

Open Access Articles

Tuning of Peroxiredoxin Catalysis for Various Physiological Roles

The Faculty of Oregon State University has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Perkins, A., Poole, L. B., & Karplus, P. A. (2014). Tuning of Peroxiredoxin Catalysis for Various Physiological Roles. Biochemistry, 53(49), 7693-7705. doi:10.1021/bi5013222
DOI	10.1021/bi5013222
Publisher	American Chemical Society
Version	Accepted Manuscript
Terms of Use	http://cdss.library.oregonstate.edu/sa-termsofuse

1		
2 3 4	1	The Tuning of Peroxiredoxin Catalysis for Various Physiological Roles
5 6		
7 8	2	
9 10 11	3	Arden Perkins ^a , Leslie B. Poole ^b , and P. Andrew Karplus ^a *
12 13 14 15	4	^a Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
16 17 18	5	^b Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157
19 20 21	6	
22 23 24	7	*To whom correspondence should be addressed: ph. 541-737-3200, fax: 541-737-0481
25 26 27 28	8	email: karplusp@science.oregonstate.edu
29 30 31	9	
32 33	10	[†] This study was supported in part by National Institutes of Health grant RO1 GM050389 to
34 35 36	11	L.B.P. and P.A.K.
37 38 39	12	
40 41 42 43	13	Running title: Tuning of Prx catalysis
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		

1	
2	
2	
3	
4	
5	
6	
7	
~	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
20	
32	
33	
34	
35	
36	
27	
37	
38	
39	
40	
41	
40	
42	
43	
44	
45	
46	
47	
47	
48	
49	
50	
51	
50	
52	
53	
54	
55	
56	
50	
57	
58	
59	
60	

ABBREVIATIONS

¹ Abbreviations: Prx – peroxiredoxin, Srx – sulfiredoxin, NOX – NADPH oxidase, ACTH –
adrenocorticotropic hormone, PDB – protein databank, C_P – peroxidatic cysteine, C_R – resolving
cysteine, FF – fully folded, LU – locally unfolded, DTT – dithiothreitol, HOCl – hypochlorous
acid, Gpx – glutathione peroxidase, LPA – lysophosphatidic acid, ParB – chromosomal
partitioning protein B.
FOOTNOTES
+Although the term "peroxide signaling" can refer to both stress and non-stress-related signaling
(Hall et al review ¹ and Karplus and Poole highlight ²), here we exclusively use this term in
reference to non-stress-related signaling.

Biochemistry

ABSTRACT

Peroxiredoxins (Prxs) are an ancient family of enzymes that are the predominant peroxidases for nearly all organisms, and play essential roles in reducing hydrogen peroxide, organic hydroperoxides, and peroxynitrite. Even between distantly-related organisms, the core protein fold and key catalytic residues related to its cysteine-based catalytic mechanism have been retained. Given that these enzymes appeared early in biology, Prxs have experienced over a billion years of optimization for specific ecological niches. Although their basic enzymatic function remains the same. Prxs have diversified and are involved in such roles as protecting DNA against mutation, defending pathogens against host immune responses, suppressing tumor formation, and—for eukaryotes—helping regulate peroxide signaling via hyperoxidation of their catalytic Cys. Here, we review current understanding of the physiological roles of Prxs by analyzing knockout and knockdown studies from ca. twenty-five different species. We also review what is known about the structural basis for the sensitivity of some eukarvotic Prxs to inactivation by hyperoxidation. In considering the physiological relevance of hyperoxidation, we explore the distribution across species of sulfiredoxin (Srx), the enzyme responsible for rescuing hyperoxidized Prxs. We unexpectedly find that among eukaryotes appearing to have a "sensitive" Prx isoform, some do not contain Srx. Also, as Prxs are suggested to be promising targets for drug design, we discuss the rationale behind recently proposed strategies for their selective inhibition.

Introduction to Peroxiredoxins and Scope of this Review

Peroxiredoxins (Prxs) are nature's dominant peroxidases. From archaea to humans, they are widely expressed and possess the same catalytic components³. Prxs serve to protect cells from oxidative stress and prevent damage to DNA, lipids, and other proteins by reducing hydroperoxides and peroxynitrite⁴. With catalytic rates of $\sim 10^7$ M⁻¹ s⁻¹ and an abundance that implies that they account for the reduction of over 90% of cytosolic peroxide, they are crucial for regulating intracellular peroxide levels in most organisms⁵. Cells encounter peroxides in a variety of ways—as a byproduct of cellular processes, as a consequence of environmental conditions, or even as a result of deliberate attacks by other $cells^6$ —and Prxs have been finely tuned to address the needs of their respective organisms. Given the ubiquity of Prxs, it is presumed that they are an ancient enzyme family that arose at the time of the great Oxidation Event, some 2.4 billion years ago, to aid cells in coping with increased oxygen levels and to facilitate aerobic metabolism⁷. Due to their retention over the millennia, with no major alterations in the protein fold or catalytic mechanism, Prxs can be seen as integral to the existence of life on Earth.

We have come to understand that Prxs serve a much more complex function than simply purging cells of a toxic molecule. This is in part due to the discovery that peroxide not only creates oxidative stress and participates in stress-related signaling, such as activating the bacterial transcription regulator OxyR⁸, but in eukaryotes is an integral part of normal, "non-oxidative-stress-related"⁺ cell regulation events¹. Such non-stress-related peroxide signaling is now known to be an important factor involved in cell proliferation, angiogenesis, senescence, and apoptosis^{6,9,10}. Non-oxidative-stress-related peroxide signaling occurs, for instance, as a part of insulin-stimulated activation of NADPH-oxidases (NOXs)¹¹, or adrenocorticotropic hormone

(ACTH)-stimulated activation of a cytochrome P450 that contributes to peroxide buildup (Fig. 1). The peroxide bolus produced by such enzymes becomes a chemical signal that leads to changes in protein activities through the reversible oxidation of protein residues, like an active site cysteine of protein tyrosine phosphatases⁴. Other phospho-regulatory enzymes, such as the kinases CAMKII, PKA, and PKG, are oxidant-sensing and also can be regulated by hydrogen peroxide (recently reviewed by *Burgovne et al.*¹¹). Thus, a complex interplay exists between Prxs and transcription factors, phosphatases, kinases, and any cellular molecule capable of being modified by peroxide (Fig. 1). The important influence of Prxs in cell homeostasis is supported by the observations that Prxs are over-expressed in some human breast¹², lung¹³, and thymic¹⁴ cancers, and that when the most abundant Prx isoform is knocked out in mice the animals develop malignant tumors and hemolytic anemia, and die prematurely¹⁵.

A number of recent reviews of Prxs exist that highlight structure-function relations^{1,5}. enzymology^{16,17}, and their roles in signaling¹⁸. Here, we seek to complement these reviews by organizing current knowledge of the physiological roles of Prxs, exploring how evolution has optimized Prx dynamics and thermodynamics to modulate their sensitivity to hyperoxidation, assessing the distribution of its partner enzyme sulfiredoxin (Srx)¹⁹, and describing how the conformational changes that Prxs undergo might be taken advantage of for drug design^{20,21,22}. At present there are ~120 Prx structures in the protein databank (PDB) and over 15,000 annotated $Prx genes^{23}$, so a wealth of data are available.

1 The peroxidase function of Prxs

Catalytic cycle. Prxs have been classified into subgroups based on functional site sequence similarity³. These are Prx1, Prx5, Prx6, Tpx, AhpE, and PrxQ (proposed recently²⁴ to replace the uninformative name of BCP-bacterioferritin comigratory protein-that has been used for some members of this group). These subgroups have variations in their oligomerization, conformation, and some secondary structure elements, and most organisms possess multiple isoforms⁵ (for example, humans contain four Prx1, one Prx5, and one Prx6 subtypes, whereas Escherichia coli has one Prx1, one Tpx and one PrxO). For all Prxs, however, catalysis is facilitated by a peroxidatic Cys (C_P) contained within a universally conserved Pxxx(T/S)xxC active site motif³ (Fig. 2). The active site lowers the C_P side chain pK_a from ~8.4 to around 6 or even lower so that it is kept predominantly in a nucleophilic, thiolate state 25,26,27 .

The conformation of the enzyme that possesses a substrate-ready active site pocket (Fig. 2A) is referred to as "fully folded" (FF). In the catalytic cycle (Fig. 2B) the peroxide substrate binds to the FF active site where it is attacked by the nucleophilic C_P in an S_N2-type reaction to form Cys-sulfenic acid (C_P-SOH) and water or alcohol. Subsequently the active site locally unfolds, an event sometimes involving the rearrangement of as many as ~35 residues²⁰ (Fig. 2B center). As discussed later in more detail, a second peroxide can react with C_P-SOH to hyperoxidize the enzyme to a dead-end C_P-SO₂. Some organisms, mainly eukaryotes, contain Srx which converts the hyperoxidized form back to C_P-SOH in an ATP-dependent reaction²⁸. For a minority of Prxs, termed "1-Cys" Prxs, the C_P-SOH form is reduced directly by an intracellular reductant such as glutathione or ascorbate²⁹. The majority of Prxs, called "2-Cys" Prxs, have a second resolving Cys (C_R) which forms a disulfide bond with C_P^5 . Depending on the Prx, the C_R may be contained within the same chain or, for some oligomeric Prxs, in the chain of another

Page 7 of 53

1

2

3

1

Biochemistry

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
21	
<u>_</u>	
25	
26	
27	
28	
29	
20	
00	
31	
32	
33	
34	
35	
36	
200	
37	
38	
39	
40	
41	
<u>4</u> 2	
12	
44	
45	
46	
47	
48	
49	
50	
50	
21	
52	
53	
54	
55	
55	
20	
5/	
58	
59	
60	

subunit. The formation of the C_P — C_R disulfide requires the active site to locally unfold, i.e. adopting a "locally unfolded" (LU) conformation, that often involves substantial rearrangements to both the C_P and C_R regions (Fig. 2B)⁵.

To complete the catalytic cycle, the disulfide is commonly reduced by thioredoxin (Trx), or a thioredoxin-like protein³⁰, and the Prx is returned to the FF conformation. Recently, the first structure of a Prx-Trx complex was obtained, showing one Trx on each side of a Prx dimer trapped in a mixed disulfide with C_R^{31} . However, given that this particular yeast Prx possesses an unconventional N-terminal C_R , it is unclear how representative the details of this interaction may be for Prxs in general.

10

Reactivity toward various substrates. Structural work has greatly elucidated the features 11 important for substrate interactions, with a peroxide-bound complex of Aeropyrum pernix thiol 12 peroxidase³² providing a view of a true Prx Michaelis complex (Fig. 2A). Other ligands bound at 13 the active sites of Prx crystal structures include such molecules as oxidized dithiothreitol 14 $(DTT)^{24,33}$, benzoate³⁴, acetate³², formate³⁵, and glycerol³², with the oxygens of these molecules 15 mimicking those of a peroxide. Analysis of these complexes led to a proposal that the roughly 16 10^{5} -fold rate enhance of the enzyme over free cysteine is largely due to an extensive set of 17 hydrogen bonds that stabilize the transition state of the reaction³³, and this was supported by 18 recently determined experimental thermodynamic activation energies as well as QM/MM 19 simulations^{36,37}. 20

Interestingly, though Prxs share a universal catalytic cycle and active site, some are
 observed to have relatively broad substrate specificity, while others are more selective³⁸. For

instance, Salmonella typhimurium alkyl hydroperoxide reductases C (StAhpC) is ~100-fold more reactive with hydrogen peroxide than with organic peroxides due primarily to differences in K_m^{39} . In contrast, human PrxV²⁶ and *Escherichia coli* thiol peroxidase (*Ec*Tpx)³⁸ are ~100 and ~200-fold, respectively, more reactive with organic peroxides. The preference of some Prxs for organic peroxides has been attributed to a "hydrophobic collar" of apolar side chains around their active site that can make favorable hydrophobic interactions with the hydrocarbon part of the substrate (Fig. 2C). Such a conserved hydrophobic collar was first observed in the Tpx subfamily³⁸, but other Prxs that efficiently reduce organic peroxides, such as human $PrxV^{33}$, also possess analogous collars. One commonality among various hydrophobic collars is that a dimer partner is frequently seen to contribute a bulky hydrophobic side chain to the collar across the dimer interface^{24,31,33,38}. The significance of this interaction is not fully understood, but may be related to a positive cooperativity seen for one Prx when consuming organic peroxides³¹. Another possible contributor to substrate specificity proposed for a PrxQ from *Xanthomonas campestris* is for an extended β -strand to fold down and cap the active site after binding an organic peroxide³⁵.

The ability of Prxs to reduce peroxynitrite is also well established⁴⁰. AhpCs from the genera *Salmonella*, *Mycobacterium*, and *Helicobacter* were shown to efficiently reduce peroxynitrite⁴¹, as were Prxs from other organisms such as *Trypanosoma cruzi* tryparedoxin peroxidase⁴² and human $PrxV^{26,43}$. Experiments indicate that the reaction with the C_P thiolate reacts with peroxynitrous acid⁴⁴ (i.e. the protonated form that is readily formed at physiological pHs⁴⁵), and this is consistent with the protonated form being better able to mimic peroxide binding in the Prx active site (Fig. 2C). Additionally, lowering the pH from 7.8 to 7.4 (and

Biochemistry

increasing the fraction of peroxynitrous acid present) increased peroxynitrite reduction by human $PrxV^{26}$ from ~10⁷ M⁻¹ s⁻¹ to ~10⁸ M⁻¹ s⁻¹.

Hypochlorous acid (HOCl) is among the reactive oxygen species released extracellularly by neutrophils to overwhelm pathogen redox systems ⁴⁶, and HOCl can also lead to generation of chloramines via spontaneous HOCl-amino reactions^{47,48} (Fig. 2D). HOCl and chloramines readily oxidize thiol groups, and recent studies indicate Prxs are targets of these chemical species^{47,48}. Human PrxIII did become oxidized when cells were treated with μ M-levels (thought to be representative of *in vivo* concentrations) of NH₂Cl and HOCl, but reported rates are similar to that of free thiols, suggesting the reaction is not substantially facilitated by the enzyme^{47,48}. Given the prevalence of glutathione and other cellular thiols, Prxs are not thought to be major sinks for HOCl or chloramines⁴⁷. Nevertheless, it can be seen that a major evolutionary advantage conferred by Prxs is the ability to eliminate many forms of peroxide, and apparently even some other reactive species. Knockdown and knockout studies as probes of the physiological roles of Prxs Prxs influence a variety of cellular processes, and one approach to discern their various physiological roles is to observe the phenotypes that arise when cells or whole organisms are made deficient of these enzymes. Summarized here are the results of extensive knockdown

vertebrates (Table 1), other eukaryotes (SI Table 2), and prokaryotes (SI Table 3).

studies in cells from humans and in other organisms (SI Table 1) and of knockout studies for

Prx deficiency in eukaryotes. Humans contain six Prx isoforms, which are localized in discrete parts of the cell: PrxI, II, and VI are primarily cytosolic, PrxIII is mitochondrial, PrxIV is in the endoplasmic reticulum, and PrxV is in the cytosol as well as the mitochondria and peroxisomes⁴. The effects of Prx knockdowns have been characterized in at least one cell line for each isoform (SI Table 1). One commonality of these studies is an increase in oxidative damage to cellular components such as increases in protein carbonvlation⁴⁹ and DNA oxidation⁵⁰. These effects are typically accompanied by reduced growth and, survival, and increased apoptotic cell death, especially under conditions of oxidative stress^{49,51,52,53,54,55,56}. It is perhaps not surprising, therefore, that Prx deficiency also contributes to cellular degeneration and decreases the viability of cancer cells. For example, PrxI was designated as a tumor suppressor upon the discovery that a histone deacetylase exerted its antitumor properties through increasing PrxI expression in cancerous esophageal cells⁵⁷. Additionally, knockdowns of PrxII⁵¹ and PrxVI⁵⁵ in breast cancer cells were found to inhibit metastases.

Further elucidating the protective role of Prxs in mammals are knockout analyses carried out on the homologous mouse enzymes (Table 1). As was seen in the human cell knockdowns, Prx knockout mice show increased oxidative damage to proteins, lipids, and DNA that detrimentally affect a host of cellular processes and often result in abnormal cellular regulation and growth^{58,59,60,61,62,63,64}. Mouse PrxI knockouts exhibit the most severe phenotype in which c-Myc levels increase⁵⁸, Akt kinase levels are elevated in fibroblasts and mammary epithelial cells⁶⁵, and death occurs by nine months due to the development of malignant tumors⁶⁶. PrxII-knockout animals showed increased atherosclerosis⁶⁷, increased splenocytes, bone marrow differentiation, and peripheral blood mononuclear cells⁶⁸, an enlarged thymus, increased T-cell proliferation^{69,70}, as well as elevation of p21 and p53 levels and increased cell senescence⁷¹.

Biochemistry

PrxIII-null mice exhibited alterations in fat metabolism, with increased fat mass, downregulation of adiponectin, impaired glucose tolerance and insulin resistance⁶², as well as a reduced litter size and general sensitivity to oxidative stress as observed in placenta⁷², macrophage⁷³, and lung cells⁶¹. PrxIV was also found to influence reproductive success, as PrxIV-knockout mice displayed testicular atrophy and reduced sperm viability under conditions of oxidative stress⁷⁴.

Prxs are further seen to be important for the viability of less complex eukarvotes (SI Table 1, SI Table 2). Caenorhabditis elegans Prx-knockdowns show a 70% reduction in brood size and individual growth is retarded^{75,76}. Also, studies of Prx-deficient disease-causing eukaryotes have implicated Prxs as pathogenicity factors for a number of organisms, with Schistosoma showing decreased survival and larval size^{77,78,79}, Trypanosoma brucei exhibiting a 16-fold increase in sensitivity to peroxide-induced death⁸⁰, and *Leishmania infantum* having decreased infectivity in mice⁸¹. In addition, Tpx1-knockouts of *Plasmodia* have increased sensitivity to paraquat and nitroprusside⁸², produce 60% fewer gametes, exhibit delayed gaetocytemia⁸³, grow fewer sporozoites in mosquitoes, and are less effective at infecting mice⁸⁴. Thus, these results are consistent with Prxs being crucial components of pathogenic redox defenses.

Several studies have utilized fungal model organisms to analyze the effects of Prx
knockouts (SI Table 2). In *Sacchoromyces cerevisiae*, which has multiple Prx and glutathione
peroxidase (Gpx) isoforms, the knockout of individual Prxs resulted in increased sensitivity to
reactive oxygen and nitrogen species as well as increased DNA mutations⁸⁵. Not surprisingly,
these effects were magnified when all Prx isoforms were knocked out⁸⁵, and dual Prx/Gpx-null
strains exhibited a ~50% shorter lifespan⁸⁶. The less-extensively studied *Neurospora crassa*

showed altered circadian periods and phases when a Prx was knocked out and peroxidedependent transcriptional responses were lost⁸⁷. Alterations to circadian rhythms were also seen
for *Arabidopsis thaliana*, the only plant for which a Prx deficiency has been well-characterized⁸⁷.
Interestingly, Prx knockdowns in this model plant impacted several plant-specific processes,
such as increased foliar ascorbate oxidation⁸⁸, altered gene expression in the chloroplast, and
reduction in photosystem II and cytochrome-b₆ content⁸⁹ (SI Table 1).

These studies demonstrate that Prxs in eukaryotes are essential to normal function, as their absence results in damage to cell components and promotes deterioration of cell cycle regulation; the latter especially emphasizes that a vital role is played by Prxs in non-oxidative-stress-related peroxide signaling. An interesting observation that arises from the different effects seen in the knockout or knockdown of single Prxs is that, despite their high sequence similarity and shared peroxidase functionality. Prx isoforms do not have fully overlapping functions. This is illustrated especially well for human and mouse, for which the deficiency in each isoform resulted in distinct, deleterious phenotypes (Tables 1 and SI Table 1). One obvious contributor to this lack of compensation is the discrete tissue expression profiles and cellular locations of eukaryotic Prx isoforms⁵³. Besides the restrictions imposed by localization, the cytosol, nucleus, ER, and mitochondria all have distinct redox environments^{90,91} (for a recent review see Banach-Latapy et al.⁹²) and therefore Prx isoforms have been specifically tuned for optimal function in only certain cellular compartments.

Prx deficiency in bacteria. Unlike their eukaryotic counterparts, bacteria are not known to utilize
non-oxidative-stress-related peroxide signaling. Thus, the lack of an evolutionary pressure to

Page 13 of 53

Biochemistry

allow for the localized buildup of peroxide constitutes a major difference in the functional optimization of bacterial Prxs. As a consequence, many bacterial Prxs have evolved to be highly "robust" against inactivation by hyperoxidation, even at millimolar concentrations of peroxide⁹³. The advantage of this robustness is especially apparent for pathogenic bacteria as Prxs are utilized to defend against the reactive oxygen species employed by attacking macrophages⁹⁴. Investigations into the role of bacterial Prxs, therefore, have been largely focused on disease-causing species (SI Table 3).

The most extreme dependence on Prxs so far observed for a bacterial species is that of Helicobacter, for which knockouts displayed no growth in microaerobic conditions⁹⁵, were more susceptible to killing by macrophages, and nearly lost their ability to colonize mouse stomachs⁹⁶. Likewise, for *Staphylococcus aureus*⁹⁷ and *Mycobacterium boyis*⁹⁸ Prx-deficient strains were shown to have reduced infectivity. In general, minimal effects of some Prx knockouts may be due to compensation by other redox-defense enzymes. Some support for this is found in that more adverse phenotypes are observed for *Vibrio parahaemolyticus*⁹⁹ and *Brucella abortus*⁹⁴ when two enzymes are knocked out at once. As discussed above, substrate specificity may influence the essentiality of a certain isoform or set of isoforms, and for Prxs specific for organic peroxides, like E. coli Tpx, it is important to note that the impact of the loss of its activity may be underestimated by challenges with H₂O₂ alone.

 Potential physiological value of Prx hyperoxidation. As noted above, the C_P-SOH state of a Prx can react with a second peroxide and become hyperoxidized to a Cys-sulfinate (C_P -SO₂) which inactivates the enzyme's peroxidase function (Fig. 2B). Prokaryotic Prxs typically are rather resistant to hyperoxidation, requiring millimolar concentrations of substrate, and have been referred to as "robust" isoforms¹⁰⁰. In contrast, many eukaryotic Prxs are quite readily hyperoxidized even though this makes them worse peroxidases. For example, human PrxII is converted almost entirely to the hyperoxidized state in the presence of only 40 uM peroxide (with no reducing agent present), with a $k_{SOH} \rightarrow k_{SO2}$ rate on the order of ~1.0 x 10³ M⁻¹s⁻¹ or higher ^{101,102}. Such isoforms are referred to as "sensitive," because even at low peroxide levels they are sensitive to being inactivated through hyperoxidation¹⁰⁰. To facilitate comparisons of sensitivity between Prxs, the quantity C_{hvp1%} was recently introduced as a normalized way to quantify this property⁹³; C_{hyp1%} defines the peroxide concentration at which 1% of Prx molecules become hyperoxidized during each turnover. Using this terminology, it is apparent that human PrxI ($C_{hvp1\%} = 62 \ \mu M$), human PrxII ($C_{hvp1\%} = ca. 1.5 \ \mu M$), and human PrxIII ($C_{hvp1\%} = ca. 18$ μ M) are much more sensitive than *St*AhpC (C_{hvp1%} = 10,000 μ M)^{93,102}.

17 When Prx hyperoxidation was first discovered, its physiological relevance was 18 questioned, as *in vivo* peroxide concentrations in healthy cells are thought to rarely exceed 1-15 19 μ M¹⁰³. It has since been hypothesized that peroxide levels may locally reach concentrations at 20 which hyperoxidation can occur⁴, such as in the vicinity of peroxide-producing enzymes such as 21 NOXs (Fig. 1). Recently, the growth factor lysophosphatidic acid (LPA) was shown to stimulate 22 cellular internalization of NOX components into early endosomes, termed "redoxosomes," to 23 serve as hubs for oxidative regulation¹⁰⁴ (Fig. 1). Strong support for the existence of local

Biochemistry

peroxide buildup is an elegant study proving that protein tyrosine phosphatases, which are not
highly reactive with peroxide, actually do become oxidized *in vivo*¹⁰⁵. Further, Prx
hyperoxidation is observed *in vivo* in a variety of organisms and has been discussed as a marker
of ancient Circadian rhythms^{87,106}, though the meaning or relevance of this latter observation is
not yet clear.

In terms of what evolutionary advantages could be conferred to the many eukaryotes which contain sensitive Prxs, there is as of yet no final consensus. One explanation, termed the "floodgate hypothesis," proposes that Prx hyperoxidation is important for enabling non-stress-related peroxide signaling in eukaryotes¹⁰⁰. In this model, low peroxide concentrations are reduced efficiently, but when levels spike locally due to the purposeful H₂O₂-production by enzymes such as NOX during signaling events⁶, Prxs are inactivated to allow the H₂O₂ to build up sufficiently in a local area to oxidize downstream target proteins (Fig 1). The dysregulation of this signaling pathway provides an explanation for how knockouts of sensitive isoforms in mammals (PrxI-IV) could result in the development of cancers⁶⁶, increased cell senescence⁷¹, and malformed tissue and organs^{72,74} (Table 1 and SI Table 1). As noted above, the downstream targets that have been most extensively studied are the protein tyrosine phosphatases which become inactivated through the oxidation of a catalytic Cvs residue (reviewed by Frijhoff et al^{107}). Nevertheless, the best documented example of such a floodgate-style function of a Prx is in fact the role of PrxIII in the negative feedback control of mammalian corticosteroid production (Fig. 1). Occurring in adrenal gland mitochondria as a circadian cycle, an ACTH-activated cytochrome P450 produces H₂O₂ as a by-product of making corticosteroids, and the inactivation of PrxIII allows peroxide to build up sufficiently to lead to p38 activation and a shutting down of the synthesis of the steroidogenic acute regulatory protein 108 (Fig. 1).

Additional proposals that have been put forth for the possible benefits of Prx hyperoxidation include their serving as chaperones 81,109,110 , regulating senescence through protein-protein interactions with p38MAPK α^{111} , and peroxide exposure dosimeters². Also, most recently. Day *et al.*¹¹² showed that under extreme oxidative conditions the inactivation of Prxs can serve to preserve the Trx pool for use by more essential cellular systems². In that study, the survival of Schizosaccharomyces pombe was greatly diminished when its single Prx was not inactivated by millimolar levels of peroxide¹¹². The authors showed the Prx inactivation allowed the reduced Trx pool to be retained for use by Trx-dependent repair enzymes such as methionine sulfoxide reductase¹¹². Though S. pombe in nature would not normally encounter such high peroxide levels, these results provide a valuable insight into the importance of maintaining a reduced Trx pool. Related to this, it was proposed that the eukaryotic pathogen Schistosoma might possess both sensitive and robust isoforms because it allows for the switching between reduction sources; since the latter enzyme is preferentially reduced by the glutathione/glutathione reductase system¹¹³, the organism does not exclusively rely on Trx when enduring a peroxide burst from a macrophage. It is also noteworthy that although Schistosoma do not possess catalase, peroxide disproportionation by catalases, present in most cells, is in principle an alternative approach by which cells can prevent the depletion of their reduced Trx^2 .

Structural features influencing Prx sensitivity to hyperoxidation. So what are the structural features that give rise to sensitivity to hyperoxidation? It was discovered that many Prx 1 subfamily sensitive Prxs contain two motifs that pack against the FF active site, a "GGLG" and a C-terminal extension with a "YF," which are not present in most robust isoforms¹⁰⁰ (Fig. 3). By inhibiting the local unfolding of the active site, these motifs serve to rigidify and stabilize the FF

ACS Paragon Plus Environment

Page 17 of 53

Biochemistry

active site and make the enzyme more susceptible to hyperoxidation¹⁰⁰. This mode of action and the greater importance of the C-terminal YF motif to sensitivity was proven shortly thereafter by a study showing that C-terminal swapping between sensitive and robust isoforms from the eukarvotic parasite *Schistosoma* resulted in variants with reversed sensitivity¹¹³. Likewise, a truncation of the C-terminal YF motif in human PrxIV greatly diminished the enzyme's sensitivity¹¹⁴. Based on such results it has sometimes been generalized that only eukarvotes possess sensitive isoforms and that sensitive and robust Prxs can be reliably distinguished by the presence or absence of the GGLG and YF motifs — but these are both oversimplifications. With regard to the first point, some prokaryotes do possess sensitive Prxs. A number of bacterial Prx isoforms have the GG(L/V/I)G and YF (or YL or FL) motifs, and some have been shown to be sensitive^{110,115,116} although they appear to be used for antioxidant defense rather than regulating peroxide signaling. Examples of this are two cyanobacterial species, Anabaena and Synechocystis, that both have sensitive Prxs¹¹⁵. Anabaena expresses its sensitive isoform abundantly and utilizes an Srx to rescue any hyperoxidized forms, while *Synechocystis* (which has no Srx) only expresses its moderately sensitive Prx at low levels to mop up endogenous peroxide and rapidly produces catalase to defend against higher peroxide levels¹¹⁵. Similarly, the bacteria *Vibrio vulnificus* was shown to possess both a sensitive and a robust Prx¹¹⁶, with trace amounts of peroxide inducing the expression of the sensitive isoform, whereas only high levels of peroxide induced the robust isoform, suggesting that the two Prxs are utilized for discrete levels of oxidative stress.

With regard to the second point, a recent study of human PrxII and PrxIII explored
through mutagenesis the importance of secondary features associated with the two regions¹⁰¹
(Fig. 3). Both PrxII and PrxIII contain the GGLG and YF motifs but nevertheless PrxIII is about

10-fold more robust. Swapping the identities of nearby residues between these two isoforms generated more robust PrxII variants and also more sensitive PrxIII variants, although again it was the presence of the C-terminal YF positions which were most critical to promoting sensitivity¹⁰¹. This proves that positions other than the GGLG and YF motifs can also contribute to sensitivity or robustness. This is especially exemplified by *E. coli* Tpx which is a fairly sensitive Prx (C_{hvp1%} of 156 µM for cumene hydroperoxide⁹³) even though it does not contain either motif, and is actually in a different Prx subfamily. Also, Perkins *et al*²⁰ showed that even conservative mutations such as $C_R \rightarrow Ser/Ala$, commonly used to study the properties of Prxs, can actually perturb the C-terminal packing sufficiently to shift the FF↔LU equilibrium toward LU and make the enzyme less sensitive. Such modulations of sensitivity have been recently shown to occur physiologically, as the C-terminal lysine-acetylation of human PrxI¹¹⁷ and N-terminal acetylation of human PrxII¹¹⁸ led the enzymes to become robust. Further, nitration of human PrxII Tyr193 (in the YF motif), detected in Alzheimer patient brains, converted the enzyme to be robust and may play a role in the development of the disease¹¹⁹. Thus, a small alteration to even one residue can potentially reduce the fraction of the active FF population by orders of magnitude, and thereby inhibit hyperoxidation.

These complexities reinforce the point that various Prxs have been optimized to suit diverse needs, and that although trends do exist, caution must be employed when attempting to draw firm conclusions about Prx sensitivity solely from a sequence fingerprint. In general, enzymatic characterization is necessary to be certain, and there remains much to learn about the occurrence and roles of sensitive versus robust Prxs.

1

Biochemistry

2	
2	
ر م	
4	
5	
6	
7	
/ ~	
B	
9	
1	0
4	-
!	1
1	2
1	3
1	4
1	5
1	5
1	6
1	7
1	8
1	õ
! -	9
2	0
2	1
2	2
$\overline{2}$	2
_	3
2	4
2	5
2	6
	7
_	1
2	8
2	9
3	0
2	ĭ
5	1
3	2
3	3
3	4
ຸ	5
5	2
3	6
3	7
3	8
ີ	a
ر ۸	٥ ٥
+	U U
4	1
4	2
4	3
1	1
+	- T
4	5
4	6
4	7
۵	8
т л	0
+	3
5	0
5	1
5	2
5	2
2	3
5	4
_	F
С	5
5	ว 6
5	5 6 7
55	5 6 7
5 5 5	5 6 7 8

60

1 The Distribution of Sulfiredoxin among Eukaryotes

Sulfiredoxin (Srx) catalyzes the ATP-driven rescue of C_P -SO₂⁻ back to C_P -SOH¹⁹, and is present in many eukaryotes and a few cyanobacteria¹¹⁵. Upon its discovery¹²⁰, Srx provided an explanation for how eukaryotes could allow sensitive Prxs to be hyperoxidized without being wastefully irreversibly inactivated. A crystal structure of a Prx-Srx complex (Jönsson *et al.* in 2009) revealed that the two enzymes embrace with the locally unfolded Prx C-terminus wrapping around the backside of Srx, and the Prx C_P being placed into the Srx Gly-Cys-His-Arg (GCHR) active site pocket near the bound ATP (Fig. 4)²⁸.

9 Srx appears to be remarkably important for organisms that express it. Knockouts of Srx cope poorly with oxidative stress¹²¹, with cells showing dramatically increased Prx 10 hyperoxidation, apoptosis, and mitochondrial membrane potential collapse¹²². Conversely, the 11 over-expression of Srx has been observed to influence cell proliferation and pro-cancerous 12 activity, including altering the states of p21, p23, and p53¹²³. In yeast, the over-expression of Srx 13 was shown to increase the replicative life span by twenty-percent¹²⁴. We expect that these 14 phenotypes are largely due to altered Prx regulation, but Srx has also been reported to possess 15 deglutathionylation activity¹²⁵. Two recent reviews provide further details about Srx structure, 16 function and physiology^{125,126}. Here, assuming that the presence of Srx in an organism would 17 suggest a signaling-related physiological role for Prx hyperoxidation, we have investigated the 18 distribution of Srx in nature to seek insight into the occurrence, and evolutionary roots, of 19 peroxide-signaling pathways. 20

To perform an updated analysis of the distribution of Srx we used BLAST¹²⁷ to retrieve 335 Srx sequences from the non-redundant protein database. Only sequences containing the

"GCHR" Srx active site fingerprint¹²¹ were included as a way to filter out proteins such as the functionally unrelated bacterial chromosomal partition protein B (ParB), which is a known homolog¹²⁸. An evolutionary tree (Fig. 5) reveals that Srx is present and clusters distinctly in animals, fungi, plants, some protists, and, as was reported in a 2005 Srx evolution study¹²⁸, some cyanobacteria are the only prokaryotes to contain an srx gene. This apparent wide distribution of Srx among eukaryotes implies a relatively ancient existence of functional Prx hyperoxidation. As a next step, we analyzed the available 220 sequenced eukaryotic genomes and surprisingly found that only 56% of them contained an *srx* gene: fungi and protists quite commonly lack Srx, and while most animals and plants contain Srx, a few animal exceptions seem to exist (Table 2). For example, Xenopus apparently does not have Srx and subsequent searches for an amphibian srx gene did not yield any examples. Also, especially noteworthy is that many organisms causing human disease, some of which had been mentioned in the 2005 study¹²⁸, do not possess Srx (Table 2). These include *Entamoeba*, apicomplexans (such as

Plasmodia species and Toxoplasma gondii), the Diplomonad Giardia lamblia, the parabasalid Trichomonas vaginalis, euglenozoa (Trypanosoma and Leishmania species), the nematodes Loa loa (eye worm) and Brugia malavi (causes elephantitis), and the flatworm Schistosoma mansoni.

That Srx is present in a diverse range of eukaryotes yet is apparently absent from certain groups seems to be an important observation. For those eukaryotes lacking Srx, some possibilities for how they differ are that the Prx repair function is performed by a different enzyme, that hyperoxidized Prxs are not rescued, and/or that non-stress related peroxide signaling is either not as important or not similarly regulated by Prx hyperoxidation. In Schistosoma mansoni, which does not possess Srx but does have a sensitive Prx isoform¹¹³, it has been shown that Prxs that become hyperoxidized are not repaired ⁷⁷. Whether or not they use

Biochemistry

peroxide in non-stress related signaling is unknown. Like *Schistosoma*, many of the eukarvotes which do not contain Srx do have at least one Prx isoform that contains the GGLG and YF motifs (SI Table 4). As discussed earlier, a presence of the GGLG and YF motifs does not necessarily prove that a Prx is sensitive, but as is seen for the *Schistosoma* enzyme, some may indeed be sensitive.

From these analyses the additional question arises as to why organisms that seem to lack the ability to rescue hyperoxidized Prxs would retain sensitive isoforms. Perhaps some of these organisms, such as was seen for *Vibrio*¹¹⁶, minimize waste by tightly regulating their sensitive Prxs to only be expressed at basal levels of peroxide. A further consideration is that due to cellular compartmentalization, even organisms which do contain Srx may not necessarily efficiently rescue all hyperoxidized Prxs. This is illustrated by a recent study showing that in human fibrosarcoma cells, when ER-localized human PrxIV hyperoxidation is induced through ER-stress-generating agents, no rescue was observed, leading the authors to conclude that no ER-localized Srx exists¹²⁹. We propose that the distribution pattern of Srx in eukaryotes holds important clues to the physiological roles of facile Prx hyperoxidation and that it is worthy of further study.

The efficacy of targeting Prxs for drug design

From the wealth of studies summarized above we can conclude that Prxs play prominent roles in protecting DNA and other cellular components from oxidative damage, as well as influencing cell signaling, regulation, and proliferation in multicellular eukaryotes. So what rationale is there for the development of Prx-based therapeutics? A particularly interesting

development for mammalian Prxs is the recent proposal that certain isoforms, especially PrxV
and VI, are danger signals associated with ischemic brain injury^{130,131}. These enzymes are
released post-stroke by necrotic brain cells and are specifically detected by toll-like receptors of
infiltrating macrophages, stimulating inflammatory cytokine production and promoting ischemic
brain damage¹³⁰. Antibodies against these Prxs were able to attenuate injury, providing evidence
that implicates them as viable targets for future stroke therapeutics¹³⁰. Also, given that some
cancers over-expressing Prxs are resistant to radiation or other therapies^{12,13,14}, it is tempting to
envision that inhibiting human Prxs could have therapeutic value in some circumstances. For
Prxs from pathogens, however, the case that they are drug targets seems very clear as Prx
deficiencies in both prokaryotic and eukaryotic pathogens are linked to viability and infectivity.

The oft noted challenge with regard to Prxs as drug targets is that the Prx active site is highly conserved, making it very challenging to make selective inhibitors targeting the active site. As an idea for designing inhibitors that would not target the active site, *Perkins et al*²⁰ proposed that the delicately balanced FF↔LU equilibrium could be shifted by a small molecule to stabilize a single conformation (either the FF or the LU), thereby preventing the structural changes required for Prx catalysis. Surface regions of the protein that are involved in the $FF \leftrightarrow LU$ transition are rather divergent in sequence and structure and can therefore be targeted. One such example is the C-terminal region of the Prx1 subfamily. If the LU form were stabilized it would directly result in the loss of peroxidase activity. Alternatively, if the FF form were stabilized, and the C_P was blocked from resolving with the C_R, this would directly enhance activity but would indirectly lead to inhibition by promoting hyperoxidation²⁰. Since most pathogens do not possess an Srx to rescue the hyperoxidized form (e.g. Table 2), these Prxs would be permanently inactivated. Further, the affinity of such an inhibitor could perhaps even

Page 23 of 53

Biochemistry

be tuned so that it would dissociate and go on to inactivate other Prxs, thereby leading to an increased potency beyond a 1:1 ratio. Structures of many pathogenic Prxs are available (for a detailed review see Hall *et al*⁵ and Gretes & Karplus¹³²)—including bacterial isoforms *St*AhpC, HpAhpC. Haemophilus influenza Tpx. MtAhpC. MtTpx and eukarvotic isoforms¹³² Plasmodium *yoelii* PrxI, *P. vivax* 2-Cys, *P. falciparum* Trx-Px2—so rational drug design techniques such as virtual ligand screening¹³³ could be applied to identify leads. These approaches for Prx-targeted therapeutics warrant investigation, because two decades of Prx research can now be drawn on for guidance and, if successful, it could provide novel antibiotics for some of the most virulent modern diseases.

11 ACKNOWLEDGEMENTS

This work was made possible by funding from National Institutes of Health grant RO1GM050389 to L.B.P. and P.A.K.

15 SUPPORTING INFORMATION

Table S1summarizes Prx knockdown studies, Table S2 summarizes Prx knockout studies in
various eukaryotes, Table S3 summarizes Prx knockout studies in prokaryotes, and Table S4
shows representative eukaryotes that lack Srx but have Prxs with GGLG/YF motifs. This

19 material is available free of charge via the Internet at <u>http://pubs.acs.org</u>.

REFERENCES

- Hall, A., Karplus, P. A. & Poole, L. B. Typical 2-Cys peroxiredoxins structures,
 mechanisms and functions. *FEBS Journal* 276, 2469–2477 (2009).
- Karplus, P. A. & Poole, L. B. Peroxiredoxins as Molecular Triage Agents, Sacrificing
 Themselves to Enhance Cell Survival During a Peroxide Attack. *Molecular Cell* 45, 275–
 278 (2012).

Nelson, K. J., Knutson, S. T., Soito, L., Klomsiri, C., Poole, L. B. & Fetrow, J. S. Analysis of the peroxiredoxin family: Using active-site structure and sequence information for global classification and residue analysis. *Proteins: Structure, Function, and Bioinformatics* 79, 947–964 (2010).

- 11 4. Rhee, S. G., Woo, H. A., Kil, I. S. & Bae, S. H. Peroxiredoxin Functions as a Peroxidase
 12 and a Regulator and Sensor of Local Peroxides. *J. Biol. Chem.* 287, 4403–4410 (2012).
- 32
 33 13 5. Hall, A., Nelson, K., Poole, L. B. & Karplus, P. A. Structure-based Insights into the
 34
 - Catalytic Power and Conformational Dexterity of Peroxiredoxins. *Antioxidants & Redox Signaling* 15, 795–815 (2011).
- 40 16 6. Giorgio, M., Trinei, M., Migliaccio, E. & Pelicci, P. G. Hydrogen peroxide: a metabolic by41 42 17 product or a common mediator of ageing signals? *Nature Reviews Molecular Cell Biology*44 45 18 8, 722–728 (2007).
- 47 19 7. Copley, S. D., Novak, W. R. P. & Babbitt, P. C. Divergence of Function in the Thioredoxin
 48
 49 20 Fold Suprafamily: Evidence for Evolution of Peroxiredoxins from a Thioredoxin-like
 51 52 21 Ancestor⁺. *Biochemistry* 43, 13981–13995 (2004).
 - Zheng, M., Åslund, F. & Storz, G. Activation of the OxyR Transcription Factor by
 Reversible Disulfide Bond Formation. *Science* 279, 1718–1722 (1998).
 - **ACS Paragon Plus Environment**

60

Biochemistry

1			
2 3 4	1	9.	Frey, R. S., Ushio-Fukai, M. & Malik, A. B. NADPH Oxidase-Dependent Signaling in
5 6 7	2		Endothelial Cells: Role in Physiology and Pathophysiology. Antioxid Redox Signal 11,
7 8 9	3		791–810 (2009).
10 11	4	10.	Antico Arciuch, V. G., Elguero, M. E., Poderoso, J. J. & Carreras, M. C. Mitochondrial
12 13 14	5		Regulation of Cell Cycle and Proliferation. Antioxidants & Redox Signaling 16, 1150–1180
15 16	6		(2011).
17 18	7	11.	Burgoyne, J. R., Oka, S., Ale-Agha, N. & Eaton, P. Hydrogen Peroxide Sensing and
19 20 21	8		Signaling by Protein Kinases in the Cardiovascular System. Antioxidants & Redox
22 23	9		<i>Signaling</i> 18, 1042–1052 (2013).
24 25 26	10	12.	Dy, N., Sj, A., Ra, L., Sw, K., Ia, P. & Hz, C. Overexpression of peroxiredoxin in human
27 28	11		breast cancer. Anticancer Res 21, 2085–2090 (2000).
29 30	12	13.	Chang, J. W., Jeon, H. B., Lee, J. H., Yoo, J. S., Chun, J. S., Kim, J. H. & Yoo, Y. J.
31 32 33	13		Augmented Expression of Peroxiredoxin I in Lung Cancer. Biochemical and Biophysical
34 35	14		Research Communications 289, 507–512 (2001).
36 37 28	15	14.	Nonn, L., Berggren, M. & Powis, G. Increased Expression of Mitochondrial Peroxiredoxin-
39 40	16		3 (Thioredoxin Peroxidase-2) Protects Cancer Cells Against Hypoxia and Drug-Induced
41 42	17		Hydrogen Peroxide-Dependent Apoptosis11CA52995 and CA772049. Mol Cancer Res 1,
43 44 45	18		682–689 (2003).
46 47	19	15.	Neumann, C. A., Krause, D. S., Carman, C. V., Das, S., Dubey, D. P., Abraham, J. L.,
48 49	20		Bronson, R. T., Fujiwara, Y., Orkin, S. H. & Van Etten, R. A. Essential role for the
50 51 52	21		peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature
53 54	22		424, 561–565 (2003).
55 56 57			
58 59			

3 4	1	16.	Rhee, S. G., Chae, H. Z. & Kim, K. Peroxiredoxins: A historical overview and speculative
5 6	2		preview of novel mechanisms and emerging concepts in cell signaling. Free Radical
7 8 9	3		<i>Biology and Medicine</i> 38 , 1543–1552 (2005).
10 11	4	17.	Barranco-Medina, S., Lázaro, JJ. & Dietz, KJ. The oligomeric conformation of
12 13	5		peroxiredoxins links redox state to function. FEBS Letters 583, 1809–1816 (2009).
14 15 16	6	18.	Rhee, S. G., Yang, KS., Kang, S. W., Woo, H. A. & Chang, TS. Controlled Elimination
17 18	7		of Intracellular H ₂ O ₂ : Regulation of Peroxiredoxin, Catalase, and Glutathione Peroxidase
19 20 21	8		via Post-translational Modification. Antioxidants & Redox Signaling 7, 619-626 (2005).
22 23	9	19.	Rhee, S. G., Jeong, W., Chang, TS. & Woo, H. A. Sulfiredoxin, the cysteine sulfinic acid
24 25	10		reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and
26 27 28	11		biological significance. Kidney International 72, S3–S8 (2007).
29 30	12	20.	Perkins, A., Nelson, K. J., Williams, J. R., Parsonage, D., Poole, L. B. & Karplus, P. A. The
31 32 22	13		Sensitive Balance between the Fully Folded and Locally Unfolded Conformations of a
33 34 35	14		Model Peroxiredoxin. Biochemistry 52, 8708-8721 (2013).
36 37	15	21.	Cioli, D., Valle, C., Angelucci, F. & Miele, A. E. Will new antischistosomal drugs finally
38 39 40	16		emerge? <i>Trends in Parasitology</i> 24, 379–382 (2008).
40 41 42	17	22.	Piñeyro, M. D., Parodi-Talice, A., Arcari, T. & Robello, C. Peroxiredoxins from
43 44	18		Trypanosoma cruzi: Virulence factors and drug targets for treatment of Chagas disease?
45 46 47	19		<i>Gene</i> 408, 45–50 (2008).
48 49	20	23.	Maglott, D., Ostell, J., Pruitt, K. D. & Tatusova, T. Entrez Gene: gene-centered information
50 51	21		at NCBI. Nucl. Acids Res. 33, D54–D58 (2005).
52 53 54			
55 56			
57 58			
59 60			

Page 27 of 53

Biochemistry

1 2			
3 4	1	24.	Perkins, A., Gretes, M. C., Nelson, K. J., Poole, L. B. & Karplus, P. A. Mapping the Active
5 6 7 8 9	2		Site Helix-to-Strand Conversion of CxxxxC Peroxiredoxin Q Enzymes. <i>Biochemistry</i> 51,
	3		7638–7650 (2012).
10 11	4	25.	Nelson, K. J., Parsonage, D., Hall, A., Karplus, P. A. & Poole, L. B. Cysteine pKa Values
12 13 14 15 16 17 18 19 20 21	5		for the Bacterial Peroxiredoxin AhpC. Biochemistry 47, 12860-12868 (2008).
	6	26.	Trujillo, M., Clippe, A., Manta, B., Ferrer-Sueta, G., Smeets, A., Declercq, JP., Knoops,
	7		B. & Radi, R. Pre-steady state kinetic characterization of human peroxiredoxin 5: Taking
	8		advantage of Trp84 fluorescence increase upon oxidation. Archives of Biochemistry and
22 23	9		Biophysics 467, 95–106 (2007).
24 25	10	27.	Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M. & Denicola, A. Factors
26 27 28 29 30 31 32 33 34 35 36 37 38	11		affecting protein thiol reactivity and specificity in peroxide reduction. Chemical research in
	12		toxicology 24, 434–450 (2011).
	13	28.	Jeong, W., Park, S. J., Chang, TS., Lee, DY. & Rhee, S. G. Molecular Mechanism of the
	14		Reduction of Cysteine Sulfinic Acid of Peroxiredoxin to Cysteine by Mammalian
	15		Sulfiredoxin. J. Biol. Chem. 281, 14400–14407 (2006).
38 39 40	16	29.	Monteiro, G., Horta, B. B., Pimenta, D. C., Augusto, O. & Netto, L. E. S. Reduction of 1-
41 42	17		Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing
43 44	18		another function of vitamin C. PNAS 104, 4886–4891 (2007).
45 46 47	19	30.	Jönsson, T. J., Ellis, H. R. & Poole, L. B. Cysteine Reactivity and Thiol-Disulfide
48 49	20		Interchange Pathways in AhpF and AhpC of the Bacterial Alkyl Hydroperoxide Reductase
50 51 52	21		System [†] . <i>Biochemistry</i> 46 , 5709–5721 (2007).
52 53 54	22	31.	Lian, FM., Yu, J., Ma, XX., Yu, XJ., Chen, Y. & Zhou, CZ. Structural Snapshots of
55 56	23		Yeast Alkyl Hydroperoxide Reductase Ahp1 Peroxiredoxin Reveal a Novel Two-cysteine
57 58 59			
60			

Mechanism of Electron Transfer to Eliminate Reactive Oxygen Species. J. Biol. Chem. 287, 17077-17087 (2012). 32. Nakamura, T., Kado, Y., Yamaguchi, T., Matsumura, H., Ishikawa, K. & Inoue, T. Crystal Structure of Peroxiredoxin from Aeropyrum Pernix K1 Complexed with Its Substrate, Hydrogen Peroxide. J Biochem 147, 109–115 (2010). 33. Hall, A., Parsonage, D., Poole, L. B. & Karplus, P. A. Structural Evidence that Peroxiredoxin Catalytic Power Is Based on Transition-State Stabilization. Journal of *Molecular Biology* **402**, 194–209 (2010). 34. Evrard, C., Capron, A., Marchand, C., Clippe, A., Wattiez, R., Soumillion, P., Knoops, B. & Declercq, J.-P. Crystal Structure of a Dimeric Oxidized form of Human Peroxiredoxin 5. Journal of Molecular Biology **337**, 1079–1090 (2004). 35. Liao, S.-J., Yang, C.-Y., Chin, K.-H., Wang, A. H.-J. & Chou, S.-H. Insights into the Alkyl Peroxide Reduction Pathway of Xanthomonas campestris Bacterioferritin Comigratory Protein from the Trapped Intermediate-Ligand Complex Structures. Journal of Molecular Biology 390, 951–966 (2009). 36. Portillo-Ledesma, S., Sardi, F., Manta, B., Tourn, M. V., Clippe, A., Knoops, B., Alvarez, B., Coitino, E. L. & Ferrer-Sueta, G. Deconstructing the catalytic efficiency of peroxiredoxin-5 peroxidatic cysteine. Biochemistry (2014). doi:10.1021/bi500389m 37. Zeida, A., Reyes, A. M., Lebrero, M. C. G., Radi, R., Trujillo, M. & Estrin, D. A. The extraordinary catalytic ability of peroxiredoxins: a combined experimental and QM/MM study on the fast thiol oxidation step. Chem. Commun. 50, 10070-10073 (2014).

1 2			
- 3 4	1	38.	Hall, A., Sankaran, B., Poole, L. B. & Karplus, P. A. Structural Changes Common to
5 6 7	2		Catalysis in the Tpx Peroxiredoxin Subfamily. Journal of Molecular Biology 393, 867–881
7 8 9	3		(2009).
10 11 12 13 14 15 16 17 18 19	4	39.	Parsonage, D., Karplus, P. A. & Poole, L. B. Substrate specificity and redox potential of
	5		AhpC, a bacterial peroxiredoxin. PNAS 105, 8209-8214 (2008).
	6	40.	Trujillo, M., Ferrer-Sueta, G., Thomson, L., Flohé, L. & Radi, R. in Peroxiredoxin Systems
	7		(eds. Flohé, L. & Harris, J. R.) 44, 83-113 (Springer Netherlands, 2007).
19 20 21	8	41.	Bryk, R., Griffin, P. & Nathan, C. Peroxynitrite reductase activity of bacterial
22 23	9		peroxiredoxins. Nature 407, 211–215 (2000).
24 25	10	42.	Piacenza, L., Peluffo, G., Alvarez, M. N., Kelly, J. M., Wilkinson, S. R. & Radi, R.
26 27 28	11		Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and
28 29 30	12		endogenously-derived peroxynitrite. Biochemical Journal 410, 359 (2008).
31 32 32	13	43.	Dubuisson, M., Vander Stricht, D., Clippe, A., Etienne, F., Nauser, T., Kissner, R.,
33 34 35	14		Koppenol, W. H., Rees, JF. & Knoops, B. Human peroxiredoxin 5 is a peroxynitrite
36 37	15		reductase. FEBS Letters 571, 161–165 (2004).
38 39 40	16	44.	Trujillo, M. & Radi, R. Peroxynitrite Reaction with the Reduced and the Oxidized Forms of
41 42	17		Lipoic Acid: New Insights into the Reaction of Peroxynitrite with Thiols. Archives of
43 44	18		Biochemistry and Biophysics 397, 91–98 (2002).
45 46 47	19	45.	Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A. & Freeman, B. A. Apparent
48 49	20		hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric
50 51 52	21		oxide and superoxide. Proc. Natl. Acad. Sci. U.S.A. 87, 1620-1624 (1990).
52 53 54	22	46.	Hampton, M. B., Kettle, A. J. & Winterbourn, C. C. Inside the Neutrophil Phagosome:
55 56 57 58 59 60	23		Oxidants, Myeloperoxidase, and Bacterial Killing. <i>Blood</i> 92, 3007–3017 (1998).

- 3 4	1	47.	Stacey, M. M., Peskin, A. V., Vissers, M. C. & Winterbourn, C. C. Chloramines and
5 6	2		hypochlorous acid oxidize erythrocyte peroxiredoxin 2. Free Radical Biology and Medicine
7 8 9	3		47, 1468–1476 (2009).
10 11	4	48.	Stacey, M. M., Vissers, M. C. & Winterbourn, C. C. Oxidation of 2-Cys Peroxiredoxins in
12 13	5		Human Endothelial Cells by Hydrogen Peroxide, Hypochlorous Acid, and Chloramines.
14 15 16	6		Antioxidants & Redox Signaling 17, 411–421 (2012).
17 18	7	49.	De Simoni, S., Goemaere, J. & Knoops, B. Silencing of peroxiredoxin 3 and peroxiredoxin
19 20	8		5 reveals the role of mitochondrial peroxiredoxins in the protection of human
21 22 23	9		neuroblastoma SH-SY5Y cells toward MPP+. Neuroscience Letters 433, 219–224 (2008).
24 25	10	50.	Kropotov, A., Serikov, V., Suh, J., Smirnova, A., Bashkirov, V., Zhivotovsky, B. &
26 27	11		Tomilin, N. Constitutive expression of the human peroxiredoxin V gene contributes to
28 29 30	12		protection of the genome from oxidative DNA lesions and to suppression of transcription of
31 32	13		noncoding DNA. FEBS J. 273, 2607–2617 (2006).
33 34 35	14	51.	Stresing, V., Baltziskueta, E., Rubio, N., Blanco, J., Arriba, M., Valls, J., Janier, M.,
36 37	15		Clézardin, P., Sanz-Pamplona, R., Nieva, C., Marro, M., Dmitri, P. & Sierra, A.
38 39	16		Peroxiredoxin 2 specifically regulates the oxidative and metabolic stress response of human
40 41 42	17		metastatic breast cancer cells in lungs. Oncogene 32, 724–735 (2013).
43 44	18	52.	Mukhopadhyay, S. S., Leung, K. S., Hicks, M. J., Hastings, P. J., Youssoufian, H. & Plon,
45 46	19		S. E. Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in
47 48 49	20		Fanconi anemia. J Cell Biol 175, 225–235 (2006).
50 51	21	53.	Tavender, T. J. & Bulleid, N. J. Peroxiredoxin IV protects cells from oxidative stress by
52 53	22		removing H2O2 produced during disulphide formation. J Cell Sci 123, 2672–2679 (2010).
55 56			
57 58			
59			

Page 31 of 53

Biochemistry

1 2			
- 3 4	1	54.	Tavender, T. J., Sheppard, A. M. & Bulleid, N. J. Peroxiredoxin IV is an endoplasmic
5 6 7	2		reticulum-localized enzyme forming oligomeric complexes in human cells. Biochemical
7 8 9	3		Journal 411 , 191 (2008).
10 11	4	55.	Chang, XZ., Li, DQ., Hou, YF., Wu, J., Lu, JS., Di, GH., Jin, W., Ou, ZL., Shen,
12 13 14	5		ZZ. & Shao, ZM. Identification of the functional role of peroxiredoxin 6 in the
15 16	6		progression of breast cancer. Breast Cancer Res. 9, R76 (2007).
17 18	7	56.	Kim, S. Y., Chun, E. & Lee, KY. Phospholipase A2 of peroxiredoxin 6 has a critical role
20 21	8		in tumor necrosis factor-induced apoptosis. Cell Death Differ 18, 1573–1583 (2011).
22 23	9	57.	Hoshino, I., Matsubara, H., Hanari, N., Mori, M., Nishimori, T., Yoneyama, Y., Akutsu, Y.,
24 25 26	10		Sakata, H., Matsushita, K., Seki, N. & Ochiai, T. Histone Deacetylase Inhibitor FK228
27 28	11		Activates Tumor Suppressor Prdx1 with Apoptosis Induction in Esophageal Cancer Cells.
29 30	12		<i>Clin Cancer Res</i> 11 , 7945–7952 (2005).
31 32 33	13	58.	Egler, R. A., Fernandes, E., Rothermund, K., Sereika, S., de Souza-Pinto, N., Jaruga, P.,
34 35	14		Dizdaroglu, M. & Prochownik, E. V. Regulation of reactive oxygen species, DNA damage,
36 37	15		and c-Myc function by peroxiredoxin 1. Oncogene 24, 8038-8050 (2005).
38 39 40	16	59.	Lee, TH., Kim, SU., Yu, SL., Kim, S. H., Park, D. S., Moon, HB., Dho, S. H., Kwon,
41 42	17		KS., Kwon, H. J., Han, YH., Jeong, S., Kang, S. W., Shin, HS., Lee, KK., Rhee, S. G.
43 44 45	18		& Yu, DY. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice.
46 47	19		<i>Blood</i> 101, 5033–5038 (2003).
48 49	20	60.	Yang, HY., Kwon, J., Choi, HI., Park, S. H., Yang, U., Park, HR., Ren, L., Chung, K
50 51 52	21		J., U. Kim, Y., Park, BJ., Jeong, SH. & Lee, TH. In-depth analysis of cysteine
53 54	22		oxidation by the RBC proteome: Advantage of peroxiredoxin II knockout mice.
55 56 57 58 59 60	23		<i>PROTEOMICS</i> 12 , 101–112 (2012).

2			
3 4	1	61.	Li, L., Shoji, W., Takano, H., Nishimura, N., Aoki, Y., Takahashi, R., Goto, S., Kaifu, T.,
5 6 7	2		Takai, T. & Obinata, M. Increased susceptibility of MER5 (peroxiredoxin III) knockout
7 8 9	3		mice to LPS-induced oxidative stress. Biochemical and Biophysical Research
10 11	4		Communications 355, 715–721 (2007).
12 13	5	62.	Huh, J. Y., Kim, Y., Jeong, J., Park, J., Kim, I., Huh, K. H., Kim, Y. S., Woo, H. A., Rhee,
14 15 16	6		S. G., Lee, KJ. & Ha, H. Peroxiredoxin 3 Is a Key Molecule Regulating Adipocyte
17 18	7		Oxidative Stress, Mitochondrial Biogenesis, and Adipokine Expression. Antioxidants &
19 20 21	8		<i>Redox Signaling</i> 16, 229–243 (2012).
22 23	9	63.	Manevich, Y. & Fisher, A. B. Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in
24 25	10		antioxidant defense and lung phospholipid metabolism. Free Radical Biology and Medicine
26 27 28	11		38, 1422–1432 (2005).
29 30	12	64.	Wang, X., Phelan, S. A., Petros, C., Taylor, E. F., Ledinski, G., Jürgens, G., Forsman-
31 32	13		Semb, K. & Paigen, B. Peroxiredoxin 6 deficiency and atherosclerosis susceptibility in
33 34 35	14		mice: significance of genetic background for assessing atherosclerosis. Atherosclerosis 177,
36 37	15		61–70 (2004).
38 39 40	16	65.	Cao, J., Schulte, J., Knight, A., Leslie, N. R., Zagozdzon, A., Bronson, R., Manevich, Y.,
40 41 42	17		Beeson, C. & Neumann, C. A. Prdx1 inhibits tumorigenesis via regulating PTEN/AKT
43 44	18		activity. The EMBO Journal 28, 1505–1517 (2009).
45 46 47	19	66.	Neumann, C. A., Krause, D. S., Carman, C. V., Das, S., Dubey, D. P., Abraham, J. L.,
48 49	20		Bronson, R. T., Fujiwara, Y., Orkin, S. H. & Van Etten, R. A. Essential role for the
50 51	21		peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature
52 53 54	22		424, 561–565 (2003).
55 56			
57			
58 59			
60			

Page 33 of 53

Biochemistry

1	67.	Park, JG., Yoo, JY., Jeong, SJ., Choi, JH., Lee, MR., Lee, MN., Lee, J. H., Kim, H.
2		C., Jo, H., Yu, DY., Kang, S. W., Rhee, S. G., Lee, MH. & Oh, G. T. Peroxiredoxin 2
3		Deficiency Exacerbates Atherosclerosis in Apolipoprotein E-Deficient Mice. Circulation
4		<i>Research</i> 109, 739–749 (2011).
5	68.	Moon, EY., Noh, YW., Han, YH., Kim, SU., Kim, JM., Yu, DY. & Lim, JS. T
6		lymphocytes and dendritic cells are activated by the deletion of peroxiredoxin II (Prx II)
7		gene. Immunology Letters 102, 184–190 (2006).
8	69.	Moon, EY., Han, Y. H., Lee, DS., Han, YM. & Yu, DY. Reactive oxygen species
9		induced by the deletion of peroxiredoxin II (PrxII) increases the number of thymocytes
10		resulting in the enlargement of PrxII-null thymus. European Journal of Immunology 34,
11		2119–2128 (2004).
12	70.	Michalek, R. D., Crump, K. E., Weant, A. E., Hiltbold, E. M., Juneau, D. G., Moon, EY.,
13		Yu, DY., Poole, L. B. & Grayson, J. M. Peroxiredoxin II Regulates Effector and
14		Secondary Memory CD8+ T Cell Responses. J. Virol. 86, 13629–13641 (2012).
15	71.	Han, YH., Kim, HS., Kim, JM., Kim, SK., Yu, DY. & Moon, EY. Inhibitory role
16		of peroxiredoxin II (Prx II) on cellular senescence. FEBS Letters 579, 4897–4902 (2005).
17	72.	Li, L., Shoji, W., Oshima, H., Obinata, M., Fukumoto, M. & Kanno, N. Crucial role of
18		peroxiredoxin III in placental antioxidant defense of mice. FEBS Letters 582, 2431-2434
19		(2008).
20	73.	Li, L., Kaifu, T., Obinata, M. & Takai, T. Peroxiredoxin III-deficiency Sensitizes
21		Macrophages to Oxidative Stress. J Biochem 145, 425–427 (2009).
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1 67. 2

- 3 4	1	74.	Iuchi, Y., Okada, F., Tsunoda, S., Kibe, N., Shirasawa, N., Ikawa, M., Okabe, M., Ikeda, Y.
5 6	2		& Fujii, J. Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via
/ 8 9	3		oxidative stress. Biochemical Journal 419, 149 (2009).
10 11	4	75.	Isermann, K., Liebau, E., Roeder, T. & Bruchhaus, I. A Peroxiredoxin Specifically
12 13	5		Expressed in Two Types of Pharyngeal Neurons is Required for Normal Growth and Egg
14 15 16	6		Production in Caenorhabditis elegans. Journal of Molecular Biology 338, 745-755 (2004).
17 18	7	76.	Ranjan, M., Gruber, J., Ng, L. F. & Halliwell, B. Repression of the mitochondrial
19 20 21	8		peroxiredoxin antioxidant system does not shorten life span but causes reduced fitness in
21 22 23	9		Caenorhabditis elegans. Free Radical Biology and Medicine 63, 381-389 (2013).
24 25	10	77.	Sayed, A. A., Cook, S. K. & Williams, D. L. Redox Balance Mechanisms in Schistosoma
26 27 28	11		mansoni Rely on Peroxiredoxins and Albumin and Implicate Peroxiredoxins as Novel Drug
29 30	12		Targets. J. Biol. Chem. 281, 17001–17010 (2006).
31 32	13	78.	de Moraes Mourão, M., Dinguirard, N., Franco, G. R. & Yoshino, T. P. Phenotypic Screen
33 34 35	14		of Early-Developing Larvae of the Blood Fluke, Schistosoma mansoni, using RNA
36 37	15		Interference. PLoS Negl Trop Dis 3, e502 (2009).
38 39	16	79.	Kumagai, T., Osada, Y., Ohta, N. & Kanazawa, T. Peroxiredoxin-1 from Schistosoma
40 41 42	17		japonicum functions as a scavenger against hydrogen peroxide but not nitric oxide.
43 44	18		Molecular and Biochemical Parasitology 164, 26–31 (2009).
45 46 47	19	80.	Wilkinson, S. R., Horn, D., Prathalingam, S. R. & Kelly, J. M. RNA Interference Identifies
48 49	20		Two Hydroperoxide Metabolizing Enzymes That Are Essential to the Bloodstream Form of
50 51	21		the African Trypanosome. J. Biol. Chem. 278, 31640–31646 (2003).
52 53 54	22	81.	Castro, H., Teixeira, F., Romao, S., Santos, M., Cruz, T., Flórido, M., Appelberg, R.,
55 56 57 58 59 60	23		Oliveira, P., Ferreira-da-Silva, F. & Tomás, A. M. Leishmania Mitochondrial Peroxiredoxin

Page 35 of 53

Biochemistry

1 2			
- 3 4	1		Plays a Crucial Peroxidase-Unrelated Role during Infection: Insight into Its Novel
5 6 7	2		Chaperone Activity. PLoS Pathog 7, e1002325 (2011).
7 8 9	3	82.	Komaki-Yasuda, K., Kawazu, S. & Kano, S. Disruption of the Plasmodium falciparum 2-
10 11	4		Cys peroxiredoxin gene renders parasites hypersensitive to reactive oxygen and nitrogen
12 13 14	5		species. FEBS Letters 547, 140-144 (2003).
15 16	6	83.	Yano, K., Komaki-Yasuda, K., Tsuboi, T., Torii, M., Kano, S. & Kawazu, S. 2-Cys
17 18	7		Peroxiredoxin TPx-1 is involved in gametocyte development in Plasmodium berghei.
19 20 21	8		Molecular and Biochemical Parasitology 148, 44–51 (2006).
22 23	9	84.	Yano, K., Otsuki, H., Arai, M., Komaki-Yasuda, K., Tsuboi, T., Torii, M., Kano, S. &
24 25	10		Kawazu, SI. Disruption of the Plasmodium berghei 2-Cys peroxiredoxin TPx-1 gene
20 27 28	11		hinders the sporozoite development in the vector mosquito. Molecular and Biochemical
29 30	12		Parasitology 159, 142–145 (2008).
31 32 33	13	85.	Wong, CM., Siu, KL. & Jin, DY. Peroxiredoxin-null yeast cells are hypersensitive to
34 35	14		oxidative stress and are genomically unstable. J. Biol. Chem. 279, 23207–23213 (2004).
36 37	15	86.	Fomenko, D. E., Koc, A., Agisheva, N., Jacobsen, M., Kaya, A., Malinouski, M.,
38 39 40	16		Rutherford, J. C., Siu, KL., Jin, DY., Winge, D. R. & Gladyshev, V. N. Thiol
41 42	17		peroxidases mediate specific genome-wide regulation of gene expression in response to
43 44	18		hydrogen peroxide. PNAS 108, 2729–2734 (2011).
45 46 47	19	87.	Edgar, R. S., Green, E. W., Zhao, Y., van Ooijen, G., Olmedo, M., Qin, X., Xu, Y., Pan,
48 49	20		M., Valekunja, U. K., Feeney, K. A., Maywood, E. S., Hastings, M. H., Baliga, N. S.,
50 51 52	21		Merrow, M., Millar, A. J., Johnson, C. H., Kyriacou, C. P., O'Neill, J. S. & Reddy, A. B.
52 53 54	22		Peroxiredoxins are conserved markers of circadian rhythms. <i>Nature</i> 485 , 459–464 (2012).
55 56			
57 58 59			
60			

2			
3 4	1	88.	Baier, M., Noctor, G., Foyer, C. H. & Dietz, KJ. Antisense Suppression of 2-Cysteine
5 6	2		Peroxiredoxin in Arabidopsis Specifically Enhances the Activities and Expression of
7 8 9	3		Enzymes Associated with Ascorbate Metabolism But Not Glutathione Metabolism. Plant
10 11	4		Physiol. 124, 823–832 (2000).
12 13	5	89.	Lamkemeyer, P., Laxa, M., Collin, V., Li, W., Finkemeier, I., Schöttler, M. A., Holtkamp,
14 15 16	6		V., Tognetti, V. B., Issakidis-Bourguet, E., Kandlbinder, A., Weis, E., Miginiac-Maslow,
17 18	7		M. & Dietz, KJ. Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and
19 20	8		functions in context of photosynthesis [†] . The Plant Journal 45 , 968–981 (2006).
21 22 23	9	90.	Schafer, F. Q. & Buettner, G. R. Redox environment of the cell as viewed through the
24 25	10		redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and
26 27 28	11		<i>Medicine</i> 30, 1191–1212 (2001).
20 29 30	12	91.	Go, YM. & Jones, D. P. Redox compartmentalization in eukaryotic cells. Biochimica et
31 32	13		Biophysica Acta (BBA) - General Subjects 1780, 1273–1290 (2008).
33 34 35	14	92.	Banach-Latapy, A., He, T., Dardalhon, M., Vernis, L., Chanet, R. & Huang, ME. Redox-
36 37	15		sensitive YFP sensors for monitoring dynamic compartment-specific glutathione redox
38 39	16		state. Free Radical Biology and Medicine 65, 436–445 (2013).
40 41 42	17	93.	Nelson, K. J., Parsonage, D., Karplus, P. A. & Poole, L. B. Evaluating peroxiredoxin
43 44	18		sensitivity toward inactivation by peroxide substrates. Meth. Enzymol. 527, 21-40 (2013).
45 46	19	94.	Steele, K. H., Baumgartner, J. E., Valderas, M. W. & Roop, R. M. Comparative Study of
47 48 49	20		the Roles of AhpC and KatE as Respiratory Antioxidants in Brucella abortus 2308. J.
50 51	21		Bacteriol. 192, 4912–4922 (2010).
52 53			
54 55 56			
50 57			
58 59			
00			

Page 37 of 53

Biochemistry

1 2			
3 4	1	95.	Baker, L. M. S., Raudonikiene, A., Hoffman, P. S. & Poole, L. B. Essential Thioredoxin-
5 6 7	2		Dependent Peroxiredoxin System from Helicobacter pylori: Genetic and Kinetic
7 8 9	3		Characterization. J. Bacteriol. 183, 1961–1973 (2001).
10 11	4	96.	Olczak, A. A., Richard W. Seyler, J., Olson, J. W. & Maier, R. J. Association of
12 13	5		Helicobacter pylori Antioxidant Activities with Host Colonization Proficiency. Infect.
14 15 16	6		<i>Immun.</i> 71, 580–583 (2003).
17 18	7	97.	Cosgrove, K., Coutts, G., Jonsson, IM., Tarkowski, A., Kokai-Kun, J. F., Mond, J. J. &
19 20 21	8		Foster, S. J. Catalase (KatA) and Alkyl Hydroperoxide Reductase (AhpC) Have
22 23	9		Compensatory Roles in Peroxide Stress Resistance and Are Required for Survival,
24 25	10		Persistence, and Nasal Colonization in Staphylococcus aureus. J. Bacteriol. 189, 1025-
26 27 28	11		1035 (2007).
29 30	12	98.	Wilson, T., Lisle, G. W. de, Marcinkeviciene, J. A., Blanchardand, J. S. & Collins, D. M.
31 32	13		Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance,
33 34 35	14		indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology 144,
36 37	15		2687–2695 (1998).
38 39 40	16	99.	Wang, HW., Chung, CH., Ma, TY. & Wong, H. Roles of Alkyl Hydroperoxide
41 42	17		Reductase Subunit C (AhpC) in Viable but Nonculturable Vibrio parahaemolyticus. Appl.
43 44	18		Environ. Microbiol. 79, 3734–3743 (2013).
45 46 47	19	100.	Wood, Z. A., Poole, L. B. & Karplus, P. A. Peroxiredoxin Evolution and the Regulation of
48 49	20		Hydrogen Peroxide Signaling. Science 300, 650-653 (2003).
50 51	21	101.	Haynes, A. C., Qian, J., Reisz, J. A., Furdui, C. M. & Lowther, W. T. Molecular Basis for
52 53 54	22		the Resistance of Human Mitochondrial 2-Cys Peroxiredoxin 3 to Hyperoxidation. J. Biol.
55 56	23		Chem. 288, 29714–29723 (2013).
57 58 59			
60			

/			
3 4	1	102.	Peskin, A. V., Dickerhof, N., Poynton, R. A., Paton, L. N., Pace, P. E., Hampton, M. B. &
5 6 7	2		Winterbourn, C. C. Hyperoxidation of Peroxiredoxins 2 and 3. J Biol Chem 288, 14170-
7 8 9	3		14177 (2013).
10 11	4	103.	Schröder, E. & Eaton, P. Hydrogen peroxide as an endogenous mediator and exogenous
12 13 14	5		tool in cardiovascular research: issues and considerations. Current Opinion in
14 15 16	6		<i>Pharmacology</i> 8 , 153–159 (2008).
17 18	7	104.	Klomsiri, C., Rogers, L. C., Soito, L., McCauley, A. K., King, S. B., Nelson, K. J., Poole,
19 20 21	8		L. B. & Daniel, L. W. Endosomal H2O2 production leads to localized cysteine sulfenic acid
22 23	9		formation on proteins during lysophosphatidic acid-mediated cell signaling. Free Radical
24 25	10		<i>Biology and Medicine</i> 71 , 49–60 (2014).
26 27 28	11	105.	Haque, A., Andersen, J. N., Salmeen, A., Barford, D. & Tonks, N. K. Conformation-
29 30	12		Sensing Antibodies Stabilize the Oxidized Form of PTP1B and Inhibit Its Phosphatase
31 32	13		Activity. Cell 147, 185–198 (2011).
33 34 35	14	106.	O'Neill, J. S. & Reddy, A. B. Circadian clocks in human red blood cells. <i>Nature</i> 469, 498–
36 37	15		503 (2011).
38 39 40	16	107.	Frijhoff, J., Dagnell, M., Godfrey, R. & Östman, A. Regulation of Protein Tyrosine
40 41 42	17		Phosphatase Oxidation in Cell Adhesion and Migration. Antioxidants & redox signaling
43 44	18		(2013). at <http: 10.1089="" abs="" ars.2013.5643="" doi="" online.liebertpub.com=""></http:>
45 46 47	19	108.	Kil, I. S., Lee, S. K., Ryu, K. W., Woo, H. A., Hu, MC., Bae, S. H. & Rhee, S. G.
48 49	20		Feedback Control of Adrenal Steroidogenesis via H2O2-Dependent, Reversible
50 51	21		Inactivation of Peroxiredoxin III in Mitochondria. Molecular Cell 46, 584–594 (2012).
52 53 54	22	109.	Angelucci, F., Saccoccia, F., Ardini, M., Boumis, G., Brunori, M., Di Leandro, L., Ippoliti,
55 56	23		R., Miele, A. E., Natoli, G., Scotti, S. & Bellelli, A. Switching between the Alternative
57 58 59			

Page 39 of 53

Biochemistry

1 2		
2 3 4	1	Structures and Functions of a 2-Cys Peroxiredoxin, by Site-Directed Mutagenesis. Journal
5 6 7	2	of Molecular Biology 425 , 4556–4568 (2013).
7 8 9	3	110. Chuang, MH., Wu, MS., Lo, WL., Lin, JT., Wong, CH. & Chiou, SH. The
10 11	4	antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a
12 13 14	5	peroxide reductase to a molecular chaperone function. PNAS 103, 2552–2557 (2006).
15 16	6	111. Turner-Ivey, B., Manevich, Y., Schulte, J., Kistner-Griffin, E., Jezierska-Drutel, A., Liu, Y.
17 18	7	& Neumann, C. A. Role for Prdx1 as a specific sensor in redox-regulated senescence in
19 20 21	8	breast cancer. Oncogene 32 , 5302–5314 (2013).
22 23	9	112. Day, A. M., Brown, J. D., Taylor, S. R., Rand, J. D., Morgan, B. A. & Veal, E. A.
24 25 26	10	Inactivation of a Peroxiredoxin by Hydrogen Peroxide Is Critical for Thioredoxin-Mediated
20 27 28	11	Repair of Oxidized Proteins and Cell Survival. Molecular Cell 45, 398–408 (2012).
29 30	12	113. Sayed, A. A. & Williams, D. L. Biochemical Characterization of 2-Cys Peroxiredoxins
31 32 33	13	from Schistosoma mansoni. J. Biol. Chem. 279, 26159–26166 (2004).
34 35	14	114. Wang, X., Wang, L., Wang, X., Sun, F. & Wang, C. Structural insights into the peroxidase
36 37	15	activity and inactivation of human peroxiredoxin 4. Biochem. J. 441, 113-118 (2012).
38 39 40	16	115. Pascual, M. B., Mata-Cabana, A., Florencio, F. J., Lindahl, M. & Cejudo, F. J.
41 42	17	Overoxidation of 2-Cys Peroxiredoxin in Prokaryotes Cyanobacterial 2-Cys Peroxiredoxins
43 44 45	18	Sensitive to Oxidative Stress. J. Biol. Chem. 285, 34485-34492 (2010).
46 47	19	116. Bang, YJ., Oh, M. H. & Choi, S. H. Distinct Characteristics of Two 2-Cys Peroxiredoxins
48 49	20	of Vibrio vulnificus Suggesting Differential Roles in Detoxifying Oxidative Stress. J. Biol.
50 51 52	21	<i>Chem.</i> 287, 42516–42524 (2012).
53 54		
55 56		
57 58		
59 60		

1	117. Parmigiani, R. B., Xu, W. S., Venta-Perez, G., Erdjument-Bromage, H., Yaneva, M.,
2	Tempst, P. & Marks, P. A. HDAC6 is a specific deacetylase of peroxiredoxins and is
3	involved in redox regulation. PNAS 105, 9633–9638 (2008).
4	118. Seo, J. H., Lim, J. C., Lee, DY., Kim, K. S., Piszczek, G., Nam, H. W., Kim, Y. S., Ahn,
5	T., Yun, CH., Kim, K., Chock, P. B. & Chae, H. Z. Novel Protective Mechanism against
6	Irreversible Hyperoxidation of Peroxiredoxin N α -terminal Acetylation of Human
7	Peroxiredoxin II. J. Biol. Chem. 284, 13455-13465 (2009).
8	119. Randall, L. M., Manta, B., Hugo, M., Gil, M., Batthyany, C., Trujillo, M., Poole, L. B. &
9	Denicola, A. Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust
10	peroxidase. J. Biol. Chem. jbc.M113.539213 (2014). doi:10.1074/jbc.M113.539213
11	120. Biteau, B., Labarre, J. & Toledano, M. B. ATP-dependent reduction of cysteine-sulphinic
12	acid by S. cerevisiae sulphiredoxin. Nature 425, 980–984 (2003).
13	121. Liu, X. P., Liu, X. Y., Zhang, J., Xia, Z. L., Liu, X., Qin, H. J. & Wang, D. W. Molecular
14	and functional characterization of sulfiredoxin homologs from higher plants. Cell Res 16,
15	287–296 (2006).
16	122. Baek, J. Y., Han, S. H., Sung, S. H., Lee, H. E., Kim, Y., Noh, Y. H., Bae, S. H., Rhee, S.
17	G. & Chang, TS. Sulfiredoxin Protein Is Critical for Redox Balance and Survival of Cells
18	Exposed to Low Steady-state Levels of H2O2. J. Biol. Chem. 287, 81-89 (2012).
19	123. Lei, K., Townsend, D. M. & Tew, K. D. Protein cysteine sulfinic acid reductase
20	(sulfiredoxin) as a regulator of cell proliferation and drug response. Oncogene 27, 4877-
21	4887 (2008).

60

Biochemistry

1			
2 3 4	1	124.	Molin, M., Yang, J., Hanzén, S., Toledano, M. B., Labarre, J. & Nyström, T. Life Span
5 6 7	2		Extension and H2O2 Resistance Elicited by Caloric Restriction Require the Peroxiredoxin
7 8 9	3		Tsa1 in Saccharomyces cerevisiae. Molecular Cell 43, 823-833 (2011).
10 11	4	125.	Lowther, W. T. & Haynes, A. C. Reduction of Cysteine Sulfinic Acid in Eukaryotic,
12 13 14	5		Typical 2-Cys Peroxiredoxins by Sulfiredoxin. Antioxidants & Redox Signaling 15, 99–109
15 16	6		(2010).
17 18	7	126.	Jeong, W., Bae, S. H., Toledano, M. B. & Rhee, S. G. Role of sulfiredoxin as a regulator of
20 21	8		peroxiredoxin function and regulation of its expression. Free Radical Biology and Medicine
22 23	9		53, 447–456 (2012).
24 25 26	10	127.	Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman,
20 27 28	11		D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search
29 30	12		programs. Nucl. Acids Res. 25, 3389–3402 (1997).
31 32 33	13	128.	Basu, M. K. & Koonin, E. V. Evolution of Eukaryotic Cysteine Sulfinic Acid Reductase,
34 35	14		Sulfiredoxin (Srx), from Bacterial Chromosome Partitioning Protein ParB. Cell Cycle 4,
36 37	15		947–952
38 39 40	16	129.	Cao, Z., Subramaniam, S. & Bulleid, N. J. Lack of an Efficient Endoplasmic Reticulum-
41 42	17		localized Recycling System Protects Peroxiredoxin IV from Hyperoxidation. J. Biol. Chem.
43 44 45	18		jbc.M113.529305 (2014). doi:10.1074/jbc.M113.529305
45 46 47	19	130.	Shichita, T., Hasegawa, E., Kimura, A., Morita, R., Sakaguchi, R., Takada, I., Sekiya, T.,
48 49	20		Ooboshi, H., Kitazono, T., Yanagawa, T., Ishii, T., Takahashi, H., Mori, S., Nishibori, M.,
50 51 52	21		Kuroda, K., Akira, S., Miyake, K. & Yoshimura, A. Peroxiredoxin family proteins are key
53 54	22		initiators of post-ischemic inflammation in the brain. Nat Med 18, 911–917 (2012).
55 56			
57 58 59			

3 4	1	131.	Nagy, N., Malik, G., Fisher, A. B. & Das, D. K. Targeted disruption of peroxiredoxin 6
5 6 7	2		gene renders the heart vulnerable to ischemia-reperfusion injury. American Journal of
7 8 9	3		Physiology - Heart and Circulatory Physiology 291, H2636–H2640 (2006).
10 11	4	132.	Gretes, M. C., Poole, L. B. & Karplus, P. A. Peroxiredoxins in Parasites. Antioxidants &
12 13	5		<i>Redox Signaling</i> 17, 608–633 (2012).
14 15 16	6	133.	Fischer, M., Coleman, R. G., Fraser, J. S. & Shoichet, B. K. Incorporation of protein
17 18	7		flexibility and conformational energy penalties in docking screens to improve ligand
19 20 21	8		discovery. Nat Chem 6, 575–583 (2014).
22 23	9	134.	Wang, Y., Feinstein, S. I., Manevich, Y., Ho, YS. & Fisher, A. B. Lung injury and
24 25	10		mortality with hyperoxia are increased in Peroxiredoxin 6 gene-targeted mice. Free Radical
26 27 28	11		<i>Biology and Medicine</i> 37 , 1736–1743 (2004).
29 30	12	135.	Fisher, A. B., Dodia, C., Feinstein, S. I. & Ho, YS. Altered lung phospholipid metabolism
31 32	13		in mice with targeted deletion of lysosomal-type phospholipase A2. J. Lipid Res. 46, 1248-
33 34 35	14		1256 (2005).
36 37	15	136.	Fatma, N., Singh, P., Chhunchha, B., Kubo, E., Shinohara, T., Bhargavan, B. & Singh, D.
38 39 40	16		P. Deficiency of Prdx6 in lens epithelial cells induces ER stress response-mediated
40 41 42	17		impaired homeostasis and apoptosis. American Journal of Physiology - Cell Physiology
43 44	18		301, C954–C967 (2011).
45 46 47	19	137.	Sies, H. Role of Metabolic H2O2 Generation: Redox Signalling and Oxidative Stress. J.
47 48 49	20		Biol. Chem. jbc.R113.544635 (2014). doi:10.1074/jbc.R113.544635
50 51	21	138.	Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high
52 53 54	22		throughput. Nucl. Acids Res. 32, 1792–1797 (2004).
55 56			
57 58			
59 60			

1 2			
3 4 5	1	139. Guindon, S., Lethiec, F., Duroux, P. & Gascuel, O. PHYML Online-a web server for fa	ast
5 6 7	2	maximum likelihood-based phylogenetic inference. Nucl. Acids Res. 33, W557–W559	
, 8 9	3	(2005).	
10 11	4		
12 13	5		
14 15 16 17 18 19 21 22 34 25 27 28 29 31 23 34 35 37 39 04 12 34 45 67 89 01 22 34 55 67 89 01 23 45 67 89 01 23 45 67 89 01 23 45 67 89 01 23 45 67 89 01 23 45 67 89 01 23 45 67 89 01 23 45 67 89 01 23 45 67 89 01 23 45 67 89 01 23 45 67 89 01 23 45 67 89 01 23 45 67 89 01 23 45 67 89 01 23 34 56 78 90 142 34 45 67 89 01 25 34 56 78 90 142 34 45 67 89 01 123 34 56 78 90 142 34 45 67 89 01 123 34 56 78 90 142 34 56 78 90 142 34 56 78 90 142 34 56 78 90 142 34 56 78 90 142 34 56 78 90 142 34 56 78 90 152 55 55 55 55 55 55 55 55 55 55 55 55 5			
			4-

1 TABLES AND FIGURE LEGENDS

2 Table 1. Summary of Prx knockout studies in vertebrates.

Organism/∆Enzyme/s	Reference	Brief Phenotypic Observations
Mus musculus-PrxI	Neumann 2003 ⁶⁶	Malignant cancers, haemolytic anaemia, premature death.
Mus musculus-Prx1	Egler 2005 ⁵⁸	+DNA oxidation, +c-Myc activation in embryonic fibroblasts.
Mus musculus-Prx1	<i>Cao 2009</i> ⁶⁵	Increased susceptibility to Ras-induced breast cancer.
Mus musculus-PrxII	Lee 2003 ⁵⁹	+Protein oxidation in red blood cells, hemolytic anemia.
Mus musculus-PrxII	Park 2011 ⁶⁷	+Plaque formation, predisposition to develop atherosclerosis.
Mus musculus-PrxII	Moon 2004 ⁶⁹	Enlarged thymus, increased T cell proliferation.
Mus musculus-PrxII	Moon 2006 ⁶⁸	Increased splenocytes, bone marrow differentiation.
Mus musculus-PrxII	Han 2005 ⁷¹	+p21 and p53 levels, increased cellular senescence.
Mus musculus-PrxII	Yang 2011 ⁶⁰	+Protein cysteine oxidation in red blood cell fractions.
Mus musculus-PrxIII	<i>Li 2007</i> ⁶¹	+Lung damage from inflammation, + DNA damage.
Mus musculus-PrxIII	Huh 2011 ⁶²	+Fat mass. +Protein carbonylation in adipose tissue.
Mus musculus-PrxIII	Li 2008 ⁷²	Reduced litter size, +oxidative stress in placenta tissue.
Mus musculus-PrxIII	Li 2009 ⁷³	+Macrophage apoptosis by lipopolysaccharide treatment.
Mus musculus-PrxIV	Iuchi 2009 ⁷⁴	Testicular atrophy, reduced sperm viability in oxidative stress.
Mus musculus-PrxVI	Wang 2004 ¹³⁴	+Lung damage, decreased animal survival due to hyperoxia.
Mus musculus-PrxVI	Nagy 2006 ¹³¹	+Ischemic reperfusion injury, +cardiomyocyte apoptosis
Mus musculus-PrxVI	<i>Fisher</i> 2005 ¹³⁵	Decreased lung surfactant degradation.
Mus musculus-PrxVI	Wang 2004 ⁶⁴	+LDL oxidation by macrophages, +plasma lipid H ₂ O ₂ levels.
Mus musculus-PrxVI	Fatma 2011 ¹³⁶	+UPR, +apoptosis in lens epithelial and aging cells.

1	Table 2. Presence of sulfiredoxin in eukaryotes. ^a					
	Animals	Fungi	Protists	Plants		
	<u>Vertebrates</u>	Ascomycetes	Choanoflagellates (0/1)	<u>Eudicots (11/11)</u>		
	Mammals (24/24)	Saccharomycetes (25/25)	<u>Amoebozoa</u>	<u>Monocots (6/6)</u>		
	Birds (9/9)	Sordariomycetes (0/9)	Dictyostelium (3/3)	<u>Ferns (1/1)</u>		
	Reptiles (1/2) ^b	Leotiomycetes (0/2)	Entamoeba (0/2)	<u>Mosses (1/1)</u>		
	Amphibians $(0/2)^{c}$	Eurotiomycetes (0/15)	Acanthamoeba (1/1)	<u>Green algae (</u> 6/8)		
	Fish (6/6)	Dothideomycetes (0/3)	Alveolates	Red algae (0/3)		
	Lancelets (1/1)	Pezizomycetes (0/1)	Apicomplexans (0/16)			
	<u>Ascidians (1/1)</u>	Schizosaccharomycetes (1/1)	Ciliates (0/2)			
	<u>Echinoderms (</u> 1/1)	Basidiomycetes (3/11)	Stramenopiles			
	<u>Arthropods</u>	Microsporidians (0/4)	Diatoms (0/2)			
	Insects (19/20) ^d		Oomycetes (0/1)			
	Mites/Ticks (1/1)		Eustigmatophytes (0/1)			
	<u>Nematodes (</u> 1/5)		Cryptomonads (0/1)			
	<u>Flatworms (</u> 0/1)		Haptophyta (0/1)			
	<u>Cnidarians (1/2)</u>		Euglenozoa (0/7)			
	Placozoans (0/1)		<u>Heterolobosea (</u> 1/1)			
	Poriferans (0/1)		Parabasalids (0/1)			
			Diplomonads (0/1)			
2	^a Across 220 organisms	^a Across 220 organisms with sequenced genomes, the fraction of the total found to possess an Srx are given in				
3	parenthesis. Groups cor	parenthesis. Groups containing any members with an Srx-encoding gene are highlighted in bold.				
4	^b Searches of the Anolis carolinensis genome did not yield an Srx sequence, but that of Ophiophagus hannah (King					
5	Cobra) did.					

^c Frogs from the genus *Xenopus*. Additional searches yielded no amphibian Srx-possessing representatives.

^d The mosquito *Anopheles gambiae* had no Srx, but two other mosquitos, *Aedes aegypti* and *Culex quinquefasciatus*, possessed an Srx gene.

ACS Paragon Plus Environment

Figure Legends

Figure 1. Examples of non-stress-related peroxide signaling. The white panel (left) shows a general scheme of growth factor triggered peroxide signaling⁶. Growth factor binding to receptors (green), leads to the activation of oxidases (orange) and the production of superoxide which is subsequently converted to peroxide. Certain aquaporins (dark red) facilitate peroxide access into the cell¹³⁷ where kinases (light purple), phosphatases (dark purple), and transcription factors^{6,100} (dark blue) can be oxidatively activated or deactivated¹³⁷. Active Prxs (cyan toroid) degrade peroxides, but also can be inactivated by hyperoxidation (dark toroid); Srx (light red) reactivates hyperoxidized Prxs. The magenta and purple panels convey other examples of peroxide signaling highlighted in the text. In LPA-mediated signaling¹⁰⁴ (magenta, bottom), LPA binding to its receptor (green) activates NADPH oxidase (NOX, orange) and through endocytosis a "redoxosome" is formed which accumulates superoxide/peroxide and serves as a hub for modifying regulatory factors. In murine adrenal corticosteroid production¹⁰⁸ (purple, upper right), ACTH binding to its receptor (green) leads to the activation of the cAMP-PKA pathway (the transcription factor cAMP response element-binding protein is noted with *) and then phosphorylation and activation of steroidogenic acute regulatory protein (StAR); StAR makes cholesterol available for CYP11A1 and CYP11B1 catalyzed conversion via 11-deoxycorticosterone (DOC) to corticosterone (CS), and also produces superoxide from which superoxide dismutase (SOD) produces peroxide. The peroxide increasingly inactivates PrxIII, and after further buildup initiates a negative feedback loop by activating p38, that in turn suppresses the synthesis of StAR.

Page 47 of 53

Biochemistry

Figure 2. Catalysis by peroxiredoxins. A) The Michaelis complex of peroxide (green) bound to the FF active site of ApTpx (pdb code 3a2v) with atom coloring (grey carbons, white hydrogens, yellow sulfurs, red oxygens, blue nitrogens) and showing key hydrogen bonds (dashed lines). B) The normal Prx catalytic cycle (black) is shown along with the hyperoxidation shunt (grey). To illustrate the conformation change necessary for Prx catalysis, the center shows a morph between FF and LU conformations for the Prx1 subfamily member StAhpC; the C_P and C_R containing chains are white and dark grey, respectively and the C-terminal region beyond C_R is not shown. C) An organic peroxide and peroxynitrous acid are shown bound to the active site in ways that mimic the interactions made by peroxide in panel A. "BB" refers to a backbone NH hydrogen bond donor. The placement of the hydrophobic collar seen in some organic peroxide selective Prxs is noted by orange circles. D) The chemical structures of some other molecules recently reported to react with Prxs (see text).

Figure 3. Studies probing the structural basis for Prx hyperoxidation. The active site and Cterminal region are shown for *Hs*PrxII (pdb code 1qmv), with the GGLG and YF regions
highlighted in yellow. Sites where mutations have been introduced as a means to explore the
impact on hyperoxidation for PrxI subfamily enzymes are noted in pink¹⁰¹. Elimination of the YF
motif by C-terminal truncation (indicated by Δ) has also been conducted¹¹⁴.

Figure 4. The Prx-Srx embrace. Shown is a crystal structure of a human PrxI dimer (light and
dark grey) in complex with two Srx chains (green, pdb code 3hy2). Highlighted are the Prx C_P
(yellow), the GGLG motif (red), the Srx active site (purple), and its bound ATP (sticks). The Prx
C-terminal YF motif is disordered and not seen.

Figure 5. A relatedness tree for Srx sequences. An unrooted phylogenetic tree of 335 Srx sequences is shown. Select organisms or groups of organisms are noted. Sequences were retrieved from the non-redundant protein database by BLAST¹²⁷ on 31-Jan-2014 with an expect threshold of 100 using the human Srx1 sequence, and additional searches using distantly related Srx sequences did not identify further homologs. Sequences were aligned with MUSCLE¹³⁸ and evolutionary distances were calculated using PhyML¹³⁹.

8 For Table of Contents Use Only

157x106mm (96 x 96 DPI)

125x93mm (96 x 96 DPI)

171x106mm (96 x 96 DPI)

Supplementary Information (Tables S1 through S4)

 Table S1. Summary of Prx knockdown studies.

Organism/ΔEnzyme/s	Reference	Brief Phenotypic Observations ^a
Homo sapiens-PrxI	Hoshino 2005 ⁵⁵	Diminished FK228 antitumor properties.
Homo sapiens-PrxII	Stresing 2013 ⁴⁹	+H ₂ O ₂ sensitivity, -metastasis to lungs.
Homo sapiens-PrxIII	De Simoni 2007 ⁴⁷	+Protein carbonylation, + neuronal apoptosis.
Homo sapiens-PrxIII	Mukhopadhyay 2006 ⁵⁰	+Myocin-c sensitivity.
Homo sapiens-PrxIV	Tavender 2010 ⁵¹	+ER stress sensitivity.
Homo sapiens-PrxIV	Tavender 2008 ⁵²	$++H_2O_2$ sensitivity.
Homo sapiens-PrxV	De Simoni 2007 ⁴⁷	+Protein carbonylation, + neuronal apoptosis.
Homo sapiens-PrxV	Kropotov 2006 ⁴⁸	+DNA ox., + non-coding DNA transcription.
Homo sapiens-PrxVI	<i>Chang 2007</i> ⁵³	-Breast cancer growth, -metastases.
Homo sapiens-PrxVI	<i>Kim 2001⁵⁴</i>	+ Apoptosis, -IL-1B production.
Mus musculus-PrxII	Agrawal-Singh 2011 ¹³⁶	+Myeloblast-like cell growth.
Mus musculus-PrxVI	Manevich 2005 ⁶¹	+Lipid oxidation, + apoptosis.
Mus musculus-PrxVI	Fatma 2011 ¹³²	+UPR, +apoptosis in lens epithelial/aging cells.
Caenorhabditis elegans-PrxII	Isermann 2004 ⁷³	Retarded development, -70% brood size.
Caenorhabditis elegans-PrxIII	Ranjan 2013 ⁷⁴	-Motility, - brood size.
Schistosoma mansoni-Prx1a	Sayed 2006 ⁷⁵	-Survival, + albumin and actin oxidation
Schistosoma mansoni-Prx1a/b	De Moraes 2009 ⁷⁶	Decreased larval size.
Schistosoma japonicam-Prx1	Kumagai 2009 ⁷⁷	+H ₂ O ₂ , CHP, and TBP sensitivity.
Trypanosoma brucei-TbCPX	Wilkinson 2003 ⁷⁸	+16-fold more H ₂ O ₂ sensitivity
Mycobacterium bovis-AhpC	Wilson 1998 ⁹⁶	Reduced infectivity.
Arabidopsis thaliana-"2-CP"	<i>Baier 2000</i> ⁸⁶	+Foliar ascorbate oxidation.
Arabidopsis thaliana-PrxQ	Lamkemeyer 2006 ⁸⁷	-PSII and cytochrome-b6 content.
Arabidopsis thaliana-PrxII	Romero-Puertas 2007 ¹³⁷	+lipid oxidation, +protein nitrosylation.

^a Abbreviations for cumene hydroperoxide (CHP) and tert-butyl hydroperoxide (TBP).

Table S2. Summary of Prx knockout studies in other eukaryotes.

Organism/ΔEnzyme/s	Reference	Brief Phenotypic Observations ^a
Saccharomyces cerevisiae (Sc)-Prx1	Wong 2004 ⁸³	+ROS/RNS sensitivity, +DNA mutation.
Sc-Tsa1,Tsa2	Wong 2004 ⁸³	+ROS/RNS sensitivity, ++DNA mutation.
Sc-Tsa1,Tsa2	<i>Ogusucu 2008</i> ¹³⁸	+1-hydroxyethyl radical in the presence of ethanol.
Sc-Tsa1,Tsa2,Dot5	Wong 2004 ⁸³	++ROS/RNS sensitivity, ++DNA mutation.
Sc-Tsa1,Tsa2,Prx1	Wong 2004 ⁸³	++ROS/RNS sensitivity, ++DNA mutation.
Sc-Tsa1,Tsa2,Prx1,Dot5	Wong 2004 ⁸³	++ROS/RNS sensitivity, ++DNA mutation.
Sc-Tsa1,Tsa2,Prx1,Ahp1	Wong 2004 ⁸³	++ROS/RNS sensitivity, ++DNA mutation rate.
Sc-Tsa1,Tsa2,Prx1,Dot5,Ahp1	Wong 2004 ⁸³	-Growth rate, +++ROS/RNS sensitivity.
Sc-Tsa1/2,Ahp1,nPrx,mPrx,Gpx1,Gpx2,Gpx3	Fomenko 2010 ⁸⁴	Replicative lifespan of strain decreased by ~50%.
Schizosaccharomyces pombe-Tpx1	Jara 2007 ¹³⁹	No aerobic growth.
Neurospora crassa-2Prx	<i>Edgar 2012</i> ⁸⁵	Lengthened circadian period with altered phase.
Plasmodium falciparum-Tpx1	Komaki-Yasuda 2003 ⁸⁰	+Paraquat/sodium nitroprusside sensitivity.
Plasmodium berghei-Tpx1	<i>Yano 2006</i> ⁸¹	60% fewer gametocytes, delayed gaetocytemia.
Plasmodium berghei-Tpx1	Yano 2008 ⁸²	Decreased infectivity in mice.
Leishmania infantum-mTxnPx	<i>Castro 2011</i> ⁷⁹	Decreased infectivity in mice.
Arabidopsis thaliana-2CysPrxA,2CysPrxB	<i>Edgar 2012</i> ⁸⁵	Altered circadium rhythm in phase and amplitude.

^a Abbreviations for reactive oxygen species (ROS), reactive nitrogen species (RNS), cumene hydroperoxide (CHP) and tert-butyl hydroperoxide (TBP).

Table S3. Summary of Prx knockout studies in prokaryotes.

Organism/**\DeltaEnzyme**/s

Helicobacter pylori-AhpC *Helicobacter pylori*-AhpC *Helicobacter pylori*-Tpx Helicobacter cinaedi-AhpC Legionella pneumophila-AhpC Legionella pneumophila-AhpC *Mycobacterium tuberculosis*-AhpC Porphyromonas gingivalis-AhpC Bacteroides fragilis-AhpC Staphylococcus aureus-AhpC Salmonella typhimurium-AhpC Salmonella typhimurium-AhpC *Escherichia coli*-AhpC Escherichia coli-PrxQ *Xanthomonas campestris*-AhpC *Xanthomonas campestris*-AhpC Vibrio parahaemolyticus-AhpC1 Vibrio parahaemolyticus-AhpC2 Vibrio parahaemolyticus-AhpC1/2 Brucella abortus-AhpC Brucella abortus-AhpC, KatE Synechococcus elongatus-2CysPrx Camploybacter jejuni-PrxQ *Campylobacter jejuni*-Tpx *Campylobacter jejuni*-PrxQ,Tpx Anabaena PCC 7120-PrxQ-A

Reference Baker 2001⁹³ *Olczak 2003*⁹⁴ Olczak 2003⁹⁴ Charoenlap 2011¹⁴⁰ *Rankin 2002*¹⁴¹ *LeBlanc* 2006¹⁴² Springer 2001¹⁴³ Johnson 2004¹⁴⁴ *Rocha* 1999¹⁴⁵ Cosgrove 2006⁹⁵ Chen 1998¹⁴⁶ Storz 1989¹⁴⁷ Storz 1989¹⁴⁷ Jeong 2000¹⁴⁸ Mongkolsuk 2000¹⁴⁹ Vattanaviboon 2003¹⁵⁰ Wang 2013⁹⁷ Wang 2013⁹⁷ Wang 2013⁹⁷ *Steele* 2010⁹² Steele 2010⁹² *Edgar 2012*⁸⁵ Atack 2008¹⁵¹ Atack 2008¹⁵¹ Atack 2008¹⁵¹ *Latifi 2007*¹⁵²

Brief Phenotypic Observations^a

No colony growth in microaerobic conditions. 100% reduction in mouse stomach colonization. $+H_2O_2/O_2$ sensitivity, -94% stomach colonization. +Susceptibility to killing by macrophage. Normal phenotype, but not extensively studied. +H₂O₂, CHP, TBP, and paraquat sensitivity +CHP sensitivity. +H₂O₂ sensitivity. -10,000-fold survival in aerobic conditions. -10-fold tolerance to desiccation, -colonization. +CHP and RNI sensitivity, -10,000-fold survival. +CHP sensitivity. +CHP sensitivity. +H₂O₂, TBP, linoleic acid peroxide sensitivity. +TBP sensitivity, +catalase expression. +Menadione sensitivity. -Colony formation with organic peroxides. Rapid induction of "viable but nonculturable state." -Colony formation. +H₂O₂ sensitivity. -Virulence to mice, +H₂O₂ sensitivity. Altered circadium rhythm in phase and amplitude. Slightly reduced growth. Slightly reduced growth. Zero growth at high aeration, +DNA damage. Hypersensitive to oxidative stress.

^a Abbreviations for reactive nitrogen intermediates (RNI), cumene hydroperoxide (CHP) and tert-butyl hydroperoxide (TBP).

Table S4. Eukaryotes that lack Srx but possess Prxs containing GGLG/YF-like sequences.^a

Xenopus tropicalis	GGLG	YF
Caenorhabditis elegans	GGLG	YF
Schistosoma mansoni	GGLG	FF
Nematostella vectensis	GGLG	YF
Trichoplax adhaerens	GGLG	FF
Amphimedon queenslandica	GGLG	YF
Phaeosphaeria nodorum	GGLG	YL
Tuber melanosporum	GGLG	YF
Laccaria bicolor	GGLG	YF
Encephalitozoon cuniculi ^b	GVLG	
Monosiga brevicollis	GGLA	YF
Entamoeba histolytica	GGVG	YL
Plasmodium falciparum	GGIG	YY
Paramecium tetraurelia	GGLG	YW
Phaeodactylum tricornutum	GGLE	YF
Phytophthora infestans	GGLG	YF
Guillardia theta	GGLG	FF
Trypanosoma brucei	GGLG	YF
Trichomonas vaginalis	GGLG	YF
Giardia lamblia	GGIG	YF

^a Shown are the sequences at the GGLG/YF motifs for representative Prxs from eukaryotes that lack Srx.

^b This organism is included to show that the GGLG motif may be retained even if the YF is not.