associated with intermediate cover of 10 

shrubs. In sites where S. amplexicaule is the main host plant, shrubs may be important egg 

substrates (shrubs received 32% of eggs; S. Ronca, unpublished data from female tracking, n 

= 71) because eggs laid on the host plant itself might be displaced on senescent tissue away 

from the following year’s growth (Fordyce and Nice 2003). In addition, larvae appear to use 

shrubs to provide shade when the ambient temperature is high, and shelter during cold 15 

conditions (Ashton et al. 2009). Larvae bask on bare ground during cold but sunny weather, 

so excessively dense shrub could be detrimental for P. apollo larvae (Ashton et al. 2009), and 

dense shrub could also be unsuitable because the host plant species (particularly Sedum 

amplexicaule, S. brevifolium and S. album) are generally associated with open areas. 

 Local site frequency of host plants was more important than its overall abundance, 20 

suggesting that sites with widespread but low density plants were more favourable than those 

with relatively few high density patches of plants. This result could reflect oviposition and 

larval behaviour in the species, since females do not lay eggs on host plants (see above; 

Gomariz Cerezo 1993; Deschamps-Cottin et al. 1997; Fred and Brommer 2003). Although we 

do not know the dispersal ability of newly hatched larvae, it seems unlikely that they could 25 
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successfully locate host plants more than c. 0.5 m away (Fred and Brommer 2010). Older 

larvae move between different microhabitats related to ambient temperature (Ashton et al. 

2009). Hence, host plants which are both widely distributed (for newly hatched larvae) and 

growing in a range of microhabitats (for later instars) may be important. 

Estimating abundance from abundance and distribution models 5 

A key finding from this study was that, for P. apollo, predicted probabilities of occurrence 

from logistic regression models performed as consistently when considering all test data, or 

even better when considering presence data only, than indices of abundance derived from 

quasi-Poisson regression models. Encouragingly, the Spearman’s correlation coefficients 

obtained from our study were on average larger than those previously shown in comparable 10 

studies (e.g. Pearce and Ferrier 2001; Elmendorf and Moore 2008; Guarino et al. 2012). Thus, 

a model of probability of occurrence based on presence-absence data might serve as a 

surrogate for estimates of P. apollo abundance. Guarino et al. (2012) suggested that sample 

size might influence the detection of relationships between abundance and predicted 

probability of occurrence when comparing complete data sets with those with absences 15 

excluded, but this does not appear to be the case here because correlations were of similar 

magnitudes and significance (Table 2). 

The smaller predictive ability of the abundance model relative to the presence-absence 

model could be due to larger model uncertainty in the first case. P. apollo is an annual species 

which shows marked yearly fluctuations in abundance. Although insect populations show 20 

synchronic dynamics over regional scales, local dynamics are likely to depend on habitat 

differences (Powney et al. 2010). Variables measured for habitat models are frequently 

assumed constant in ecological time and are consequently unable to explain yearly 

fluctuations in abundance, which can be the result of weather variability or demographic 

factors (Jiménez-Valverde et al. 2009). The larger uncertainty in modelling abundance was 25 
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reflected in the size of the confidence set and model Akaike weights relative to that for 

presence-absence models (Table 2). Nevertheless, it is encouraging that despite the large 

population fluctuations shown by P. apollo, observed abundance was still correlated with 

predicted occurrence, in contrast with the observation from comparative analyses that positive 

occupancy-abundance relationships may be masked by interannual population variability 5 

(Gaston et al. 1998, 2000). 

It is worth noting that abundance variability was larger for those sites with higher 

probability of occurrence (Fig. 2), suggesting that habitat suitability could indicate the upper 

limit of abundance, rather than average abundance (VanDerWal et al. 2009). Hence, when 

habitat suitability is low, abundance is consistently low. However, when habitat suitability 10 

and potential abundance are high, other environmental factors (e.g. adult resources) or 

unmeasured constraints (e.g. biotic interactions such as parasitism, dispersal limitations –see 

below-) may limit abundance in some sites (VanDerWal et al. 2009; Oliver et al. 2012). Our 

results (Fig. 2) tally with the polygonal distribution of points over the space defined by 

abundance and predicted habitat suitability found by VanDerWal et al. (2009). 15 

The positive relationship between abundance and predicted probability of occurrence 

suggests the possibility of using predicted distributions for ranking habitat quality. Sampling 

presence-absence may often be easier than sampling abundance, such as in our system for a 

species with many populations located in remote mountain sites. Abundance surveys are 

extremely time limited because the flight period of P. apollo is shorter than one month in 20 

many populations; and for transects to be comparable they must be walked during a limited 

period around the peak of the flight season, during the limited time of day when temperatures 

are warm enough for butterfly activity. In contrast, occurrence can be sampled on the basis of 

adult data collected during the whole flight period, or immature stage data (in the case of P. 
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apollo, mostly larvae) recorded during spring. This approach could also be applicable to other 

annual species in which the realistic time period available for sampling is limited.  

Landscape-scale persistence and conservation 

Apart from methodological issues, the positive relationships between abundance and 

predicted probability of occurrence suggest some important points concerning the P. apollo 5 

distribution. Firstly, based on a minimized difference threshold value of 0.366 (Sing et al. 

2005; Jiménez-Valverde and Lobo 2007), there were 6 occupied sites for which the 

distribution model predicted P. apollo to be absent (Fig. 2). All these sites showed relatively 

low P. apollo abundance, suggesting lower habitat quality, and that presence might partly 

depend on immigration. Secondly, using the same threshold, there were 14 unoccupied sites 10 

for which the distribution model predicted P. apollo to be present (Fig. 2). Although we 

cannot entirely rule out the possibility that some important habitat variables were missing 

from the model, this could also suggest that P. apollo was absent from some suitable habitat. 

P. apollo almost certainly inhabits a discontinuous patch network in the Sierra de 

Guadarrama, in which metapopulation processes may be important for persistence (e.g. Hoyle 15 

and James 2005). Nevertheless, to evaluate the importance of such processes for P. apollo 

persistence would require further data on dispersal between different areas (e.g. Brommer and 

Fred 1999). In this context, the role of metapopulation dynamics on the relationship between 

observed abundance and predicted probability of occurrence is an additional issue that 

remains to be examined (e.g. Hanski et al. 1993). 20 

 Our results suggest that distribution models can produce estimated probabilities of 

occurrence that are reasonable predictors of abundance rankings. This is encouraging because 

occurrence models are widely used in conservation planning, in which their outputs are used 

to estimate persistence (e.g. Araújo and Williams 2000; Cabeza et al. 2010). Nevertheless, we 

focused only on abundance, which is just one component of persistence. Other factors such as 25 



 19 

population stability are known to influence persistence in other animal populations (Oliver et 

al. 2012), and may indeed be important to local dynamics in environmentally variable areas 

such as mountains. We conclude that in this case distribution models may be useful for 

predicting habitat suitability in a rare insect, but that their wider use may require further 

validation in terms of abundance and population variability. 5 
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Table 1. List of environmental variables included in the present study, classified by their 

biological significance (Ashton et al. 2009). Variables included in the final multivariate 

analyses are those with code. 

Environmental variable (units) Code Mean (min-max) 

Macroclimate conditions: adult thermoregulation and 

larval development 

  

Elevation (km) Elev 1.43 (0.56-2.25) 

Insolation intensity (kWh m-2 per day) Insol 2.81 (2.04-3.38) 

Microclimate conditions: larval thermoregulation    

Bare ground cover (percentage cover) Bgr 21.33 (1.05-72.65) 

Shrub cover (percentage cover) Shr 15.91 (0-60.80) 

Vegetation height (cm) Heig 9.96 (2.00-30.90) 

Resources: larval host plants   

Host plant Sedum cover (percentage cover)  5.35 (0-38.20) 

Host plant Sedum frequency (proportion occupied) Sedf 0.27 (0-0.95) 
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Table 2. Confidence set GLM models for P. apollo (a) abundance (quasi-Poisson error and log-link) and (b) distribution (binomial error and 

logit-link) in 2006 (n = 90 in both cases). The table indicates the variables included in the model and the direction of their coefficients (+/-; codes 

in Table 1); number of parameters (K, including one extra parameter for over-dispersion factor in QAICc, see below); Akaike Information 

Criterion for small sample size [(Q)AICc (corrected for over-dispersed count data)]; difference in (Q)AICc between current and best model 

[∆(Q)AICc]. Confidence sets are within six (Q)AICc units of the top ranked model, excluding models which are higher-ranking nested variants of 5 

simpler models with lower ∆(Q)AICc (Richards 2008). Relative importance (Imp), model-averaged coefficients (Coef) and unconditional 

standard errors (SE) for each variable are also shown. 

a) 

Rank Elev Elev2 Insol Insol2 Bgr Bgr2 Shr Shr2 Heig Heig2 Sedf K QAICc ∆QAICc QAICcw 

1 + - - +   + - + - + 11 129.94 0.00 0.16 

2 + - - +   + - +  + 10 130.06 0.12 0.15 

3 + - -  +  + - +  + 10 130.37 0.43 0.13 

4 + - -    + - + - + 10 130.73 0.80 0.11 

5 + - -    + - +  + 9 130.90 0.96 0.10 

6 + - - +   + -   + 9 131.03 1.09 0.09 

7 + -   + - + -   + 9 131.93 2.00 0.06 
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8 + -   + - +    + 8 132.19 2.26 0.05 

9 + - -  +  + -   + 9 132.19 2.26 0.05 

10 + -     + -   + 7 132.20 2.26 0.05 

11 + -   +  +    + 7 133.64 3.70 0.03 

12 +  -  +  + - + - + 10 135.21 5.27 0.01 

13 + -     +    + 6 135.73 5.79 0.01 

Imp 1 0.99 0.80 0.40 0.33 0.11 1 0.91 0.66 0.28 1     

Coef 31.68 -8.61 -3.74 0.58 0.02 -0.0001 0.12 -0.002 0.17 -0.005 4.10     

SE 11.72 3.24 4.92 0.79 0.05 0.0007 0.05 0.0007 0.24 0.01 0.81     

Intercept (SE) = -25.89 (11.13) 
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b) 

Rank Elev Elev2 Shr Shr2 Sedf K AICc ∆AICc AICcw 

1 + - + - + 6 74.37 0 0.61 

2 + - +  + 5 76.56 2.19 0.20 

3 + -   + 4 77.94 3.58 0.10 

4 +  + - + 5 78.35 3.98 0.08 

Imp 1 0.92 0.90 0.69 1     

Coef 31.17 -8.83 0.14 -0.002 3.92     

SE 17.13 4.53 0.09 0.001 1.41     

Intercept (SE) = -30.15 (14.16)
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Table 3. Spearman’s rank correlation coefficients between abundance observed in 2006, 

2007, 2008 and 2006-2008 average, and (a) abundance predicted by quasi-Poisson GLM and 

(b) probability of occurrence predicted by binomial GLM (further details in Table 2). Results 

are presented for all sites in 2006 and for sites sampled in 2006-2008 (separate and averaged). 

V: verification; CV: cross-validation. ns: P > 0.1; +: P < 0.1; *: P < 0.05; **: P < 0.01; ***: P 5 

< 0.001. 

a) Predicted abundance 

Data set All sites    Occupied sites  

 V CV n  V CV n 

2006 all sites 0.660*** 0.580*** 90  0.619*** 0.283ns 26 

2006 0.759*** 0.671*** 59  0.695*** 0.383+ 24 

2007 0.669*** 0.571*** 59  0.589** 0.409+ 20 

2008 0.674*** 0.581*** 59  0.643** 0.553* 21 

2006-2008 average 0.756*** 0.669*** 59  0.658*** 0.361+ 24 

 

b) Predicted probability of occurrence 

Data set All sites    Occupied sites  

 V CV n  V CV n 

2006 all sites 0.654*** 0.571*** 90  0.548** 0.561** 26 

2006 0.762*** 0.711*** 59  0.639** 0.669*** 24 

2007 0.691*** 0.659*** 59  0.655** 0.625** 20 

2008 0.702*** 0.666*** 59  0.680*** 0.650** 21 

2006-2008 average 0.766*** 0.714*** 59  0.679*** 0.691*** 24 

 10 
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Figure captions 

Figure 1. Site distribution for P. apollo in 2006-08. Squares show 2006-2008 random sites (n 

= 43) and circles additional 2006 sites (n = 47) for modelling P. apollo distribution. Filled 

symbols are sites where P. apollo was observed, open symbols where absent. Elevation bands 

are shown as 0.25 km increments from < 0.75 km (pale grey) to > 2 km (black). The inset 5 

map shows the geographical context of the study area in Spain. Georeferencing units are in 

UTM (30T). 

 

Figure 2. Relationships between observed abundance in 2006 and predicted abundance (a: 

verification; b: cross-validation), and predicted probability of occurrence (c: verification; d: 10 

cross-validation) (see methods for details). Spearman correlation coefficients are shown in 

Table 3. Empty symbols: unoccupied sites; filled symbols: occupied sites; circles: sites 

sampled in 2006-2008; triangles: sites sampled in 2006 or 2006-2007 only. 



 26 

Fig. 1 
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Fig. 2 
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