Seismic anisotropy beneath the Juan de Fuca plate system:

- 2 Evidence for heterogeneous mantle flow
- 3 Miles Bodmer¹, Douglas R. Toomey¹, Emilie E. Hooft¹, John Nábělek², and Jochen
- 4 Braunmiller³
- ¹Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA
- 6 ²College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis,
- 7 Oregon 97331-5503, USA
- 8 ³School of Geosciences, University of South Florida, 4202 E. Fowler Avenue, NES 107,
- 9 Tampa, Florida 33620-5550, USA

10 ABSTRACT

11

12

13

14

15

16

17

18

19

20

21

22

Here we use SKS shear-wave splitting observations from ocean-bottom seismometer data to infer patterns of mantle deformation beneath the Juan de Fuca plate and its adjoining boundaries. Our results indicate that the asthenosphere beneath the Juan de Fuca plate responds largely to absolute plate motion with an anisotropic layer developing rapidly near the ridge and persisting into the subduction zone. Geographically restricted deviations from this pattern indicate the presence of secondary processes. At discrete plate boundaries, such as the Blanco Transform fault, seismic anisotropy is attributed to relative plate motion within a narrow zone (<50 km). Beneath the deforming southern Gorda region — a diffuse plate boundary —splitting observations similarly suggest deformation dominated by relative motion between the rigid Juan de Fuca and Pacific plates but distributed over a broad zone (~200 km). Our results are inconsistent with toroidal flow around the southern edge of the subducting slab due to rollback, as

suggested by onshore studies. Instead, reorganization of upper mantle flow associated with plate fragmentation seems to dominate the anisotropic signature of southern Cascadia.

INTRODUCTION

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Mantle convection and the movement of tectonic plates drive flow in Earth's viscous upper mantle. The nature of mantle flow and its relation to plate boundary evolution are relevant to plate dynamics and thus remains a topic of vigorous inquiry. Since mantle strain induces lattice preferred orientation of seismically anisotropic minerals, particularly olivine, seismic methods can be used to constrain patterns of mantle flow (Silver and Chan, 1991). The Juan de Fuca (JdF) plate system is an excellent target for investigating the forces that drive oceanic mantle flow. In a compact region one finds all three types of discrete plate boundaries, lithospheric plates that are both intact (JdF) and internally deforming (southern Gorda), and an evolving subduction zone system susceptible to edge effects, slab rollback, and plate fragmentation (Fig. 1). The Cascadia Initiative (CI), a multi-year, onshore-offshore experiment (Toomey et al., 2014), and a complementary Blanco Transform array (Ghorbani et al., 2015) specifically target these regions and for the first time provide dense coverage of an entire oceanic plate and its boundaries. Here we use ocean bottom seismometer (OBS) data and the well-established shear-wave splitting method to investigate mantle flow beneath the JdF plate system. Owing to the extensive coverage of our OBS array, and the spatial coherence of interstation shear wave splitting observations, we are able to detect significant

heterogeneity in the oceanic mantle flow field. Our results have implications for the

Publisher: GSA Journal: GEOL: Geology

DOI:10.1130/G37181.1

46 forces that drive asthenospheric flow and for the evolution of the complex plate

47 interactions that define southern Cascadia.

DATA AND METHODS

48

49 We analyze seismic data from 5 onshore CI instruments, 117 OBS sites from 50 years 1, 2, and 3 of the CI, and 30 OBSs from the Blanco array (Figs. 1 & DR1). The 51 orientation of the horizontal components of the CI OBSs were determined by Sumy et al. 52 (2015) with a median uncertainty in channel orientation of $\pm 9^{\circ}$ at the one-sigma 53 confidence level. We analyze the SKS phase of teleseismic events, $M_w \ge 6$, at distances of 54 90°-130°. All onshore instruments and 111 of the 147 OBSs recorded at least one usable 55 event (Table DR1). The OBSs recorded an average of 4 usable events and only 14 sites 56 recorded just a single usable event (Table DR2). Back-azimuthal event coverage is 57 limited and has a westward bias for the OBS data due to the short deployment time (Fig. 58 DR2). 59 We implemented a workflow that uses strict quality control to account for high 60 environmental noise levels typical of OBS data. Our SKS splitting analysis was 61 conducted using the Splitlab software package (Wüstefeld et al., 2008), which performs 62 three common splitting methods: rotation correlation (RC) (Bowman and Ando, 1987), 63 Silver and Chan (SC), and eigenvalue (EV) (Silver and Chan, 1991). Each method 64 estimates the polarization direction of the fast shear wave ϕ and the delay time δt 65 between the fast and slow shear waves (Fig. DR3). Initial measurements are filtered with a third-order, zero phase Butterworth bandpass filter (0.03–0.1 Hz). This isolates the SKS 66 67 arrival within a relatively low-noise band between the microseism peak (0.1–2 Hz) and 68 the high frequency limit of infragravity waves (<0.04 Hz). Measurements are repeated for

DOI:10.1130/G37181.1 several filter limits adjusted between 0.02 and 0.15 Hz and covering at least a full octave. Multiple measurements allow for a qualitative assessment of stability from which a final event measurement is chosen; reported measurements often include higher frequencies, even those that may obscure the previously identified SKS waveform, improving accuracy (Restivo and Helffrich, 1999). We report measurements using only the SC method due to the poor performance of the RC method on low signal-to-noise data (Vecsey et al., 2008). All three methods are used for quality control, verifying that results from the SC and EV methods are consistent and that the RC method is either consistent or yields results indicative of high noise contamination (Vecsey et al., 2008). Measurements with delay times >3.5 s or <0.5 s are discarded. Possible null measurements are not reported since they are indistinguishable from measurements with high noise levels on the transverse channel. Maps of the transverse energy are generated by grid searching in the δt - ϕ parameter space. A single set of splitting parameters is estimated for each station by stacking the normalized energy maps (Wolfe and Silver, 1998) and a statistical F-test is applied to obtain the 95% confidence intervals (Fig. DR3) (Silver and Chan, 1991) which are converted to one sigma errors. Typical uncertainties in ϕ and δt are 8° and 0.3 s (Table S2), respectively, although in shallow water they tend to be larger. To verify that we can recover known splitting parameters, we analyzed good quality data from onshore CI stations and successfully reproduced the trench perpendicular pattern found by

RESULTS

previous studies (e.g., Eakin et al., 2010).

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

DOI:10.1130/G37181.1 91 Our SKS splitting results (Figs. 2 and 3) reveal spatially coherent patterns in fast 92 polarization directions that are correlated with five tectonic environments (Fig. 1): (i) the 93 JdF plate interior and northern Gorda; (ii) the southern, internally deforming Gorda and 94 Mendocino triple junction (MTJ); (iii) the JdF ridge; (iv) the Cascadia subduction zone 95 (CSZ); and (v) the Blanco transform fault. 96 The fast polarization directions within the JdF plate interior and the northern 97 Gorda show an average trend of N63°E that extends from 50 km east of the ridge to the 98 subduction zone (Figs. 2 and 3a). Delay times are 1 s on average and do not appear to 99 vary with plate age (Fig. DR4). Orientations correlate poorly with the JdF-Pacific 100 spreading direction (N107°E). To estimate the absolute plate motion (APM) of the JdF 101 plate, we use the APM of the Pacific plate, which is well known, and the Pacific-JDF 102 relative plate motion (RPM) calculated from the MORVEL model (DeMets et al., 2010). 103 In this reference frame, fast polarization directions broadly correlate with APM (N30°E 104 to N50°E, depending on location, see Fig. 3a). We note, however, that the observed fast 105 polarization directions are systematically rotated clockwise from the APM direction (Fig. 106 3a). 107 In the southern Gorda plate we observe a region of coherent fast polarization 108 measurements oriented N109°E (Figs. 2 and 3b). This trend extends beyond the Gorda 109 plate into the Pacific plate, and is disrupted by neither the Gorda spreading center nor the 110 Mendocino transform fault. The northern boundary of this region correlates well with the 111 onset of intense lithospheric deformation of the southern Gorda plate (Chaytor et al.,

consistent at greater distances (Fig. 3b). In contrast to the JdF plate interior, the observed

2004). Measurements within 25 km of the MTJ show large variance but become

112

Journal: GEOL: Geology DOI:10.1130/G37181.1

114	fast polarization directions are inconsistent with JdF APM. Though similar to the APM o
115	the Pacific (N122°E) and the relative spreading direction of the southern Gorda ridge
116	(N98°E), fast polarization directions agree best with the relative motion between the non-
117	deforming JdF and Pacific plates (N107°E). Delay times are 1.4 s on average with low
118	variability and do not appear to have any spatial dependence.
119	Measurements within 50 km of the JdF ridge are sparse and suggest a variable
120	pattern (Fig. 2 and 3c). Near the intersection of the JdF ridge and Blanco transform fast
121	polarization directions correlate with JdF/Pacific RPM. Throughout most of the central
122	ridge segments there appears to be a broad ridge parallel trend, most notably near Axial
123	Seamount, that diminishes northward. Average delay times are 1 s.
124	Near the CSZ most fast polarization directions closely resemble those within the
125	JdF plate interior and the western U.S. (Figs. 2 and 3d) and delay times are 1.4 s on
126	average. The relative convergence of JdF and North America is at N56°E and the trench
127	orientation changes from roughly N2°W to N48°W, from south to north. Relative to the
128	trench trend, measurements in the southern and northern CSZ are roughly trench
129	perpendicular but rotate anticlockwise toward trench parallel between 44°N and 46°N.
130	The region of trench parallel orientations coincides with several geologic features that
131	make central Cascadia anomalous, e.g., where subduction changes orientation and
132	flattens (McCrory et al., 2012).
133	In the Blanco transform region fast polarization directions rapidly change from
134	NW-SE to NE-SW when crossing the transform from Pacific to JdF plates and correlate
135	well with respective APMs (Fig. 2 and 3e). Within 25 km of the transform, orientations
136	parallel the relative motion of the JdF and Pacific plates. Delay times are 1 s on average.

DISCUSSION

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

We use our splitting results to infer regional-scale patterns of mantle flow by assuming that the observed fast polarization directions are subparallel to the direction of maximum shear (e.g., Silver and Chan, 1991). Our data are insufficient to explicitly test for multiple anisotropic layers (see Figs. DR5 and DR6), however, we consider the possibility of depth dependent anisotropy in our interpretations. Sites with only 1 or 2 measurements are more uncertain but the observations are supported by their consistency with neighboring sites. Given 4% mantle anisotropy, a splitting time of ~1 s would require a ~100-km-thick anisotropic layer. Since our split times are typically 1 s or more, and predicted lithospheric thickness in this region is 5 to 30 km (Fig. 2), we infer that the bulk of observed anisotropy originates in the asthenosphere. Beneath the JdF and northern Gorda plates we attribute anisotropy to an entrained layer of asthenosphere influenced by APM and altered by a secondary process. Sub-slab entrainment has been interpreted for several Cascadia data sets (Currie et al., 2004; Eakin et al., 2010; Bonnin et al., 2010), young subduction zones (Lynner and Long, 2014), and geodynamic models (Faccenda and Capitanio, 2012). Correlation with APM in the JdF plate interior and the CSZ (Fig. 3 a and d) is consistent with the plate dragging asthenosphere into the subduction zone via viscous coupling. The systematic clockwise rotation of fast polarization directions from APM suggests some secondary process is important. One possibility is that a shallow layer of anisotropy aligned with RPM due to corner flow at the ridge results in an apparent fast axis altered by multiple layering. However, this requires a ~ 0.5 s delay time contribution, implying either a very thick (50 km at 4% anisotropy) or highly anisotropic (12% at 20 km thickness) layer (Fig. DR6).

Journal: GEOL: Geology DOI:10.1130/G37181.1

While anisotropy related to plate spreading is very likely it is unclear whether it exists in
the necessary magnitudes. Further, most observations near the ridge are inconsistent with
the RPM direction. An alternative interpretation is that asthenospheric flow is also driven
by internal convection unrelated to APM. Indeed, seismic studies of the Endeavor
segment of the Juan de Fuca Ridge show that sub-ridge mantle divergence is skewed
clockwise with respect to the plate-spreading direction and related to a recent change in
JdF/Pacific plate motion (VanderBeek et al., 2014).
At the Blanco transform, a discrete plate boundary between the JdF and Pacific
plates, we infer a narrow shear zone with deformation aligned with RPM. Rapid changes
in fast polarization orientations across the transform indicate highly localized
deformation within a 50-km-wide zone centered on the transform. The distribution of
strain with depth is unknown, however, relatively low viscosities in the asthenosphere
beneath the transform and/or very shallow anisotropic structure may be necessary to
produce the rapid changes in orientation observed, particularly when considering the
overlap of SKS Fresnel zones.
Beneath the southern Gorda region — a diffuse plate boundary — we attribute
anisotropy to a broad shear zone accommodating Pacific-JdF RPM (Fig. 3b and 4). In
response to northward movement of the Pacific plate, the southern Gorda lithosphere is
undergoing internal deformation, which is evident in bathymetry (Fig. 1), magnetic
anomalies (Fig. 2), anomalous orientations of the Gorda ridge and Mendocino transform,
bookshelf faulting (Chaytor et al., 2004), and geodynamic models of regional stress
(Wang et al., 1997). Correlation of our observations with both the region of crustal
deformation and the Pacific-IdF RPM suggests a common causal factor for both

Journal: GEOL: Geology DOI:10.1130/G37181.1

Gorda region is a weak zone separating two rigid plates and thus accommodates the relative motion between them with both asthenosphere and lithosphere undergoing deformation and upper mantle strain aligned with RPM. Our results, in conjunction with those near the Explorer plate (Mosher et al., 2014), suggest that reorientation of upper mantle flow plays a critical role in plate fragmentation with RPM alignment beneath the Gorda representing an intermediate state before full detachment.

Our results are inconsistent with the rollback induced toroidal flow model commonly invoked for onshore anisotropy near the MTJ (e.g., Zandt and Humphreys, 2008). Geodynamic models suggest that beneath a downgoing plate toroidal flow results in strong trench parallel deformation (Faccenda and Capitanio, 2012), which is inconsistent with our results by ~65° (Fig. 2 and 3b). Further, observed orientations and delay times do not vary with distance from the slab edge and abruptly change orientation at the northern limits of the Gorda deformation zone. We conclude that there is no large-scale toroidal flow due to slab rollback or that the deformation is weak resulting in minimal influence on measurements. Diversion of ambient flow around the southern slab edge is another possible source of deformation (Eakin et al., 2010). However, due to the lack of variation with distance from the slab edge, large delay times, and correlations with Gorda deformation we assert that its contribution to the anisotropic structure is, if present, secondary.

CONCLUSIONS

Seismic anisotropy of the upper mantle beneath the Juan de Fuca plate system is remarkably heterogeneous, indicating that a variety of forces drive flow in the oceanic

Journal: GEOL: Geology DOI:10.1130/G37181.1 ates, absolute plate motion is a significant driver of flo

206	asthenosphere. Beneath rigid plates, absolute plate motion is a significant driver of flow
207	that entrains asthenosphere and drags it into subduction zones. There is also evidence of a
208	secondary source of anisotropy possibly related to non-APM convective processes. Near
209	plate boundaries anisotropy records relative plate motion (e.g., Blanco), but in some cases
210	is complex (e.g., Juan de Fuca Ridge and Mendocino transform). Plate fragmentation
211	occurring within the diffuse plate boundary in the southern Gorda region is accompanied
212	by reorganization of upper mantle flow.
213	ACKNOWLEDGEMENTS
214	We thank S. Carbotte and two anonymous referees for thoughtful comments. This
215	work was supported by the National Science Foundation under grants OCE-1139701 and
216	OCE-1333196 to the University of Oregon.
217	REFERENCES CITED
218	Bonnin, M., Barruol, G., and Bokelmann, G.H., 2010, Upper mantle deformation beneath
219	the North American-Pacific plate boundary in California from SKS splitting: Journal
220	of Geophysical Research, v. B4, p. 115, doi: 10.1029/2009JB006438.
221	Bowman, J.R., and Ando, M., 1987, Shear-wave splitting in the upper-mantle wedge
222	above the Tonga subduction zone: Geophysical Journal International, v. 88, p. 25-
223	41, doi:10.1111/j.1365-246X.1987.tb01367.x.
224	Chaytor, J.D., Goldfinger, C., Dziak, R.P., and Fox, C.G., 2004, Active deformation of
225	the Gorda plate: Constraining deformation models with new geophysical data:
226	Geology, v. 32, p. 353–356, doi:10.1130/G20178.2.
227	Currie, C.A., Cassidy, J.F., Hyndman, R.D., and Bostock, M.G., 2004, Shear wave
228	anisotropy beneath the Cascadia subduction zone and western North American

Journal: GEOL: Geology DOI:10.1130/G37181.1

229	craton: Geophysical Journal International, v. 157, p. 341–353, doi:10.1111/j.1365-
230	246X.2004.02175.x.
231	DeMets, C., Gordon, R.G., and Argus, D.F., 2010, Geologically current plate motions:
232	Geophysical Journal International, v. 181, p. 1–80, doi:10.1111/j.1365-
233	246X.2009.04491.x.
234	Eakin, C.M., Obrebski, M., Allen, R.M., Boyarko, D.C., Brudzinski, M.R., and Porritt,
235	R., 2010, Seismic anisotropy beneath Cascadia and the Mendocino triple junction:
236	Interaction of the subducting slab with mantle flow: Earth and Planetary Science
237	Letters, v. 297, p. 627–632, doi:10.1016/j.epsl.2010.07.015.
238	Faccenda, M., and Capitanio, F.A., 2012, Development of mantle seismic anisotropy
239	during subduction-induced 3-D flow: Geophysical Research Letters, v. 39, L11305,
240	10.1029/2012GL051988.
241	Ghorbani, P., Nabelek, J., and Braunmiller, J., 2015, Gorda and Juan de Fuca plate
242	seismicity recorded by the Cascadia Initiative and Blanco Transform Fault Zone
243	seismic arrays: Seismological Research Letters, v. 86, p. 685,
244	doi:10.1785/0220150017.
245	Sumy, D. F., Lodewyk, J. A., Woodward, R. L., & Evers, B., 2015, Ocean-Bottom
246	Seismograph Performance during the Cascadia Initiative. Seismological Research
247	Letters, doi: 10.1785/02201500110
248	Lynner, C., and Long, M.D., 2014, Testing models of sub-slab anisotropy using a global
249	compilation of source-side shear wave splitting data: Journal of Geophysical
250	Research, v. 119, p. 7226–7244, doi:10.1002/2014JB010983.

Journal: GEOL: Geology DOI:10.1130/G37181.1 Blair J.L. Waldhauser F. and Oppenheimer D.H. 2012. Juan de Fuca

251	McCrory, P.A., Blair, J.L., Waldhauser, F., and Oppenheimer, D.H., 2012, Juan de Fuca
252	slab geometry and its relation to Wadati-Benioff zone seismicity: Journal of
253	Geophysical Research, v. 117, B09306, doi:10.1029/2012JB009407.
254	Mosher, S.G., Audet, P., and L'Heureux, I., 2014, Seismic evidence for rotating mantle
255	flow around subducting slab edge associated with oceanic microplate capture:
256	Geophysical Research Letters, v. 41, p. 4548–4553, doi: 10.1002/2014GL060630.
257	Nedimović, M.R., Bohnenstiehl, D.R., Carbotte, S.M., Canales, J.P., and Dziak, R.P.,
258	2009, Faulting and hydration of the Juan de Fuca plate system: Earth and Planetary
259	Science Letters, v. 284, p. 94–102, doi:10.1016/j.epsl.2009.04.013.
260	Restivo, A., and Helffrich, G., 1999, Teleseismic shear wave splitting measurements in
261	noisy environments: Geophysical Journal International, v. 137, p. 821-830,
262	doi:10.1046/j.1365-246x.1999.00845.x.
263	Silver, P.G., and Chan, W.W., 1991, Shear wave splitting and subcontinental mantle
264	deformation: Journal of Geophysical Research, v. 96, p. 16429–16454,
265	doi:10.1029/91JB00899.
266	Toomey, D.R., Allen, R.M., Barclay, S. W. Bell, P. D. Bromirski, R. L. Carlson, X.
267	Chen, J. A. Collins, R. P. Dziak, B. Evers, et al. 2014, The Cascadia initiative: A sea
268	change in seismological studies of subduction zones: Oceanography 27, no. 2, 138-
269	150, doi:10.5670/oceanog.2014.49.
270	Vecsey, L., Plomerová, J., and Babuška, V., 2008, Shear-wave splitting measurements—
271	problems and solutions: Tectonophysics, v. 462, p. 178-196,
272	doi:10.1016/j.tecto.2008.01.021.

Journal: GEOL: Geology DOI:10.1130/G37181.1 omey D.R. Hooft, E.E.E., and Wilcock, W.S.D., 2014, Segment.

213	valuerbeek, B.P., Toolley, D.R., Hooft, E.E.E., and Wilcock, W.S.D., 2014, Segment-
274	Scale Seismic Structure of Slow-, Intermediate-, and Fast-Spreading Mid-Ocean
275	Ridges: Constraints on the Origin of Ridge Segmentation and the Geometry of
276	Shallow Mantle Flow: Abstract V23E-07 presented at 2014 Fall Meeting, AGU, San
277	Francisco, California, 15–19 December.
278	Wang, K., He, J., & Davis, E. E., 1997, Transform push, oblique subduction resistance,
279	and intraplate stress of the Juan de Fuca plate. Journal of Geophysical Research,
280	102(B1), 661-674, doi:10.1029/96JB03114.
281	Wolfe, C.J., and Silver, P.G., 1998, Seismic anisotropy of oceanic upper mantle: Shear
282	wave splitting methodologies and observations: Journal of Geophysical Research,
283	v. 103, p. 749–771, doi:10.1029/97JB02023.
284	Wüstefeld, A., Bokelmann, G., Zaroli, C., and Barruol, G., 2008, SplitLab: A shear-wave
285	splitting environment in Matlab: Computers & Geosciences, v. 34, p. 515-528,
286	doi:10.1016/j.cageo.2007.08.002.
287	Zandt, G., and Humphreys, E., 2008, Toroidal mantle flow through the western US slab
288	window: Geology, v. 36, p. 295–298, doi:10.1130/G24611A.1.
289	
290	Figure Captions
291	
292	Figure 1. Bathymetric and topographic map showing location of seismometers (red
293	circles) and geographic regions defined by tectonic setting and observed splitting
294	patterns: (blue) Juan de Fuca plate interior, (red) Cascadia subduction zone, (orange) Juan

Journal: GEOL: Geology DOI:10.1130/G37181.1

295 de Fuca ridge, (yellow) Blanco transform, (green) Mendocino triple junction and 296 southern Gorda region. 297 298 Figure 2. SKS splitting results overlaying magnetic anomalies (light colored bands) and 299 propagator wakes (gray bands) (from Nedimović et al., 2009). Thick bars indicate our 300 measurements color coded by zone (see Fig. 1). Orientation of a bar shows the fast 301 polarization direction and its length is scaled by the delay time. Yellow arrows are the 302 absolute plate motions (modified from MORVEL, DeMets et al., 2010). Blue bars are 303 SKS splitting measurements from land studies (Currie et al., 2004; Eakin et al., 2010; 304 Bonnin et al., 2010). Thin black lines are depth to slab contoured at 10 km intervals 305 (McCrory et al., 2012). (Upper left) top scale shows the seafloor age and corresponding 306 lithospheric thickness for a half-space cooling model and the bottom scale shows layer 307 thicknesses and percent anisotropy for a 1 s delay time. 308 309 Figure 3. Plots of the fast polarization direction (degrees clockwise from N) as a function 310 of distance or latitude for each of the zones shown in Figure 1; measurements (circles) 311 are color coded by zone (see Fig. 1). Colored lines show orientations predicted by various 312 scenarios. Purple band (b) represents the region within 25 km of the MTJ and the yellow 313 band (d) is the region of anomalous observations in central Cascadia. 314 315 Figure 4. Schematic of upper mantle anisotropy beneath the JdF plate interior and the 316 southern Gorda region. Top layer: Yellow arrows indicate absolute plate motions. The 317 red double arrow represents the relative motion of Pacific-JdF. Black arrows represent N-

DOI:10.1130/G37181.1 S compression of southern Gorda. Small black arrows depict the Mendocino transform fault and strike-slip faulting within the Gorda plate. Bottom layer: Typical splitting

orientations color coded by zone (see Fig. 1); fast polarization directions beneath the JDF

are rotated CW from APM and within the Gorda region parallel Pacific-JdF relative

322 motion.

323

325

318

319

321

324 ¹GSA Data Repository item 2015xxx, xxxxxxxx, is available online at

www.geosociety.org/pubs/ft2015.htm, or on request from editing@geosociety.org or

Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.