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Abstract 1 

Predicting biodiversity responses to climate change remains a difficult challenge, especially in 2 

climatically complex regions where precipitation is a limiting factor.  Though statistical 3 

climatic envelope models are frequently used to project future scenarios for species 4 

distributions under climate change, these models are rarely tested using empirical data. We used 5 

long-term data on bird distributions and abundance covering five states in the western US and 6 

in the Canadian province of British Columbia to test the capacity of statistical models to predict 7 

temporal changes in bird populations over a 32-year period. Using boosted regression trees, we 8 

built presence-absence and abundance models that related the presence and abundance of 132 9 

bird species to spatial variation in climatic conditions.  Presence/absence models built using 10 

1970-74 data forecast the distributions of the majority of species in the later time period, 1998-11 

2002 (mean AUC = 0.79 ± 0.01). Hindcast models performed equivalently (mean AUC = 0.82 12 

± 0.01). Correlations between observed and predicted abundances were also statistically 13 

significant for most species (forecast mean Spearman´s ρ = 0.34 ± 0.02, hindcast = 0.39 ± 0.02).  14 

The most stringent test is to test predicted changes in geographic patterns through time. 15 

Observed changes in abundance patterns were significantly positively correlated with those 16 

predicted for 59% of species (mean Spearman´s ρ = 0.28 ± 0.02, across all species). Three 17 

precipitation variables (for the wettest month, breeding season, and driest month) and minimum 18 

temperature of the coldest month were the most important predictors of bird distributions and 19 

abundances in this region, and hence of abundance changes through time. Our results suggest 20 

that models describing associations between climatic variables and abundance patterns can 21 

predict changes through time for some species, and that changes in precipitation and winter 22 

temperature appear to have already driven shifts in the geographic patterns abundance of bird 23 

populations in western North America 24 
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Introduction 3 

Understanding the factors driving species geographical distributions is a central issue in ecology 4 

(Guisan & Zimmermann, 2000; Gaston, 2003), especially in the context of climate change 5 

(Parmesan et al., 2000; Vitousek et al., 1997). Strong empirical evidence has already 6 

accumulated that climate warming has caused many species, including birds, to shift their 7 

distributions towards higher latitudes and elevations in the temperate zone and on tropical 8 

mountains (e.g., Thomas & Lennon, 1999; Parmesan & Yohe, 2003; Wilson et al., 2005; Hitch 9 

& Leberg 2007; Chen et al., 2011; Devictor et al., 2008; Tingley et al., 2012). However, no 10 

such consensus has emerged in relation to precipitation changes, partly because far fewer data 11 

are available from dry regions and partly because spatial patterns of precipitation change are 12 

complex. Accounting for precipitation changes is particularly relevant in the seasonally dry 13 

western US, where precipitation is connected to temperature and elevation through orographic 14 

precipitation, snowpack, soil moisture storage, and latent heat exchange (Cavan, 1996; Heim, 15 

2002; Hamlet et al, 2007) . A few analyses of single species (Foden et al., 2007) and ecosystem 16 

productivity patterns (Chamaille-Jammes et al., 2006) suggest that moisture-limited systems 17 

are also likely to be highly responsive to climatic changes, but multi-species analyses of 18 

distribution responses are lacking (but see Crimmins et al., 2011; Beale et al., 2013). This is 19 

important because the potentially retreating (low latitude/elevation) range boundaries of many 20 

temperate zone species may be determined by moisture availability, and moisture availability 21 

is a key determinant of ecosystem and species distributions. Here we evaluate whether 22 

distribution and abundance changes of bird species in western North America are linked to 23 

changes in climate. 24 
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We assess the utility of species-environment models that are parameterised in one time 1 

period to predict changes through time (e.g. Johnston et al. 2013). The premise that space and 2 

time can be substituted in models underlies the use of distribution models (also known as niche 3 

or climate envelope models) to project possible changes to the geographic ranges of species 4 

under climate change.  Distribution models test for associations between environmental 5 

conditions at a given time and the occurrence or abundance of target species during the same 6 

period, in order to define the bioclimatic conditions where a given species is distributed (Guisan 7 

& Zimmermann, 2000). Such envelopes can then be projected forward in time using general 8 

circulation models (Araújo & Peterson, 2012) to postulate the locations of future suitable 9 

conditions.  Species may be threatened by climate change because of disjunctions between 10 

current distributions and the location of suitable conditions in future, declines in suitable area, 11 

and complete loss of suitable conditions (Peterson et al., 2001; Thomas et al., 2004; Jetz et al., 12 

2007; Stralberg et al., 2009; Lawler et al., 2011).  However, the validity of such projections 13 

continues to be debated (Botkin et al., 2007; Beale et al., 2008; Araújo & Peterson, 2012). 14 

Critiques of distribution models often invoke confounding factors, such as biotic 15 

interactions (e.g., competition, predation), structural habitat associations, or geology, that could 16 

strongly mediate potential relationships between the geographical distributions of species and 17 

climatic conditions (Hutchinson, 1957).  In essence, correlation does not prove causation. This 18 

point is well made. However, the key issue in the context of climate change is not whether it is 19 

possible to imagine confounding biological and statistical factors that might invalidate 20 

projections (it always is), but how well such models actually perform empirically at predicting 21 

changes to the abundance patterns and distributions of species through time. Such tests have 22 

been reasonably successful over long time periods, for example in using models parameterised 23 

using present-day distributions to predict the observed ranges of species at the last glacial 24 

maximum, and comparing those projections with the distributions of fossil bones or pollen 25 
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(Huntley et al., 1993; Ohlemüller et al., 2012; Smith et al., 2013). Rigorous tests of the capacity 1 

of models to predict changes over much shorter periods of time are still needed (but see Araújo 2 

et al., 2005; Oliver et al., 2012; Johnston et al. 2013).  In part, this knowledge gap arises because 3 

of the nature of most presence/absence distributional databases; areas of new colonisation or 4 

extinction often only represent a relatively small fraction of the total area that a species 5 

occupies, and most volunteer-collected distributional data, although extremely valuable, are 6 

insufficient to confirm extinctions.  Greater statistical power may be available if abundances 7 

are also considered, because abundance is a continuous variable, and climate-driven abundance 8 

changes may be detected across much larger parts of a species’ range.  Unfortunately, historical 9 

multi-species datasets that include information about changes in abundances over large 10 

geographic areas are scarce (see Both et al., 2006; Willis et al., 2008). 11 

 Here, we consider how spatial and temporal variation in the climate affects the 12 

distributions and geographic abundance patterns of birds.  Birds show strong responses to 13 

contemporary climate change (Brotons et al., 2007; Devictor et al., 2008), in part because they 14 

depend on resources that are closely tied to environmental change (Both et al., 2006: Sillett et 15 

al., 2000: Pearce-Higgins et al. 2010). Changes to bird populations provide a useful indicator 16 

of the ecological effects of climate change (Jiménez-Valverde et al., 2011), since birds carry 17 

out key biotic interactions such as seed dispersal, pollination and top-down control of herbivory 18 

(e.g., Bale et al., 2002;  Şekercioğlu et al., 2004).  We capitalized on a large-scale dataset on 19 

the abundance of 132 terrestrial bird species in western North America to test the performance 20 

of distribution models in predicting changes in bird distributions and abundances over a 32-21 

year period.  Our objectives were to assess the predictive capacity of climate envelope models 22 

over this period, and to establish whether recent precipitation as well as temperature changes 23 

have influenced the distribution and abundance changes of birds.  24 

MATERIALS & METHODS 25 
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Study system 1 

Our study system encompasses most of western North America, including California, Nevada, 2 

Oregon, Washington and Idaho in the United States, and the Canadian province of British 3 

Columbia. Our study area covers a latitudinal range of 32º41’N to 60º00’N (approximately 4 

3000 km south to north) that is sufficiently large to include the entire latitudinal (breeding) 5 

distribution of the majority of the species considered (Fig. 1). The longitudinal range is 6 

narrower (114º46’W to 138º55’W), but given the region’s complex topography ranging from 7 

below sea level to 4394 m.a.s.l. and a gradient from oceanic to continental climates, it is 8 

sufficient to generate conditions ranging from evergreen rainforest to desert. Our study system 9 

includes a wide climatic range (Fig. 1), with average monthly temperatures on sampling routes 10 

ranging from -29.9ºC (January minimum) to 41.9ºC (July maximum), and monthly total 11 

precipitation ranging from 0 (July, driest month) to 629 mm (December, wettest month) 12 

depending on location (Table 1). 13 

 14 

Bird data 15 

Terrestrial bird species´ population data were derived from count data collected as part of the 16 

USGS Breeding Bird Survey (BBS, www.pwrc.usgs.gov/bbs, Sauer et al., 2011). These data 17 

have been used widely in studies of bird distributions (Robbins et al., 1986, 1989; Peterson 18 

2003; Phillips et al., 2010). The BBS survey system consists of 39.4 km linear routes that are 19 

located on secondary roads throughout the continental United States and Canada. BBS data has 20 

been collected every May or June (breeding season) since 1966 by trained surveyors that 21 

recorded every species observed during 3 minute counts at 50 point locations spaced at 0.8 km 22 

intervals along the route. The survey begins soon after sunrise and surveyors record birds that 23 

are seen or heard within 400 m from each point, summing counts over all 50 points in a given 24 

http://www.pwrc.usgs.gov/bbs
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year (Bystrack 1981). BBS data provide an index of population abundance at the scale of an 1 

individual route that can be used to estimate trends in relative abundance at various geographic 2 

scales. We selected bird species that were present in more than 10% and fewer than 80% of 3 

sampling sites in the study system during the selected time periods (to avoid extremely common 4 

and extremely rare species), excluding species whose distributions mainly occur outside the 5 

study region and those for which the region may not contain environmental limits respectively.  6 

Aquatic and coastal bird species were also excluded because we did not expect the terrestrial-7 

based BBS routes to sample breeding populations of these species effectively. In total, 132 8 

species satisfied the criteria for analyses. 9 

We used BBS data from 1970 (earliest year when enough routes were available for 10 

analysis) to 2002, over which period sufficiently high-resolution climate data were available to 11 

match route locations. To reduce sampling variation in abundance caused by observer and 12 

interannual weather effects, we considered two alternate five-year windows representing an 13 

early (1970-74) and a later period (1998-2002). A given species was considered to be ‘present’ 14 

on a particular transect route if it was recorded there in one or more of the five years.  To avoid 15 

possible ‘false zeroes’ in species counts, we only included routes that were sampled in all years 16 

during each period (1970-74 and 1998-2002). Abundance was the average number counted on 17 

a route over the five-year period. This approach has been adopted in previous studies on species 18 

distributions that use BBS data (Hitch & Leberg, 2007; Philips et al., 2010).  Finally, we also 19 

excluded from analyses those routes that were so close to the ocean that their centroids were 20 

located in the water, which would bias estimates of terrestrial climate.  This initial screening 21 

resulted in a dataset of 642 routes, of which 332 and 541 routes were sampled in the early and 22 

later time periods respectively, with 231 sampled in both periods (Fig. 1).  23 

Environmental data 24 
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We obtained historical climate data generated by the Parameter Regression of Independent 1 

Slope Model (PRISM) (Oregon Climate Service, Corvallis, Oregon, USA) for the continental 2 

United States (Daly et al., 2002).  Equivalent data for Canada were provided by the Canadian 3 

Forest Service, Natural Resources Canada (http://cfs.nrcan.gc.ca). Both climate datasets were 4 

created using point meteorological station data, digital elevation models, and other spatial data 5 

sets to generate interpolated gridded estimates of monthly, yearly, and event-based climatic 6 

parameters, such as precipitation, temperature, and dew point. We used maps at a spatial 7 

resolution of 2.5-arcmin (approximately 3 km cell size at this latitude) (Daly et al., 2000). For 8 

the 30-arcsec resolution British Columbia data, we resampled to 2.5-arcmin to match the 9 

resolution of the PRISM data.  10 

We selected a set of seven climatic variables previously reported to be associated with 11 

bird species distributions, reflecting conditions in the breeding season and during summer and 12 

winter months when the most extreme conditions are likely to be experienced (Green et al. 13 

2008; Jiménez-Valverde et al., 2011). The seven climatic predictors included in the models 14 

were: average daily maximum temperature of the hottest month in the study system (July), 15 

average daily minimum temperature of coldest month (January) and total precipitation of 16 

wettest (December) and driest month (July). The peak breeding period for most birds in the 17 

study region was in June, so we also considered maximum temperature, minimum temperature 18 

and precipitation for this month. The full set of predictor variables included in the analyses is 19 

listed in Table 1.  20 

We summarized all climate variables within 1 km of BBS routes, the maximum distance 21 

within which birds are likely to be detected in a survey (Betts et al., 2007), taking the average 22 

condition for each climate variable across the five years in each period. Distribution models 23 

could fail if there is a mismatch between the spatial resolution of population processes and of 24 

the environmental predictor variables (Araújo & Peterson, 2012). It has frequently been noted 25 

http://cfs.nrcan.gc.ca/
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that the spatial scale of studies strongly affects relative importance of environmental factors 1 

associated with species distributions (Johnson et al., 2004; Olivier & Wotherspoon, 2005; 2 

Jiménez-Valverde et al., 2011). In this particular case, missing the appropriate spatial scale of 3 

the study species may lead to incorrect interpretation of the results (Beale et al., 2008). We 4 

therefore repeated analyses using climatic conditions within 20 and 50 km of each route, to 5 

represent the sub-regional or regional scales that have previously been related to bird 6 

populations (Tittler et al., 2006). However, model performance was highly correlated across 7 

the three spatial scales (R2 > 0.8 in all cases) so we report only the 1 km buffer model 8 

performance here. 9 

 10 

Statistical analyses 11 

Model Development 12 

Models were developed using the ‘gbm’ package in R (R Development Core Team, 2010) for 13 

Boosted Regression Trees analyses, which have been widely used for climatic envelope models 14 

(Randin et al., 2009; Carvalho et al., 2010; Verburg et al., 2011; Engler et al., 2011). Boosted 15 

Regression Trees (BRTs) are a type of machine-learning method that combines the strength of 16 

regression trees and boosting; that aims to fit a single parsimonious model. GBMs combine 17 

many simple models to give improved predictive performance and provide the capacity to 18 

include different types of predictor variables and to accommodate missing data. BRTs exhibit 19 

high prediction performance while minimizing the risks of overfitting (Elith et al., 2006).  In 20 

addition, they are sufficiently flexible to include nonlinear relationships and interactions 21 

between predictors (Elith et al., 2008). We generate BRT models with the set of seven climatic 22 

variables as predictors and observed occurrence or abundance for each time period as response 23 

variables (Fig. 2). Both abundance and occurrence models such as ours are well known to suffer 24 
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from potential biases caused by imperfect detection (MacKenzie et al. 2003, Kery 2011). 1 

However, we elected not to account for detection in our modeling strategy for four reasons. 2 

First, BBS data are not collected using the repeated temporal sample structure required for 3 

occupancy modeling (MacKenzie et al. 2003).  Second, to date, no machine learning methods 4 

(e.g., BRT) exist that account for imperfect detection. Machine learning methods such as BRT 5 

enable the fitting of complex structures (non-linearities, interactions) that would be extremely 6 

computationally challenging in an occupancy framework. Thirdly, ‘occupancy’, after 7 

accounting for imperfect detection, is a latent variable and therefore impossible to validate on 8 

independent data because the ‘true’ state of independent data are unknown (Welsh et al. 2013). 9 

Finally, as our primary objective was SDM validation, and the same search effort was applied 10 

to every transect in both time periods, this approach was therefore inappropriate. 11 

 12 

Model evaluation 13 

We evaluated both abundance and distribution models in two ways: (1) description of the fit of 14 

the original models within a given time period (verification) and (2) model forecasting and 15 

hindcasting with independent data, in our case using models developed during one time period 16 

to predict observed patterns in the other period (cross-validation; Araújo & Guisan 2006; 17 

Dobrowsky et al., 2011). Given the data (continuous versus binary) and observed patterns (lack 18 

of normality in abundance data), the procedures for verification and cross-validation depended 19 

on the distribution of response variables. We verified the models using data from the same time 20 

period used for model development.  We calculated the performance of the presence/absence 21 

models using AUC (area under the receiving operating characteristic curve) (Fielding & Bell 22 

1997; Manel et al., 2001; McPherson et al., 2004). Values normally range from 0.5 (no better 23 

than random association) to 1 (perfect fit). There is no universally accepted ideal measure of 24 

model performance, but AUC has been widely used (but see Lobo et al. 2008) as a threshold 25 
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independent metric of model fit and its properties are well understood (Thuiller, 2003; Araújo 1 

et al., 2005; Brotons et al., 2007; Pearman et al., 2008; Gutiérrez Illan et al., 2010) (Fig S2). We 2 

evaluated abundance models using Spearman’s rank correlation coefficients (Spearman´s ρ) 3 

between predicted (from model-averaged coefficients) against observed abundance values (Fig. 4 

2).  We used rank correlations coefficients (ρ) between predicted and observed abundance 5 

values because observed count numbers were low for almost all species on some routes (leading 6 

to deviations from normality), and for consistency with the analysis of abundance changes 7 

between periods (some species showed non-linear relationships between predicted and 8 

observed abundance changes, e.g. Fig 5). We also tested for correlations between observed and 9 

predicted abundance using Pearson's r, but results were not substantively different, so here we 10 

report only Spearman ρ , which is a more conservative test. 11 

 For cross-validation, we used the models developed in one time period and then used 12 

climate data in the other period to predict occurrences or abundance of the selected species in 13 

the target routes (Fig. 2). These were compared with the observed measures of occurrence and 14 

abundance in the alternative test period. As an additional, more challenging test of the efficacy 15 

of climate envelope models, we used our models to make forecast and hindcast predictions 16 

about occurrence and abundance at routes that were not sampled in the alternative time-period. 17 

We ran the models based on the whole set of routes in each period (332 in 1970-74 and 541 in 18 

1998-02) and evaluated their predictive power with the set of routes that were not sampled in 19 

the alternate period (101 in 1970-74 and 309 in 1998-02). These tests were thus carried out on 20 

both spatially and temporally independent data (Bahn & McGill, 2013).  21 

 22 

Predicting Species Distributions and Abundances Over Time 23 
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The strongest test of whether the climate variables in (spatial) models are causally linked to 1 

species’ distributions and abundances is to make predictions about changes over time, and then 2 

to test these against observed changes. First, we carried out these analyses using changes in 3 

occupancy through time. A given species at a sampling location can (i) colonize, (ii) go locally 4 

extinct, (iii) persist, or (iv) remain absent during a given period of time (Nichols et al., 1998; 5 

MacKenzie et al., 2003). Thus, we identified the routes where each of these states had been 6 

observed (changes in occupancy: absence to presence of n individuals, and vice versa). We only 7 

considered the subset of routes monitored in both time periods to ensure data consistency. The 8 

total number of routes that were sampled in both years and therefore included in the analyses 9 

was 231 (out of 332 in 1970-74 and 541 in 98-02). Out of the 132 target species in our study 10 

system, we selected for analysis the species for which local extinction or colonization had 11 

occurred for >5 routes over the study period. 12 

To estimate expected change in occupancy, we ran BRTs using data from the first time 13 

period to estimate initial occupancy probability (𝛹̂t1). We then predicted to the second period 14 

using this first model given changes in climate that occurred on each route (𝛹̂t2). The 15 

difference between these values (𝛹̂t2 - 𝛹̂t1) was considered the expected change in probability 16 

of occupancy (ΔΨ). Prediction accuracy was assessed by comparing ΔΨ with observed change 17 

in occupancy status (Fig 4). We used a paired t-test (98 species) to investigate whether observed 18 

change in occupancy (a dichotomous response variable; locally extinct versus locally colonized 19 

sites) was significantly associated with the predicted change in occupancy (a continuous 20 

variable). 21 

In the case of the abundance models, which incorporate both abundance changes (on 22 

routes populated in both periods) and changes in occupancy (absence to presence of n 23 

individuals, and vice versa) we followed a similar procedure. To calculate abundance changes, 24 
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we used the 1970-74 model to describe initial abundances in the first time period (𝜂̂t1) for each 1 

route. We projected abundance in the second time period (𝜂̂t2) using the t1 model parameterized 2 

with t2 climate data. The difference (Δη) represents the expected change in abundance on each 3 

route (𝜂̂t2 - 𝜂̂t1). We then tested the correlation between Δη and observed abundance changes. 4 

Transect routes where a species was absent in both time periods were excluded to avoid the 5 

possibility that statistical fits might be exaggerated (large numbers of points with near-zero 6 

predicted change and zero change observed). Again, we only considered the subset of routes 7 

monitored in both time periods.  A total of 132 species satisfied criteria for analysis of 8 

abundance changes. We assessed predictive power by calculating Spearman rank correlations 9 

(ρ), given that the relationships between predicted and observed abundance changes were not 10 

always linear (Fig. 5), with no single transformation proving suitable for all species. For brevity, 11 

we report only forecast results for both occupancy and abundance change models. Backcast 12 

prediction accuracies were slightly higher and qualitatively similar. A summary of the complete 13 

model building/cross-validation process is shown in Figure 2. 14 

 15 

Relative contribution of climate variables 16 

We calculated the relative influence of each predictor in BRTs using the gbm package; this 17 

provides a measure of the strength of each variable’s influence on the total response and is 18 

reflected as a proportion (Elith et al., 2008). We recorded the top-ranked explanatory variable 19 

for each species, as well as the three top-ranked variables. For each variable, we counted the 20 

number of species for which its independent contribution was ranked first, or within the top 21 

three (Radford & Bennett, 2007), thus providing an overall estimate of the importance of each 22 

variable to bird distributions and abundances in the region. As a further test, we also calculated 23 
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the relative contribution of the variables for the species with the best-performing models (34 1 

species with Spearman´s ρ  above 0.4). 2 

 3 

Spatial autocorrelation 4 

One of the most common criticisms of the species distribution models is spatial autocorrelation 5 

of results, which could lead to spurious relationships and thus, to infer wrong conclusions 6 

(Beale et al., 2008). Spatial autocorrelation can influence the reliability of biogeographic 7 

analyses, particularly based on sample sites separated by short geographic distances (Algar et 8 

al., 2009). We tested for spatial autocorrelation in residuals of both presence-absence and 9 

abundance models using correlograms (Moran´s I; Fortin et al., 1989, Betts et al., 2006). 10 

 11 

RESULTS 12 

Climatic trends 13 

Although temperatures predominantly warmed from 1970-74 to 1998-2002, both changes in 14 

temperature and precipitation showed a spatially patchy pattern (Fig. 1, Table 1). This spatial 15 

heterogeneity in temperature and precipitation changes provides useful variation to assess 16 

occupancy and population changes in response to variation in the climate. 17 

Model verification 18 

Distribution models generally performed well for most species within both time periods 19 

(internal validation). For presence/absence models, 87% (1970-74) and 80% of species (1998-20 

02) showed AUC values >0.8, with mean (±SE) AUCs of 0.88 ± 0.01 and 0.87 ± 0.01 for the 21 

two periods respectively (Fig. 3) (Fig S2). Correlations between observed and predicted 22 
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abundance were also quite high when tested within time periods; Average ρ (±se) was 0.47 ± 1 

0.02 for 1970-74 (94% of species showing significant associations; p<0.01) and 0.49 ± 0.01 for 2 

1998-2002 (98% of species showing significant associations; p<0.01; Fig. 3).  3 

Model cross-validation between time periods 4 

Prediction success was lower in validation than in verification, though not substantially. When 5 

forecasting using presence/absence models, mean (±SE) AUC was 0.77 ± 0.01. When 6 

hindcasting, mean (±SE) AUC value was 0.81 ± 0.02 for presence/absence models (Fig. 3). In 7 

total, 40% (forecasting) and 59% (hindcasting) of the species showed excellent (AUC > 0.8) 8 

predictive performance between time periods. In abundance models, forecast results were 9 

positively correlated with observed abundance in the second time period (mean ρ = 0.34 ± 0.02 10 

(90 % out of 132 species significant at p<0.01)). Hindcast results yielded slightly higher 11 

correlations between observed and predicted abundances (ρ = 0.38 ± 0.02 (92 % out of 132 12 

species significant with p<0.01)) (Fig. 3). Abundance models for 61% and 72% of species (for 13 

forecasting and hindcasting, respectively) showed correlations ρ >0.3. For each analysis, the 14 

improved performance of hindcast predictions is likely to reflect the higher number of routes 15 

available for model building in the later period. 16 

Performance of the abundance models (Spearman ρ) were significantly correlated with 17 

those of the presence/absence models (AUC) in both periods (Spearman ρ = 0.59 (70-74 18 

models); Spearman ρ = 0.68 (98-02 models). N = 132 in both cases), suggesting common drivers 19 

of abundance and distributions. Results obtained in verification and cross-validation for the full 20 

set of target species are shown in table S1. To test the sensitivity of our results to the statistical 21 

model, we also applied stepwise logistic regressions to generate climate-envelope models for 22 

both presence/absence and abundance. These gave very similar results in making predictions 23 
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between time periods, but the AUC when using Boosted Regression Trees was higher for 95% 1 

of species (Fig. S1).  2 

Testing changes in bird occupancy and abundance through time 3 

We tested the capacity of models to predict occupancy changes through time for 98 species that 4 

satisfied criteria for analyses (Fig. 4). Mean change in predicted suitability of colonized routes 5 

was significantly higher, i.e. more positive, than for routes that went locally extinct (paired t-6 

test, t=3.094; P<0.005; N=98). However, results varied widely across species (Fig. 4). In 7 

general, models predicted local extinctions better than the local colonisations. Average climate 8 

suitability decreased over time in the routes for seventy of the 98 species which went locally 9 

extinct. Average climate suitability increased in colonized routes for 52 species (Fig 4). 10 

In predicting changes in abundance over time, 71 out of 132 species showed significant 11 

correlations between observed and predicted changes (mean ρ = 0.28 ± 0.02, across all species). 12 

Again, model quality varied widely, with 61 species (46%) showing weak predictive power (ρ 13 

< 0.2), 24 species (18%) showing some level of predictive power (0.2 > ρ < 0.5) and 47 species 14 

(36%) showing correlations >0.5 (Fig. 5b). Model performance for one high-performance and 15 

one medium-performance example species are shown in Figure 5.  The purple finch 16 

(Haemorhous purpureus) represents a species with a typical northern distribution in North 17 

America, whereas loggerhead shrike (Lanius ludovicianus) has a typical southern distribution. 18 

For both species, there is some indication that climate-related declines are better predicted than 19 

increases (Fig. 5). This is consistent with the results obtained in the occupancy change models 20 

where models tended to better predict extinctions than colonizations. 21 

The residuals of abundance models were not spatially autocorrelated for the majority of 22 

the species. Ninety-five species showed no significant (p>0.05) autocorrelation at any distance 23 

classes. Furthermore, only 12 out of 132 species showed Moran´s I >0.2 at any spatial lag, 24 
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which is generally considered to reflect strong spatial autocorrelation (see full results in Table 1 

S2, detailed plots for exemplar species in Fig. S3) (Lichstein et al. 2002).  2 

 3 

Relative contribution of climate variables 4 

Overall, precipitation was a more important predictor than temperature in both distribution and 5 

abundance models (Fig. 6). This conclusion held whether we considered the single top variable 6 

in each species’ model, or whether a variable was one of the three top predictors (Fig. 6). Fig 7 

6b shows very similar results obtained when considering only the 34 species with evaluation 8 

coefficients (Spearman´s ρ) above 0.4. Precipitation in the wettest month (December) was 9 

particularly important, with additional contributions from June and July precipitation (Fig. 6).  10 

January temperature was, on average, the most important temperature variable included in our 11 

models.  Hence, the abundance changes that could be predicted by the models were mainly 12 

driven by spatio-temporal changes in precipitation and warming trends in winter temperature 13 

over time.  14 

 15 

DISCUSSION 16 

Our results show that climate envelope models had considerable capacity for describing the 17 

abundance and distribution of bird species in western North America. This is consistent with 18 

previous studies showing high predictive ability for distribution models that are trained and 19 

tested in the same time period (La Sorte & Jetz, 2012, Renwick et al. 2012, Foden et al. 2013, 20 

Smith et al. 2013). Further, our models generally performed well at predicting both occupancy 21 

and abundance in alternative time periods (transferability). This is perhaps not surprising given 22 

the relatively short time-period over which our models predicted (32 years); one would expect 23 
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there to be temporal autocorrelation in bird distributions, explained partly by an inertia in the 1 

distribution of the plant species and climatic envelopes on which they depend (Araújo et al. 2 

2005, Botkin et al. 2007, Rapacciuolo et al. 2013; Watling et al. 2013).  3 

More telling was our finding that, for some species, climate envelope models were also 4 

capable of predicting abundance and occupancy changes across the western portion of the 5 

continent; 54% of the species we examined showed significant correlations between predicted 6 

and observed abundance changes. Though these models are still correlative, they substantially 7 

reduce two problems in climate envelope model validation: (1) they are free from problems of 8 

temporal autocorrelation in model predictions that would lead to high quality models based 9 

solely on the tendency of species to remain at certain population levels or distributions over 10 

short time periods (Araújo et al., 2005, Rapacciuolo et al., 2013); (2) they are less likely than 11 

static models to be confounded with biotic variables that show similar distributions to climate; 12 

for example, birds are known to be strongly associated with vegetation structure and 13 

composition (MacArthur & MacArthur, 1961). Our finding that changes in bird abundance and 14 

occupancy are predicted by climate provides stronger evidence that climate itself is an 15 

important role as a driver of bird populations – even over relatively short temporal scales. This 16 

role may be direct (via thermal limitations; sensu Jankowski et al., 2013) or indirect – 17 

propagated through influences to, for example, the phenology of vegetation and/or food 18 

availability (Both et al., 2006).  19 

Model prediction success is expected to decline as one moves from verification (testing 20 

against the data used to build the model), to cross-validation (testing against observed patterns 21 

in another time period) and temporal prediction (changes in abundance patterns in space and 22 

time)  (Araújo et al., 2005). Our models support this expectation; abundance models trained 23 

and tested in 1970-74 (i.e., verification) showed high concordance with observed data (ρ=0.47). 24 

In cross-validation to a new time period, correlations dropped (ρ=0.34) and then declined 25 
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further when predicting geographical patterns of abundance changes across time periods 1 

(ρ=0.28). Nonetheless, predictions of temporal changes in abundance patterns were strong 2 

(ρ>0.5) for over a third of the species. 3 

Though still scarce, a number of recent studies have tested for the transferability of 4 

climate envelope models in space and time for mammals (Rubidge et al., 2012), plants 5 

(Pearman et al., 2008), insects (Kharouba et al., 2009) and birds (Rapacciuolo et al., 2013; 6 

Johnston et al. 2013). Superficially, the degree of climate envelope model success appears to 7 

vary widely across studies and taxa, but much of this variability is accounted for by whether or 8 

not studies attempted to model occupancy change, or simply model transferability. Generally, 9 

studies that built models in time t1 and predict distributions in t2 report optimistic results 10 

(Dobrowski et al., 2011, Watling et al., 2013). In contrast, Rapacciuolo et al. (2013) recently 11 

found that although climate envelope models for plants, birds and butterflies did well at 12 

predicting distributions (transferability was high), performance was poor when they attempted 13 

to predict changes in occupancy status at range edges. Our findings support this result for a 14 

substantial number of species (61/132, 48% of models showed correlations <0.2). These results 15 

provide an important cautionary note: for some species, high explanatory power on temporally-16 

independent records does not necessarily indicate a model’s ability to predict changes through 17 

time. However, the rest of the species we considered showed significant, and in some cases 18 

strong, correlations between observed and predicted abundance changes.   19 

One possible explanation for the higher agreement between predicted and observed 20 

abundance changes in our study in relation to Rapacciuolo et al. (2013) lies in the order of 21 

magnitude greater geographical scale of our study (2,308,000 km² versus 229,848 km²). This 22 

permitted us to encompass the full latitudinal extent of many species’ ranges. Several studies 23 

have shown that it is particularly important to include the complete species’ environmental 24 

range to achieve more accurate predictions (Pearson et al., 2002; Thuiller et al., 2004; Barbet-25 
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Massin et al., 2010) and that missing the climatic limits of the species is more likely lead to the 1 

conclusion that distributions of species are not determined by climate (Beale et al., 2008). Our 2 

study is one of the first to demonstrate that climate envelope models predict species 3 

distributions and abundances in new, independent locations (see Rubidge et al., 2012).  4 

 Though the majority of our models predicting occupancy and abundance changes were 5 

significantly correlated with observed changes, for most species substantial variation remained 6 

unexplained.  It is well known that a wide range of non-climatic factors drive biodiversity 7 

responses – many of which remain challenging to incorporate into SDMs.  First, land-use 8 

change has clear potential to limit the efficiency with which even fairly vagile species can ‘keep 9 

pace’ with climate change (Jetz et al., 2007). Highly fragmented habitat distributions may 10 

preclude dispersal to patches that have newly emerged as part of a species’ fundamental niche 11 

(Opdam & Wascher, 2004). Few efforts to date have quantitatively examined the degree to 12 

which land-use change interacts with climate to drive distributions (Luoto et al., 2007). Second, 13 

biotic relationships (e.g., competition, predation, mutualism) all play a role in driving 14 

distributions (Blois et al., 2013). Though new techniques are emerging to explicitly incorporate 15 

such biotic factors (Heikkinen et al., 2007), these have not been extensively validated to 16 

determine the degree to which they improve model predictions over longer time periods (but 17 

see Rubidge et al., 2012). Third, the spatial resolution of most climatic envelope models tends 18 

to be in the order of 1-100 km2 – a scale which is likely mis-matched with the scale of perception 19 

by many organisms (Gillingham et al., 2012), including birds. A number of studies have 20 

recently acknowledged that fine-scale variability in thermal and precipitation regimes have the 21 

potential to provide ‘refugia’ or ‘buffering’ against landscape or regional trends in climate 22 

(Dobrowski, 2011; Moritz & Agudo, 2013).  Unfortunately, long-term data on animal 23 

distributions, including the data used in this study, are rarely collected at sufficiently fine spatial 24 

resolutions to allow for modelling (let alone validating) such microclimatic effects.  25 
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Nevertheless, it is important to note that despite these additional sources of variation, climate 1 

variables alone successfully predicted both abundance and distributional changes for many of 2 

the species we examined.  We expect that new efforts to incorporate physiological tolerances 3 

(Jankowski et al., 2013), dispersal behaviour (LaSorte & Jetz, 2010), and fine-scale landcover 4 

data (Shirley et al., 2013) will improve upon the models we report here.  5 

An additional source of variation may arise from the nature of the count data analysed. 6 

Though quantifying abundance using 5-year ‘windows’ undoubtedly increased detections, and 7 

hence noise relating to detectability, the lack of within-year repeat counts in BBS data precludes 8 

accounting statistically for biases relating to imperfect detection (MacKenzie et al. 2003). 9 

Nevertheless, it is highly unlikely that imperfect detection biased our results in favour of SDMs 10 

that validate well on independent data.   11 

 Most studies of how climate change alters the distributions of species have emphasised 12 

the effects of temperature (Walther et al., 2002; Thomas et al., 2004; Chen et al., 2011), but it 13 

has been argued that precipitation could exert an equally important role for some organisms 14 

(Tingley et al., 2012). In our study, with the exception of minimum January temperature, the 15 

three precipitation variables featured more strongly in models than did the remaining 16 

temperature variables for most species (Fig. 6). Our study thus confirms the importance of 17 

considering precipitation in future projections of species under climate change. We hypothesize 18 

that precipitation is an important determinant of range retreats in northern species that 19 

experience increased desiccation of their habitats in the south, and may facilitate the expansion 20 

of drought-tolerant species from the south.  However, precipitation change is complex in 21 

mountainous terrain (Fig. 1), which has resulted in complex patterns of predicted and observed 22 

geographic patterns of abundance change (Fig. 5).  Hence, different species may be shifting 23 

their distributions in quite variable directions; a single species even may show variation in the 24 
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direction of shifts in different regions, depending on which environmental variables are limiting 1 

and the degree to which they are changing (Root & Schneider, 1993; Root et al., 2003). 2 

Interestingly, winter conditions (precipitation in the wettest month, December, and 3 

temperature in the coldest month, January) were the most important predictor variables for most 4 

species.  For resident species, this may reflect overwinter physiological stress and food 5 

availability which in turn affects survival (Robinson et al., 2007, Doherty & Grubb, 2002), but 6 

for migrants that are absent during these periods, such changes likely reflect lagged climate 7 

effects. For instance, warmer winter temperatures would affect rates of snowmelt, which in turn 8 

influences moisture availability and therefore ecosystem productivity during the summer 9 

months. Moreover, moisture storage carryover also affects air temperature through latent heat 10 

exchanges (Porporato et al., 2004; Nolin & Daly, 2006). 11 

 The predictive power of climate envelope models for birds exhibited variable success 12 

across species, but declined as data independence increased. Nevertheless, we provide evidence 13 

that climate envelope models are capable of predicting abundance changes through time for a 14 

third to half of species, suggesting that climate is driving the changes. Over the 32-year period 15 

considered, precipitation was a major determinant of geographic-scale changes in the 16 

abundance patterns of terrestrial bird species in western North America. Our results for birds 17 

could therefore be considered a ‘best case’ scenario with respect to the transferability of climate 18 

envelope models because of their relatively high dispersal abilities, and other taxa might show 19 

lower prediction success due to lags in dispersal (Ko et al., 2011). However, climate is a better 20 

predictor of decreases and, ultimately, of local extinctions in our study, than it is of increases 21 

and local colonizations, and hence the predictive power of our models does not rely on strong 22 

dispersal. In conclusion, our ability to predict geographic patterns of abundance change through 23 

time demonstrates the importance of climate, particularly precipitation, to the changing 24 

distributions of a third to a half of the species studied, but the variation explained also implies 25 
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that factors other than climate, such as dispersal, land-use and heterospecifics are also important 1 

determinants of large-scale distribution change. The quest for improved model predictions will 2 

inevitably involve trade-offs between limited extent of fine-resolution data depicting 3 

organism´s responses to land use/land cover and biotic interactions (which produce detailed, 4 

accurate models of local places that are hard thus problematic to generalize) and the desire to 5 

create broad-scale models that are relevant to understanding global change. 6 

   7 
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Table 1. List of climate variables included in the analyses. Values are given at route level in 1 

each period as they were included in the analyses. Averages values are shown for all study 2 

sites in the selected period and values in brackets show the ranges of the given variable in the 3 

study system 4 

 5 

6 

Climate variable Units Mean [min-max] 

1970-74 1998-02 

June Maximum Temperature 

June Minimum Temperature 

June total Precipitation 

July Maximum Temperature 

July total Precipitation 

January Minimum Temperature 

December total Precipitation 

ºC 

ºC 

mm 

ºC 

mm 

ºC 

mm 

24.7 [13.0 – 39.9] 

8.8 [0.9 – 23.4] 

24.2 [0 – 104.2] 

28.5 [16.1 – 41.9] 

15.4 [0 – 100.7] 

-4.6 [-29.9 – 6.6] 

125.7 [1.9 – 538.9] 

22.7 [11.0 – 39.1] 

7.5 [0.1 – 21.7] 

33.6 [0 – 116.9] 

27.2 [14.3 – 41.0] 

17.9 [0 – 98.9] 

-4.0 [-18.0 – 9.6] 

120.4 [0.3 – 629.2] 
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Figure legends 1 

Fig 1. Panel a: Map of the study area, showing the topographical heterogeneity of the five US 2 

states (California, Idaho, Nevada, Oregon, Washington) and Canadian province of British 3 

Columbia included. Panel b: Change (70-74 to 98-02) in average minimum temperature of the 4 

coldest month (January). ΔTp varies from a cooling of > -1ºC (dark blue) to warming of > 5ºC 5 

(dark red). Panel c): Change in average precipitation of the driest month (July), from a drying 6 

of > -10 mm (dark brown) to increased precipitation of > 10 mm (dark blue). Panel d: Change 7 

in average precipitation of the wettest month (December), from a drying of > -10 mm (dark 8 

brown) to to increased precipitation of > 10 mm (dark blue). BBS routes used in the study are 9 

shown in black in all maps. 10 

Fig 2. Flow chart summarizing the model building and evaluation process. 11 

Fig 3. Summary of model performance evaluation for a) distribution (presence/absence) and 12 

b) abundance models. Presence/absence models were evaluated via AUC and abundance 13 

models were evaluated using Spearman´s rank correlation coefficients between observed and 14 

predicted abundance of each target species at each route. 15 

Fig 4. Plot of mean change in suitability of colonized versus extinct routes for the target 16 

species (each species is represented by a black dot). The dashed line shows no explanation 17 

ability (same change in suitability for colonized and extinct routes). Local 18 

colonization/extinction of the species located above the line (ideally in the top-left quadrant of 19 

the plot) are predicted by the occupancy models through time. 20 

Fig 5 Plots of observed and predicted abundance changes for two exemplar species, 21 

Loggerhead shrike (Lanius ludovicianus) (Left), and Purple finch (Haemorhous purpureus) 22 

(Right). Scatter plots show evaluation of the abundance models through time (Loggerhead 23 
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skrike, Spearman´s ρ of 0.64 , based on 72 routes; Purple finch, Spearman´s ρ of 0.33 , based 1 

on 110 routes). Maps show locations of observed (a panels) and predicted (b panels) 2 

abundance changes. 3 

Fig 6 (a) Relative contribution of the climate factors included in the models. Plot shows 4 

results obtained in presence/absence models (left panel) and abundance models (right panel). 5 

Black bars show the percentages (x axes) of models where a given climate variable was 6 

ranked as the most important according to its relative contribution. Grey bars show the 7 

percentages of models where a given variable was ranked as one of the top three most 8 

important variables. Results are shown for the forecasting evaluation only. Fig 6b shows the 9 

same results, but only for the target species that obtained an evaluation performance 10 

(Spearman´s ρ) above 0.4 (34 species). 11 
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  2 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.5 -0.3 -0.1 0.1 0.3 0.5

M
e
a
n

 c
h

a
n

g
e

 i
n

 s
u

it
a
b

il
it

y
 o

f 
c
o

lo
n

iz
e
d

 s
it

e
s

Mean change in suitability of extinction sites



44 

Fig 5 1 

2 



45 

 Fig 6 1 

a 2 

 3 

 4 

 5 

 6 

b 7 

 8 

 




