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Synthesis 

 

The ongoing global loss of top predators and their recolonization of various regions are causing a 

rapid upsurge of studies on these species and a consequent fragmentation of this field into 

disconnected, specialized sub-compartments: this will weaken efforts to produce synthetic 

generalisations of broader ecological interest. Here, we show that top predation provides regular 

contributions to general ecology, is well grounded in theoretical ecology and is a rapidly 

expanding and increasingly experimental, multidisciplinary and technological field of research. 

The novelty of this forum lies in providing a concise synthesis of this area of ecology, in 

attempting to formalise “top predation” as a specific, inter-connected area of investigation, and 

in proposing a marked change of mentality by stressing the need for cross-taxonomic approaches 

enabling broader views of the role of predators in ecosystems. 
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Introduction 

 

Modern ecology is developing through a rapid, progressive fission into specialized sub-

disciplines, coupled with an exponential increase in the literature (Thompson et al. 2001; 

Graham & Dayton 2002; Nobis & Wohlgemuth 2004). While increasing specialization is 

important to gain detailed, mechanistic insights into ecological systems, it may nonetheless 

hinder progress in various ways. First, excessive research canalization causes scientists to be 

excessively “myopic”, losing sight of the broader picture (Kuhn 1962; Schmitz 2010). Second, 

an ever-increasing expansion of the literature challenges ones’ ability to keep abreast of 

advances in one’s own field of research, let alone other related ones. Third, the rapid rise in 

volume of literature leads progressively to past ecological studies and debates being overlooked 

or ignored (erasure of history), leading to recycling of ideas (or worse recasting old ideas in new 

ways and claiming novelty); all of which is a waste because the basic principles and knowledge 

that ecology needs to build on become lost or ignored (Graham & Dayton 2002).  Increasing 

specialization may also lead to overemphasis on analytical, methodological and technological 

advances, and under-emphasis on ensuring continued progress in conceptual thinking and theory 

development (Belovsky et al. 2004). 

     These trends in ecology are leading to increasing efforts aimed at providing better 

interdisciplinary integration of historical and modern advances in ecological concepts, themes 

and sub-disciplines (e.g. Nathan et al. 2008; Jones et al. 2010; Schmitz 2010, McCann 2012). 

These landmark efforts – books, review papers or special issues of journals – can become 

powerful tools to (1) synthesise a whole field of research, (2) frame it in a new paradigm, (3) 

consolidate it by overcoming taxonomic or methodological boundaries, (4) integrate it into 

broader understanding in ecology, (5) re-direct it to fill gaps of knowledge, (6) render it quickly 

available to non-specialists, and (7) provide better coordination of theoretical and empirical 

developments. 
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     Here, we offer a synthesis to stress the need for more holistic and integrative approaches to 

the study of top predators. This field of research is peculiar because of its traditional capability to 

attract the attention of scientific and popular audiences and to stimulate the development of 

general concepts in ecology since its early days (e.g. Leopold 1943; Pecharsky et al. 2008). 

However, the field also faces fragmentation into a myriad of disconnected sub-compartments, 

specialist groups and research agendas that pull it progressively farther apart. To counter such 

drift, we propose that researchers in this field expand their awareness of research on a wider 

variety of top predatory groups, and increase emphasis on the broader implications of their 

studies through more collaborative, multidisciplinary and cross-taxonomic approaches, as 

recently accomplished in other fields (e.g. Nathan et al. 2008; Jones et al. 2010). This process 

will strengthen current research on predation as a platform of general ecological interest and as a 

more formal, cohesive and cross-boundary field of enquiry that transcends ecology, evolution 

and behaviour of top predators, in an effort to understand the growing need to determine the 

capability of apex consumers to exert top-down forcing on lower trophic levels and how species 

that previously operated as mesopredators will function as top predators as food webs become 

flattened (Prugh et al. 2009, Estes et al. 2011, Ripple et al. 2014). 

     To place such issues and their importance into a broader context, in the next four sections we 

will: (1) define top predation; (2) provide a concise review of the history of research on top 

predation in order to highlight its traditional relevance to general ecology; (3) highlight the 

recurrent contribution of this field to the development of ecological theory; (4) demonstrate how 

top predation is receiving exponentially growing attention; and (5) suggest how to overcome the 

marked fragmentation suffered by this field of research, which may be seriously hindering 

progress. 

Defining top predation 

     We define top predators as those species that feed at or near the top of the food web of their 

supporting ecosystem (upper trophic level consumers) and that are relatively free from predation 



 

 5

once they reach their adult size. This definition mainly includes vertebrate predators such as 

large raptors, seabirds, herons, mammalian carnivores, cetaceans and pinnipeds, sharks and other 

large predatory fishes, as well as many large snakes, crocodiles and varanids. However, it also 

considers invertebrates in contexts in which they can exert substantial top-down forcing on lower 

trophic levels or that represent the highest trophic level in small-scale, simplified or 

anthropogenically degraded ecosystems (e.g. Schmitz et al. 2000; Griswold & Lounibos 2006; 

O’Donnel et al. 2007; Zeidberg & Robison 2007). These include species such as large 

cephalopods, spiders, predatory Coleoptera and Hymenoptera, and larval dytiscids and odonates. 

We further define “top predation” as: (i) the behavioural act of predation by top predators and its 

ecological consequences; and (ii) a field of research that studies all aspects of the ecology, 

evolution and behaviour of top predators. It is critical to note, however, that not all “top 

predators” included in the definition above (1) are completely free of predation risk themselves, 

and (2) may not be “top predators” throughout their life history or across all habitats they are 

found in. These distinctions are critical to studies of top predators since a failure to account for 

predation risk, even on large-bodied species considered top predators could lead to invalid 

assumptions about factors driving distributions, behaviour, and ecological interactions (e.g. 

Heithaus et al. 2012). 

 

A brief history of research on top predation and its contribution to general ecology 

 

Throughout the first half of the 20th century, research on top predators was scant and mainly 

based on paleontological or qualitative life history accounts. The major emphasis was on the role 

of these species as “vermin” or “pests”, because they were viewed as competitors of human 

beings that should be removed in order to enhance game populations or avoid destruction of 

livestock. In 1943 Aldo Leopold published an influential paper on the capability of top 

carnivores to limit populations of their ungulate prey, thus preventing them from causing habitat 
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degradation through excessive browsing of vegetation. This was one of the first reports of 

species at higher trophic levels structuring populations of species of lower trophic levels (i.e. top 

down control), with effects rippling through the ecosystem down to the lowest autotroph level 

(i.e. a three trophic-level effect, today defined as a “trophic cascade”). The paper was considered 

a landmark at the time and reported in several textbooks but, somehow, it failed to inspire further 

tests of its concepts in the coming decades (see Ripple & Beschta 2005). This failure may have 

been associated with the extinction of many top predators caused by direct control and indirect 

poisoning concentrating at higher trophic levels.  

     In the 1950s and 60s, studies of predator-prey dynamics resulted in three major theoretical 

advances. Holling (1959) developed conceptual advances by Solomon (1949) to formalise the 

type I, II and III functional responses of predators to changing prey abundance, which laid 

important foundations for the application of the famous Lotka-Volterra and other graphical 

predator-prey models (e.g. Rosenzweig & MacArthur 1963). These expanded the work of earlier 

ecologists (e.g. Nicholson & Bailey 1935) to predict coupled oscillations of predator and prey as 

an outcome of a top-down predatory interaction. The same period saw the birth of optimal 

foraging theory, which relied heavily on theoretical models of predators foraging for prey 

(MacArthur & Pianka 1966). Meanwhile, Hairston et al. (1960) proposed their “Green World 

Hypothesis” by which the world is green because predators limit herbivore populations, thus 

preventing them from over-consumption of the vegetation. This hypothesis was opposed by the 

“Plant Defence Hypothesis” by which the world is green because of an arms race between 

herbivores and plants, mediated by chemical warfare through toxic substances evolved by plants 

to avoid consumption. These hypotheses have prompted decades of discussion about the 

importance of bottom-up vs top-down structuring processes (Schmitz 2010). At the same time, 

Paine (1966) helped to initiate the experimental tradition in ecology in general, and predator-prey 

ecology in particular, by illustrating the concept of keystone predation as a community 

structuring agent. Some long-term population monitoring programs were initiated in this period 
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and later became landmark studies capable of integrating top predators as ecosystem components 

and structuring agents (e.g. studies of carnivores on Isle Royale, in the Serengeti and 

Yellowstone; c.f. Mech 1981; Sinclair & Arcese 1995; Clark et al. 1999). 

     In the 1970s, theoretical developments further highlighted the capability of top predators to 

structure lower trophic levels, to confer stability to model systems and to cause rapid ecosystem 

shifts between alternative stable states (Rosenzweig 1973; May 1973; May 1977). Such phase 

shifts were empirically demonstrated by a landmark study (Estes & Palmisano 1974) showing 

that the presence/absence of sea otter (Enhydra lutris) predation on herbivorous urchins could 

cause radical shifts in marine ecosystems between kelp forests and barren seascapes caused by 

excessive browsing. Even if much research funding still came from predator-control programs, 

this period saw a conceptual change of attitude from top vertebrate predators as vermin to 

endangered, conservation-sensitive species; and invertebrate (e.g. arthropods) predators as 

essential biological control agents of insect pests. This was paralleled by empirical emphasis on 

the effects of chemical contaminants and on the role of top predators as sentinels of ecosystem 

health (i.e. studies of bioamplification, e.g. Newton & Bogan 1974). 

     In the 1980s, there was a sea change in thinking, shifting from the “competition paradigm” of 

the 1960s-70s, to predation as an additional structuring agent, in large measure due to an 

influential review by Sih et al. (1985) and further theoretical and empirical studies (e.g. Oksanen 

et al. 1981; Erlinge et al. 1984; Carpenter & Kitchell 1988). Much work during this period 

focused on predator-prey relationships, population dynamics and social behaviour (e.g. Mech 

1981; MacDonald 1983; Erlinge et al. 1984). Meanwhile, two decades of investigation on 

foraging theory led to the first reviews and generalizations (e.g. Stephens & Krebs 1986). This 

also spawned further recognition that predation risk can shape the foraging ecology and life-

history of prey (Lima & Dill 1990) and the idea that predation risk alone can cause trophic 

cascades (Abrams 1984).  

     The 1990s saw a surge in studies of the ecological effects of predation risk (e.g., anti-predator 
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behaviour as an individual foraging cost, behaviour-mediated trophic cascades, BMTC) and, 

commensurately, growing recognition of the capacity of predators to influence their surroundings 

solely as agents of intimidation (Lima 1998). Interestingly, however, this idea failed to take hold 

in some major areas of research (e.g. many studies on large marine predators; Dill et al. 2003), 

further underscoring the need for a unified approach to studying top predation.  

     The new millennium has brought an astonishing flourish of studies on top predatory species 

and a rapid branching into so many research areas that enumerating them all would be 

impossible. Such ramification makes it already difficult to sketch a simple history of main 

conceptual advances for the last 20 years. Among the main trends, the “metapopulation 

paradigm” of the 1990s has inspired many powerful demonstrations of its application to large 

predators (e.g. Wootton & Bell 1992; Lahaye et al. 1994). This has directed much research 

towards spatial issues such as minimum habitat requirements, population viability analysis and 

the role of corridors for population persistence. Meanwhile, several studies have accumulated 

growing evidence of the capability of top predators to structure lower trophic levels, 

communities and even whole ecosystems, although the ubiquity of such effects and the 

conditions that promote them are still under debate (reviews in Schmitz et al. 2000, 2010; 

Terborgh & Estes 2010; Estes et al. 2011, Ritchie et al. 2012, Ripple et al. 2014). Furthermore, 

such increasing attention to interactions across trophic levels has encouraged a blooming of 

empirical studies on interactions also within the predatory trophic level, especially in the form of 

intraguild predation (reviews in Palomares & Caro 1999; Sergio & Hiraldo 2008; Ritchie & 

Johnson 2009). The application of spatial concepts to wide-ranging predators and the growing 

appreciation of their structuring ecosystem-role have progressively consolidated them as 

archetypes of large-scale conservation and ecosystem studies (e.g. Soulé & Terborgh 1999; Clark 

et al. 1999; Sergio et al. 2008). Further major trends in the last 20 years have included an 

increasing use of: (1) field-experiments for both ecological and behavioural investigations (e.g. 

Krebs et al. 1995; Korpimäki et al. 2004; Salo et al. 2010; Sergio et al. 2011); (2) semi-natural 
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experiments (e.g. introductions or accidental removal of top predators; e.g. Estes et al. 1998, 

Terborgh et al. 2001, Wallach et al. 2010, Beschta and Ripple 200?); (3) long-term datasets 

usually analysed to examine responses to global change (e.g. McLaren & Peterson 1994; 

Munson et al. 2008); (4) ever more multidisciplinary approaches and sophisticated technological 

devices, such as last generation GPS-satellite tags, geolocators and physiological-loggers (e.g. 

Cooke et al. 2004); (5) increasing focus on indirect measures of predator behaviour, necessitating 

heavy reliance on the aforementioned technology (e.g., pelagic marine systems) (Cooke et al. 

2004); and (6) recognition that there can be considerable individual specialization within top 

predator populations that leads to markedly different roles in ecosystems (e.g. Matich et al. 2011; 

Tinker et al. 2012; Rosenblatt et al. 2013). 

     A few generalities emerge from this brief historical excursion. (1) Since the early days of 

ecology, this area of investigation has been well integrated into major conceptual debates about 

the functioning of ecological systems, showing its recurrent importance to a broad scientific 

audience. (2) Like the rest of ecology, it has developed from a qualitative initial approach to an 

increasingly quantitative, data-intensive, theory-demanding mode of investigation. (3) In line 

with major trends in ecology, it has caused a shift from an early focus on bottom-up structuring 

processes (physical nutrient forcing) to increasing attention to biotic and behavioural  

interactions, exerted both between and within trophic levels (e.g. trophic cascades, mesopredator 

release, intraguild predation). (4) It is growing exponentially, and becoming increasingly 

experimental, technological and multidisciplinary. Finally, (5) since its inception, it has 

traditionally received much input from, and contributed heavily to, ecological theory, an aspect 

that we will expand in the next section. 

 

Research on top predation and theoretical ecology 

 

Research on top predation has been strongly intertwined with the development of two broad 
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areas of theoretical ecology: predator-prey theory and spatial ecology. Predator-prey theory is 

one of the most traditional branches of theoretical ecology and includes themes as diverse as 

predator-prey population dynamics, optimal foraging theory, food-web structure, top-down 

forcing, and trophic cascades. Studies and debates in this field have spanned several decades and 

produced a wide array of results. Among the most notable contributions, theory has shown the 

potential of top predation to: (1) generate coupled oscillations between predator and prey (e.g. 

Rosenzweig & MacArthur 1963; Jansen 2002); (2) improve the stability of trophic interactions, 

for example through cross-ecosystem subsidies mediated by the mobility and behavioural 

flexibility typical of large predators (May 1973; McCoy et al. 2009; McCann 2012); (3) impose 

shifts between alternative stable states (May 1977; Holt 2002); and (4) structure whole 

communities and ecosystems through top-down forcing and trophic cascades (e.g. Hairston et al. 

1960; Holt 2000).  

     In turn, this large body of literature has prompted a large number of empirical tests of the 

predictions generated by theoreticians (e.g. Boutin 1995; Soulé et al. 2003). The complexity, 

ramifications, broadness of interest and disputes that distinguish many of these research themes 

are epitomized by the protracted debate about the capability of predators to impart cycles to their 

prey. Already conceptualized through a verbal model 130 years ago (Forbes 1880), cycles of 

small mammals and grouse have been considered as the ecological signature of boreal 

ecosystems and are exemplified by the oscillations of snowshoe hares Lepus americanus in 

North America and voles in Fennoscandia (Krebs et al. 2001; Korpimäki et al. 2004). In both 

cases, decades of study have demonstrated the complexity of assessing causation in predator-

prey systems and the importance of a pluralistic approach integrating theoretical predictions, 

long-term observation and large-scale experimentation (e.g. Krebs et al. 2001; Gilg et al. 2003; 

Korpimäki et al. 2004). Current views integrate the effect of both bottom-up and top-down 

determinants of oscillations and their amplitude (e.g. Krebs et al. 1995, 2001; Korpimäki et al. 

2004). 
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     Research on top predators has also given and received much theoretical input in the area of 

spatial ecology. This includes several areas of investigation such as metapopulation theory, 

source-sink dynamics, ideal despotic models, and conservation applications in the form of 

habitat-connectivity, corridor-design and spatially-structured population viability analyses. An 

excellent example of integration between empirical and theoretical advances is offered by the 

implementation of theoretical metapopulation models to field demographic data on spotted owls 

(Strix occidentalis) (Lande 1988). Although focused on a single species, this paper was 

extremely influential by showing ecologists, theoreticians, managers and politicians that an 

ecological process (dispersal in increasingly fragmented landscapes) could drive a population to 

extinction. Strongly grounded in theory and good data, it inspired in turn many empirical, 

conceptual and theoretical developments (e.g. Doak & Mills 1994; Lahaye et al. 1994). This 

chain of events demonstrates how the strategic exploitation of the charismatic status of many top 

predators, coupled with solid science, can be powerful tools to attract broad attention in the 

scientific and popular media. Another example where theoretical spatial modelling has inspired 

or received inspiration from top predation research include work on Iberian lynx (Lynx 

pardinus), which has shown the interconnectedness of within- and between-patch movement and 

demography in determining metapopulation persistence (Revilla & Wiegand 2008) and, in turn, 

inspired theoretical models of broader applicability (i.e. not just to predatory species: Delibes et 

al. 2001). 

     It is often difficult to discern how much theoretical advances have promoted or been inspired 

by empirical findings. Decades of conceptual developments and empirical demonstrations of top-

down forcing and trophic cascades have inspired a flourishing of field-studies and conceptual 

models on their constituent mechanisms and side-effects. This includes work on intraguild 

predation (Holt & Polis 1997), on the effect of multiple predators on prey (Sih et al. 1998), on 

extinction-waves caused by predator-removal (Borrvall & Ebenman 2006), on predator control 

of ecosystem nutrient dynamics (Schmitz et al. 2010), on the interactive impact of predator 
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behaviour on prey escape tactics (Lima 2002), and on indirect, trait-mediated effects, such as the 

predation-landscapes generated by the “ecology of fear” (Abrams 2000; Brown and Kotler 

2004). 

     One of the most influential lessons taught by spatial research on vertebrate top predators to 

general ecology and conservation is that the wide-ranging mobility of these species functionally 

connects their population persistence to large-scale, multiple landscape components (e.g. Lande 

1988; Revilla & Wiegand 2008; Schmitz et al. 2010; McCann 2012). This imposes the necessity 

to “think large” to ensure long-term biodiversity preservation (Soulé & Terborgh 1999). In this 

sense, research on predation has been permeated by an intellectual tradition of incorporating a 

spatially broad and temporally long-term view, making the perspective an archetype for 

understanding and monitoring landscape change, and an ideal tool to “operationalize” decades of 

advances in theoretical ecosystem-level ecology (Minta et al. 1999; Lima 2002; Donlan et al. 

2006). Along the same line, many national parks are now managed at the “wider or greater 

ecosystem level” following the concept of the “Greater Yellowstone Ecosystem” framed in 

response to the challenge of preserving the wide-ranging grizzly bears of Yellowstone (Keiter et 

al. 1991). Such intellectual tradition is rooted in the many whole-ecosystem studies in which top 

predators figured prominently in their role in the ecosystems and as a focus of research. Notable 

examples are the research programs developed in the Serengeti, Yellowstone, Bialowieza, Isle 

Royale, and at sites of the Antarctic, arid coastal Chile, the boreal forests of Europe and 

America, and Shark Bay, Australia (e.g. Jaksic et al. 1993; McLaren & Peterson 1994; Sinclair & 

Arcese 1995; Jedrzejewska & Jedrzejewski 1998; Clark et al. 1999; Krebs et al. 2001; Korpimäki 

et al. 2004; Ainley 2007; Heithaus et al. 2012, Ripple and Beschta 2012). In all theses cases, top 

predators and their supporting ecosystems have been framed as interactive, cohesive components 

of a larger picture, and this has influenced the conceptual approach of other studies. 

     Finally, a further way in which research on top predators has contributed to theory and 

conceptual ecology is through exceptional landmark studies that have opened the way to major 
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advances in some fields, catalyzing further developments. For example, work on information-

transfer in anti-predator alarm calls and on social behaviour in coyotes (Canis latrans) has 

inspired decades of research on animal societies, communication and cognition (e.g. Seyfarth et 

al. 1980; Bekoff et al. 2002).  

     Based on the synthesis we have just described, the interaction between top predator research 

and theoretical ecology can be described as mutual and lively. The incorporation of theoretical 

predictions into empirical studies also seems to be increasing, exemplified by the growing 

number of books on top predators that incorporate theoretical chapters and sections (e.g. Clark et 

al. 1999; Ray et al. 2005; Schmitz 2010; Terborgh & Estes 2010). This may have been further 

promoted by the increasing complexity, multidisciplinarity and technological sophistication of 

studies on top predators, typical of an expanding field of research.  

 

Top predation as an expanding field of research 

 

The recent growth and popularity of studies on top predators is probably promoted by their 

highly interactive nature, their capacity to trigger top down effects on both herbivores and 

mesocarnovores, their ability to act as conservation umbrellas or as indicators of ecosystem 

health, and the value of their charisma to raise funds and attention. Furthermore, their role in 

ecosystems is receiving increasing attention given the growing emphasis in general ecology on 

the ecosystem-structuring capabilities of highly interactive species, such as many top predators 

(review in Schmitz 2010; Terborgh & Estes 2010; Ritchie et al. 2012,Ripple et al. 2014). As a 

result, “predator-prey interactions” have become one of the trendy-fields in general ecology 

(Nobis & Wohlgemuth 2004). Indeed, there has been an exponential rise in the annual 

percentage of papers using the word “top, apex or super predator” out of the annual total of 

papers produced in the area of ecology between 1970 and 2010 (Fig. 1). Such a growing share 

may bring a mix of good and bad news. On one hand, it implies a mounting interest by the 
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scientific community for this functional group of species, increasingly seen as suitable models 

for ecological research of broad interest. On the other hand, with several hundreds of papers 

published in their field every year, scholars face a publication output that growingly overwhelms 

their capability to absorb it, an “information avalanche” already noted in ecology (Bartholomew 

1986). As shown over and over in ecology (e.g. Graham & Dayton 2002, Fisher et al. 2012), 

such literature expansion leads to an impoverishment in creativity and innovation, and typically 

leads to growing fragmentation into specialized, disconnected groups. Such fragmentation is 

already apparent in top predator research. 

     

Fragmentation of research on top predation  

 

Current research on top predators is fragmented in disconnected subfields mainly by taxonomy. 

Taxonomic groups such as birds of prey, mammalian carnivores, predatory fishes, seabirds or 

invertebrate predators are characterized by a rich history of study, but each one with different 

dominant themes and strongholds. Thus, for example, spatial organization and predator-prey 

relations via intensive radio-tracking has been the traditional stronghold of mammalian carnivore 

research, while biological control has pervaded the literature on top predatory arthropods. This 

heterogeneity risks the development of subfields as though they have their own unique 

theoretical constructs and methodology. 

     Growing heterogeneity is confirmed by a review of the recent literature. Figure 2 shows all 

the papers published in the last five years (2006-2010) using the words “top or apex or super-

predator” in the title or abstract according to the Zoological Record. Publications were classified 

as belonging to four broad areas of research: top-down forcing; general natural history and 

demography; conservation and management; and eco-toxicology. A snapshot of recent research 

shows a disconcerting trend of different research agendas for different taxonomic groups. For 

example, research on carnivores and top predatory invertebrates is strongly dominated by studies 
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on top-down forcing, such as trophic cascades and predator-prey relationships (Fig. 2). 

Investigation of marine top predators mostly focuses on general demography and conservation 

(Fig. 2), such as the globally generalised fishing-down of food-webs by industrial fisheries. 

Finally, eco-toxicological analyses occupy a relevant share of research on raptors, reptiles and 

freshwater top predators, but appear overlooked by mammalian carnivore and invertebrate 

biologists (Fig. 2). Furthermore, 14% of the 557 papers categorized in Figure 2 report 

invertebrate taxa as top predators, whereas vertebrate ecologists often discount them as potential 

upper-level consumers that could have significant effects on ecosystems. Such segregation by 

taxonomic sub-sectors is problematic because it discourages cross-fostering of complementary 

perspectives and ideas. For example, it is often difficult to experimentally test theory over the 

vast landscapes that apex predators exert their influence. Studies of invertebrate predators can 

thus provide important proofs of concept that can be extrapolated to larger-scale systems 

(Schmitz 2010). Mesocosm experiments revealing state-dependent risk-taking by tadpoles under 

threat from invertebrate predators served as the basis for theoretical simulations which predicted 

that a decline in near-surface fish-prey would induce vertebrate pinnipeds to increase their risk-

taking by making deeper foraging dives, thereby incurring higher predation by deep-dwelling 

sharks (Frid et al. 2009 and references therein). Overall, fragmentation into specialized sub-fields 

may lead to distorted or biased perspectives due to unavoidable biased representation of certain 

taxa in the scientific data.  

     Furthermore, when focusing on specific research areas, two trends are apparent. (1) Some 

themes have been researched intensively by specialists of one taxonomic group but not others, 

who are often completely unaware of them. The idea of trophic cascades has received enormous 

attention by mammalian, invertebrate and marine biologists but has only very recently been 

discovered by raptor ecologists (e.g. Schmidt 2006; Ydenberg et al. 2007). The same applies to 

the “greater ecosystem” concept, which is widely used in mammalian and marine carnivore 

research, but does not appear widely in the lexicon and work on other taxa. Similarly, use of 
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predators to evaluate pollution effects in ecosystems (e.g., details of bioaccumulation of 

pesticides in the raptor and heron “DDT-saga” of the 1960-70s) are often not considered by 

carnivore or invertebrate researchers. (2) In other cases, the same research theme has been 

developed in parallel in different taxonomic groups but in a completely independent manner. For 

example, intraguild predation, prey limitation by the predator, and alternative stable states are 

usually treated by mammalian carnivore research with little or no attention to other taxa (e.g. 

raptors, or invertebrates) and viceversa (e.g. Polis & Holt 1992; Palomares & Caro 1999; Sergio 

& Hiraldo 2008). Clearly, lessons from one subfield often do not penetrate the others, hindering 

progress. 

     The results expected from this fragmentation are visible, for example, in claims by carnivore 

researchers of a lack of landscape-level studies (Minta et al. 1999), which are common in raptors, 

and in complaints by raptor researchers about the scarcity of intraguild predation studies (Sergio 

& Hiraldo 2008), which abound for carnivores and invertebrates. It is common to see research 

teams working at the same site on different taxonomic groups with minimum or no connection. 

The irony is that, while researchers do not interact, their study species surely and regularly do 

(e.g. Jaksic 1981). Thus, we hear of eagles limiting fox populations or changing diet in response 

to carnivore ecosystem-effects, of bears affecting the breeding performance of crocodilians, and 

of raptorial birds becoming cyclic in response to the oscillations of their grouse prey, in turn 

imposed by carnivore predation (Hunt & Ogden 1991; Newton 1998; Roemer et al. 2002; 

Anthony et al. 2008). However, studies that integrate multiple top predatory groups are still 

scarce, especially for the terrestrial realm (e.g. Prugh et al. 2007; Wirsing & Ripple 2009). 

Finally, fragmentation into subfields is accentuated by further specializations within each 

taxonomic group of expertise (e.g. experts in the movement ecology of carnivores, in the eco-

toxicology of waterbirds, in invertebrate pest control, etc). All the above issues take us back to 

the precipice of canalization, i.e. scientific myopia, erasure of history, lack of information 

circulation, recycling and reinventing of ideas (Graham & Dayton 2002).  
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Where do we go from here? 

 

Research on predation provides regular contributions to general ecology and is a rapidly 

expanding, increasingly experimental, multidisciplinary and technological field of research. It is 

well grounded in theoretical ecology and in whole-ecosystem studies, it yields regular 

applications for conservation, but is subject to an “information avalanche” coupled with rapid 

fragmentation into specialized, disconnected compartments. Meanwhile, while we learn that top 

predators are frequently the strong interactors much needed to forecast and restore ecosystem 

deterioration (e.g. Soulé et al. 2003; Donlan et al. 2006, Ritchie et al. 2012), these same species 

are rapidly declining with unknown ecological consequences (e.g. Myers & Worm 2003; Ainley 

2007; Terborgh & Estes 2010; Ferretti et al. 2010; Estes et al. 2011; Ripple et al. 2014). Clearly, 

synthetic episodes capable of better integrating past and future theoretical and empirical 

developments and of instilling higher communication among scientists would return 

cohesiveness and generality to a rapidly disaggregating field. We propose four actions that are 

essential priorities to the goal of unifying and formalising research on top predation into a 

cohesive area of investigation of broader ecological interest. 

     (Action 1) Reviews. Reviews can be powerful, trend-setting tools, and could promote strong 

shifts in attitude, awareness and approach by scholars in top predation. Reviews that succeed in 

integrating knowledge from different predatory groups in a cohesive and convincing way could 

set the right example and go a long way towards the consolidation of more holistic approaches. 

We believe that the time is perfect for such accomplishment. In a few years, we consider that the 

literature will have expanded so much that providing a thorough synthesis integrating past and 

current developments will be virtually impossible. Holyoak et al. (2008) give a good example of 

a field where publication overload already prevents a comprehensive synthesis and enforces 

reviews based on random sub-sampling of the literature.  
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     (Action 2) Conceptual, forum essays. A series of conceptual, forum papers, such as the one 

presented here, could draw the attention of the scientific community towards unifying themes 

that may communicate the need for more cohesive, collaborative and multidisciplinary 

approaches (see Rotjan and Idjadi 2013 as a good example of an integrative attempt). 

Quantitative bibliographic analyses could be supporting tools to summarize the current state of 

the art for this field, propose ideas and highlight areas in need of expansion. Ideally, the ultimate 

goal of this action could be a formal proposition of a quantitative unifying paradigm, as 

accomplished in other research areas (e.g. Nathan et al. 2008; Jones et al. 2010). Given the 

diversity of top predation, it may be difficult to obtain consensus on a single framework, as 

witnessed in other fields (e.g. Jones et al. 2010). However, its proposition alone could lead to 

important debate and reinforce the need for cooperation, cross-taxonomic awareness and 

cohesiveness.  

     (Action 3) Fostering dialog and collaboration: overcoming the vertebrate-invertebrate 

dichotomy. In our experience, many researchers of top predation live their studies in the 

conscious or unconscious conviction that their study species is THE top predator of the 

ecosystem, as if the (supposed) “king-role” of their species translated into some higher status of 

the researcher.  Such approach sets a stage of unproductive competition and scepticism rather 

than interest and collaboration among scientists working on different taxonomic groups. In turn, 

this hinders the circulation of ideas and increases fragmentation. Breaking the wall of this 

“collaboration inertia” will be paramount for the acquisition of ecological generalities about top 

predation that are truly general, i.e. valid across taxonomic groups. For example, trophic 

cascades have been demonstrated in a large number of studies on mammal, fish and invertebrate 

predators, but only in a handful of studies on reptiles or birds of prey (Schmitz et al. 2000; 

Terborgh & Estes 2010). We believe that this is not because raptors or reptiles are incapable of 

triggering cascades (e.g. Schmidt 2006; Ydenberg et al. 2007, Sutherland et al. 2011). It is only 

because excessive specialization, fragmentation and low circulation of ideas have somehow 
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prevented, until only very recently, raptor and reptile specialists from being part of the enormous 

advancements that were being operated by mammal, fish and invertebrate ecologists.  

     Cross-taxonomic absence of interaction probably reaches its utmost levels when considering 

specialists of vertebrate and invertebrate top predatory species. This is a major flaw in our 

research system for three reasons. First, the two groups may equally well act as top predators 

depending on the scale and characteristics of the ecosystem under study. For example, upon 

close inspection, few vertebrate ecologists would doubt that 50 kg squids can be currently top 

predators over vast areas of a trophically degraded ocean, that army ants can exert major top-

down forcing in tropical forests, or that a larval dipteran or mosquito can be the top predator of a 

miniaturised tree-hole community (Griswold & Lounibos 2006; O’Donnel et al. 2007; Zeidberg 

& Robison 2007). Second, the two groups may function in profoundly different manners, 

offering stronger scope to reach emergent generalities on the ecology of top predation. For 

example, most invertebrates present complex life cycles with major ontogenetic shifts in trophic 

role, a concept that has been widely overlooked for their vertebrate counterparts (except fish). 

This could be exploited as a rich source of hypotheses in the search for ecological generalities 

rather than a cause of divide. For example, terrestrial vertebrates specialists could test whether 

their study subjects present similar ontogenetic variation in top predatory role, though mediated 

by different mechanisms (e.g. age-related changes in size or improvements in hunting skills, as 

shown by several shark studies; review in Grubbs 2010). Finally, invertebrate taxa are much 

more amenable to experimentation than large vertebrates. For example, as an extreme example, 

when will be the next time that 100 killer whales (Orcinus orca) are removed and the responses 

of prey are noted (e.g. Ainley et al. 2010)? Again, instead of discounting such manipulations for 

reasons of scale and extrapolation, experiments on invertebrates could be used as tools to (i) 

provide mechanistic, experimental tests of theoretical concepts that are impossible or unethical to 

perform on vertebrates (e.g., Schmitz et al. 1997), or (ii) formulate working hypotheses that are 

then tested on vertebrates through natural experiments or more correlational analyses (e.g. Frid et 
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al. 2009, Burkholder et al. 2013). Cross-taxonomic concordance of results across such sequential 

tests would imply a high degree of confidence in emergent conclusions, leading to more solid 

generalisations (e.g. Schmitz 2006b, Heithaus et al. 2008a,b, Wirsing and Ripple 2009). In sum, 

higher integration of cross-taxonomic scientists would bring major benefits in term of research 

realism, strength of conclusions, and broadness of implications.  

     In our view, the way ahead is to actively encourage scientists working on different groups to 

meet each other. This could be achieved by organizing generalised conferences on top predators, 

where researchers from all groups, realms and fields are actively invited to participate. 

Alternatively, key specialists of one taxonomic group could be invited to give review talks at 

specialized congresses of other groups.  

     (Action 4) Exemplary case studies. Researchers setting up future programs could promote 

enormous advancement by setting up collaborative, cross-taxonomic studies that render 

examples of the importance of unifying approaches. A good example in this context is the 

articulate, long-term study on the trophic cascades triggered by sea otters. A series of sequential 

analyses on this system showed that killer whale predation could affect the capability of sea 

otters to trigger a trophic cascade capable of structuring the whole ecosystem configuration, with 

repercussions on the diet and foraging mode of top predatory species from other groups, such as 

eagles (e.g. Estes et al. 1998; Anthony et al. 2008; Estes et al. 2011). Future case studies could 

further focus on the competitive and predatory interactions occurring among predatory species 

from different taxonomic groups (e.g. carnivores and invertebrates). Ideally, such case studies 

could promote further progress by focusing on groups that have received less research attention, 

such as reptiles (Sutherland et al. 2011).  

 

Conclusion 

 

The above four actions would compose a flexible, cross-taxonomic and collaborative strategy. Its 
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ambitious scope is unlikely to be attained by a single researcher or research team. Instead, it will 

depend on the collective effort by all scholars in this field, potentially propelled by good 

examples and increased awareness for the need of more holistic approaches.  We hope that this 

note will help to promote such awareness. 

 

References 

Abrams, P.A. (1984). Foraging time optimization and interactions in food webs. Am. Nat., 124, 

80-96. 

Abrams, P.A. (2000). The evolution of predator-prey interactions: theory and evidence. Annu. 

Rev. Ecol. Evol. Syst., 31, 79-105. 

Ainley, D.G. (2007). Insights from study of the last intact neritic marine ecosystem. Trends Ecol. 

Evol., 22, 444-445. 

Ainley, D.G., Ballard, G., Blight, L.K., Ackley, S., Emslie, S.D., Lescroël, A. et al. (2010). 

Impacts of cetaceans on the structure of southern ocean food webs. Mar. Mammal Sci., 26, 

482-489. 

Anthony, R.G., Estes, J.A., Ricca, M.A., Miles, A.K. & Forsman, E.D. (2008). Bald eagles and 

sea otters in the Aleutian archipelago: indirect effects of trophic cascades. Ecology, 89, 2725-

2735. 

Bartholomew, G.A. (1986). The role of natural history in contemporary biology. BioScience, 36, 

324-329. 

Bekoff, M., Allen, C. & Burghardt, G.M (eds.) (2002). The cognitive animal: empirical and 

theoretical perspectives on animal cognition. Massachusetts Institute of Technology, 

Cambridge, USA. 

Belovski, G.E., Botkin, D.B., Crowl, T.A., Cummins, K.W., Franklin, J.F., Hunter Jr, M.L. et al. 

(2004). Ten suggestions to strengthen the science of ecology. BioScience, 54, 345-351. 

Beschta, R.L. & Ripple, W.R. (2009). Large predators and trophic cascades in terrestrial 



 

 22

ecosystems of the western United States. Biological Conservation, 142: 2401-2414. 

Borrvall, C. & Ebenman, B. (2006). Early onset of secondary extinctions in ecological 

communities following the removal of top predators. Ecol. Lett., 9, 435-442. 

Boutin, S. (1995). Testing predator-prey theory by studying fluctuating populations of small 

mammals. Wildl. Res., 22, 89-99. 

Brown, J.S. & Kotler, B.P. (2004). Hazardous duty pay and the foraging cost of predation. 

Ecology Letters, 7, 999-1014. 

Burkholder, D.A., Heithaus, M.R., Fourqurean, J.W., Wirsing, A. & Dill, M.L. (2013). Patterns 

of top-down control in a seagrass ecosystem: could a roving apex predator induce a 

behaviour-mediated trophic cascade? J. Anim. Ecol., DOI: 10.1111/1365-2656.12097. 

Carpenter, S.R. & Kitchell, J.F. (1988). Consumer control of lake productivity. BioScience, 38, 

764-769. 

Clark, T.W., Curlee, A.P., Minta, S.C. & Kareiva, P.M. (eds.) (1999). Carnivores in ecosystems: 

the Yellowstone experience. Yale University Press, New Haven, USA. 

Cooke, S.J., Hinch, S.C., Wikelski, M., Andrews, D.R., Kuchel, L.J., Walcot, T.G. et al. (2004). 

Biotelemetry: a mechanistic approach to ecology. Trends Ecol. Evol., 19, 334-343. 

Delibes, M., Gaona, P. & Ferreras, P. (2001). Effects o fan attractive sink leading into 

maladaptive habitat selection. Am. Nat., 158, 277-285. 

Dill, L.M., Heithaus, M.R. & Walters, C.J. (2003). Behaviorally mediated indirect interactions in 

marine communities and their conservation implications. Ecology, 84, 1151-1157. 

Doak, D.F. & Mills, L.S. (1994). A useful role for theory in conservation. Ecology, 75, 615-626. 

Pleistocene rewilding: an optimistic agenda for 21st century conservation. Am. Nat., 168, 660-

681. 

Erlinge, S., Göransson, G., Högstedt, G., Yansson, G., Liberg, O., Loman, J. et al. (1984). Can 

vertebrate predators regulate their prey? Am. Nat., 123, 125-133. 

Estes, J.A. & Palmisano, J.F. (1974). Sea otters: their role in structuring nearshore communities. 



 

 23

Science, 185, 1058-1060. 

Estes, J.A., Terborgh, J., Brashares, J.R., Power, M.E., Berger, J., Bond, W.J. et al. (2011). 

Trophic degrading of planet earth. Science, 333, 301-306. 

Estes, J.A., Tinker, M.T. & Doak, D.F. (1998). Killer whale predation on sea otters linking 

oceanic and nearshore systems. Science, 282, 473-476. 

Ferretti, F., Worm, B., Britten, G.R., Heithaus, M.R. & Lotze, H.K. 2010. Pattern and ecosystem 

consequences of shark declines in the oceans. Ecol. Lett., 13, 1055-1071. 

Fisher, J., Ritchie, E.G. and Hanspach, J. 2012. Academia’s obsession with quantity. Trends in 

Ecology & Evolution 27: 473-474. 

Forbes, S.A. (1880). On some interactions of organisms. Bull. Ill. State Lab. Nat. Hist., 1, 13-17. 

Frid, A. et al.  (2009). Predicting synergistic effects of resources and predators on foraging 

decisions by juvenile Steller sea lions. Oecologia, 158, 775–786. 

Gilg, O., Hanski, I. & Sittler, M. (2003). Cyclic dynamics in a simple predator-prey system. 

Science, 302, 866-868. 

Graham, M.H. & Dayton, P.K. (2002). On the evolution of ecological ideas: paradigms and 

scientific progress. Ecology, 83, 1481-1489. 

Griswold, M.W. & Lounibos, L.P. (2006). Predator identity and additive effects in a treehole 

community. Ecology 87:987–995. 

Grubbs, R.D. 2010. Ontogenetic shifts in movements and habitat use. In Carrier, J. C., J. Musick, 

M. R Heithaus (eds.) Sharks and Their Relatives II: Biodiversity, adaptive physiology, and 

conservation. CRC Press pp 319-350. 

Hairston, N.G., Smith, F.E. & Slobodkin, L.B. (1960). Community structure, population control, 

and competition. Am. Nat., 94, 421-425. 

Heithaus, M.R., Frid, A., Wirsing, A.J. & Worm, B. (2008a). Predicting ecological consequences 

of marine top predator declines. Trends Ecol. Evol., 23, 202-210. 

Heithaus, M.R., Wirsing, A.J., Burkholder, D., Thomson, J. & Dill, L.M. (2008b). Towards a 



 

 24

predictive framework for predator risk effects: the interaction of landscape features and prey 

escape tactics. J. Anim. Ecol., 78, 556-562. 

Heithaus, M.R., Wirsing, A.J., & Dill, L.M. (2012). The ecological importance of intact top-

predator populations: a synthesis of 15 years of research in a seagrass ecosystem. Marine and 

Freshwater Research, 63, 1039-1050. 

Holling, C.S. (1959). Some characteristics of simple types of predation and parasitism. Can. 

Entomol., 91, 385-398. 

Holt, R.D. (2000). Trophic cascades in terrestrial systems: reflections on Polis et al. Trends Ecol. 

Evol., 15, 444-445. 

Holt, R.D. (2002). Food webs in space: on the interplay of dynamic instability and spatial 

processes. Ecol. Res., 17, 261-273. 

Holt, R.D. & Polis, G.A. (1997). A theoretical framework for intraguild predation. Am. Nat., 149, 

745-764. 

Holyoak, M., Casagrandi, R., Nathan, R., Revilla, E. & Spiegel, O. (2008). Trends and missing 

parts in the study of movement ecology. Proc. Natl. Acad. Sci. USA, 105, 19060-65. 

Hunt, R.H. & Ogden, J.J. (1991). Selected aspects of the nesting ecology of American alligators 

in the Okefenokee Swamp. J. Herpetol., 25, 448-453. 

Jaksic, F.M. (1981). Abuse and misuse of the term “guild” in ecological studies. Oikos, 37, 397-

400. 

Jaksic, F.M., Feinsinger, P. & Jiménez, J.E. (1993). A long-term study of the dynamics of guild 

structure among predatory vertebrates at a semi-arid Neotropical site. Oikos, 67, 87-96. 

Jansen, V.A.A. (2002). The dynamics of two diffusively coupled predator-prey populations. 

Theor. Popul. Biol., 59, 119-131. 

Jedrzejewska, B. & Jedrzejewski, W. (1998). Predation in vertebrate communities: the 

Bialowieza Primeval Forest as a case study. Springer, Berlin. 

Jones, C.G., Gutiérrez, J.L., Byers, J.E., Crooks, J.A., Lambrinos, J.G. & Talley, T.S. (2010). A 



 

 25

framework for understanding physical engineering by organisms. Oikos, 119, 1862-1869. 

Keiter, R.B. & Boyce, M.S. (Eds) (1991). The greater Yellowstone ecosystem: redefining 

America’s wilderness heritage. Yale University Press, New Haven. 

Korpimäki, E., Brown, P.R., Jacob, J. & Pech, R.P. (2004). The puzzles of population cycles and 

outbreaks of small mammals solved? BioScience, 54, 1071-1079. 

Krebs, C.J., Boutin, S., Boonstra, R., Sinclair, A.R.E., Smith, J.N.M., Dale, M.R.T. et al. (1995). 

Impact of food and predation on the snowshoe hare cycle. Science, 269, 1112-1115. 

Krebs, C.J., Boutin, S.A. & Boonstra, R. (2001). Ecosystems dynamics of the boreal forest: the 

Kluane project. Oxford University Press, Oxford. 

Kuhn, T.S. (1962). The structure of scientific revolutions. University of Chicago Press, Chicago. 

Lahaye, W.S., Gutiérrez, R.J. & Akcakaya, H.R. (1994). Spotted owl metapopulation dynamics 

in Southern California. J. Anim. Ecol., 63, 775-785. 

Lande, R. (1988). Demographic models of the northern spotted owl (Strix occidentalis caurina). 

Oecologia, 75, 601-607. 

Leopold, A. (1943). Deer irruptions. Trans. Wis. Acad. Sci. Arts Lett., 35, 351-366. 

Lima, S.L. (1998). Stress and Decision Making under the Risk of Predation: Recent 

Developments from Behavioral, Reproductive, and Ecological Perspectives. Advances in the 

Study of Behavior, 27, 215-190. 

Lima, S.L. (2002). Putting predators back into behavioural predator-prey interactions. Trends 

Ecol. Evol., 17, 70-75. 

Lima S.L. & Dill, L.M. (1990). Behavioral decisions made under the risk of predation: a review 

and prospectus. Can J. Zool., 68, 619-640. 

MacArthur, R.H. & Pianka, E.R. (1966). On optimal use of a patchy environment. Am. Nat., 100, 

603-609. 

Macdonald, D.W. (1983). The ecology of carnivore social behaviour. Nature, 301, 379-384. 

Matich, P., Heithaus, M.R. & Layman, C.A. (2011). Contrasting patterns of individual 



 

 26

specialization and trophic coupling in two marine apex predators. J. Anim. Ecol., 80, 294-

305. 

May, R.M. (1973). Stability and complexity in model ecosystems. Princeton University Press, 

Princeton. 

May, R.M. (1977). Thresholds and breakpoints in ecosystems with a multiplicity of stable states. 

Nature, 269, 471-477. 

McCann, K.S. (2012). Food webs. Princeton University Press. 

McCoy, M.W., Barfield, M. & Holt, R.D. (2009). Predator shadows: complex life histories as 

generators of spatially patterned indirect interactions across ecosystems. Oikos, 118, 87-100. 

McLaren, B.E. & Peterson, R.O. (1994). Wolves, moose, and tree rings on Isle Royale. Science, 

266, 1555. 

Mech, L.D. (1981). The wolf: the ecology and behaviour of an endangered species. University of 

Minnesota Press, Minneapolis. 

Minta, S.C., Kareiva, P.M. & Curlee, A.P. (1999). Carnivore research and conservation: learning 

from history and theory. In: Carnivores in ecosystems: the Yellowstone experience (eds. 

Clark, T.W., Curlee, A.P., Minta, S.C. & Kareiva, P.M.). Yale Univ. Press, New Haven, pp. 

323-404. 

Munson, L. et al. (2008). Climate extremes promote fatal co-infections during canine distemper 

virus epidemics in African lions. PLoS ONE, 3(6), e2545.  

Myers, R.A. & Worm, B. (2003). Rapid worldwide depletion of predatory fish communities. 

Nature, 423, 280-283. 

Nathan, R., Getz, W.M. Revilla, E., Holyoak, M., Kadmon, R., Saltz, D et al. (2008). A 

movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. 

Sci. USA, 105, 19052-19059. 

Newton, I. (1998). Population limitation in birds. Academic Press, London. 

Newton, I. & Bogan, J. (1974). Organochlorine residues, eggshell thinning and hatching success 



 

 27

of British sparrowhawks. Nature, 249, 582-583. 

Nicholson, A.J., and Bailey, V.A. (1935). The balance of animal populations. Part 1. P. Zool. 

Soc. Lond. B-SY, 3, 551-598. 

Nobis, M. & Wohlgemuth, T. (2004). Trend words in ecological core journals over the last 25 

years (1978-2002). Oikos, 106, 411-421. 

O’Donnell, S., Lattke, J., Powell, S. & Kaspari, M. (2007). Army ants in four forests: geographic 

variation in raid rates and species composition. J. Anim. Ecol., 76, 580-589. 

Oksanen, L., Fretwell, S.D., Arruda, J. & Niemela, P. (1981). Exploitation ecosystems in 

gradients of primary productivity. Am. Nat., 118, 240-261. 

Paine, R.T. (1966). Food web complexity and species diversity. Am. Nat., 100, 65-75. 

Palomares, F. & Caro, T.M. (1999). Interspecific killing among mammalian carnivores. Am. 

Nat., 153, 492-508. 

Peckarsky, B.L., Abrams, P.A., Bolnick, D.I., Dill, L.M., Grabowski, J.H., Luttbeg, B. (2008). 

Revisiting the classics: considering nonconsumptive effects in textbook examples of 

predator-prey interactions. Ecology, 89, 2416-2425. 

Polis, G.A. & Holt, R.D. (1992). Intraguild predation: the dynamics of complex trophic 

interactions. Trends Ecol. Evol., 7, 151-154. 

Prugh, L.R., Stoner, C.J., Epps, C.W., Bean, W.T., Ripple, W.J., Laliberte, A.S. et al. (2009). 

The rise of the mesopredator. BioScience, 59, 779-791. 

Ray, J.C., Redford, K.H., Steneck, R.S. & Berger, J. (eds.) 2005. Large carnivores and the 

conservation of biodiversity. Island Press, Chicago. 

Revilla, E. & Wiegand, T. (2008). Individual movement behaviour, matrix heterogeneity, and the 

dynamics of spatially structured populations. Proc. Natl. Acad. Sci. USA, 105, 19120-19125. 

Ripple, W.J. & Betscha, R.L. (2005). Linking wolves and plants: Aldo Leopold and trophic 

cascades. BioScience, 55, 613-621. 



 

 28

Ripple, WJ, and RL Beschta (2012). Trophic cascades in Yellowstone: the first 15 years after 

wolf reintroduction. Biological Conservation, 145: 205-13. 

Ripple W.J., Estes, J.A., Beschta, R.L. Wilmers, C.C., Richie, E.G., Hebblewhite, M., et al. 

(2014). Status and ecological effects of the world’s largest carnivores. Science. In press. 

Ritchie, E. G., Elmhagen, B.,  Glen, A.S., Letnic, M., Ludwig, G. and McDonald, R.A. 2012. 

Ecosystem restoration with teeth: what role for predators? Trends in Ecology & Evolution 

27: 265-271. 

Ritchie, E.G. & Johnson, C.N. (2009). Predatory interactions, mesopredator release and 

biodiversity conservation. Ecol. Lett., 12, 982-998. 

Roemer, G.W., Donlan, C.J. & Courchamp, F. (2002). Golden eagles, feral pigs, and insular 

carnivores: how exotic species turn native predators into prey. Proc. Natl. Acad. Sci. USA, 

99, 791-796. 

Rosenblatt, A.E. Heithaus, M.R., Mather, M.E., Matich, P., Nifong, J.C., Ripple, W.J. & 

Siliman, B.R.(2013).  Coastal top predators and long-term ecological research.  

Oceanography, 26, 108-119. 

Rosenzweig, M.L. (1973). Exploitation in three trophic levels. Am. Nat., 107, 275-294. 

Rosenzweig, M.L. & MacArthur, R.H. (1963). Graphical representation and stability conditions 

of predator-prey interactions. Am. Nat., 97, 209-223. 

Rotjan, R.D. & Idjadi, J. (2013). Surf and Turf: Toward better synthesis by cross-system 

understanding. Oikos, 122, 285-287. 

Salo, P., Banks, P.P., Dickman, C.R. & Korpimäki, E. (2010). Predator manipulation 

experiments: impacts on populations of terrestrial vertebrate prey. Ecol. Mon., 80, 531-546. 

Schmidt, K.A. (2006). Non-additivity among multiple cues of predation risk: a behaviorally-

driven trophic cascade between owls and songbirds. Oikos, 113, 82-90. 

Schmitz, O.J. (2006b). Scaling from plot experiments to landscapes: studying grasshoppers to 

inform forest management. Oecologica, 145, 225-234. 



 

 29

Schmitz, O.J. (2010). Resolving ecosystem complexity. Princeton Univ. Press. 

Schmitz, O.J., Hambäck, P.A. & Beckerman, A.P. (2000). Trophic cascades in terrestrial 

ecosystems: a review of the effects of carnivore removals on plants. Am. Nat., 155, 141-53. 

Schmitz, O.J., Hawlena, D. & Trussel, G.C. (2010). Predator control of ecosystem nutrient 

dynamics. Ecol. Lett., 13, 1199-1209. 

Schmitz, O. J., Beckerman, A. P., & O’Brien, K. M. (1997). Behaviorally mediated trophic 

cascades: effects of predation risk on food web interactions. Ecology, 78, 1388-1399. 

Sergio, F. & Hiraldo, F. (2008). Intraguild predation in raptor assemblages: a review. Ibis, 150, 

132-145. 

Sergio, F., Newton, I. & Marchesi, L. (2005). Top predators and biodiversity. Nature, 436, 192. 

Sergio, F., Caro, T., Brown, D., Clucas, B., Hunter, J., Ketchum, J. et al. (2008). Top predators 

as conservation tools: ecological rationale, assumptions and efficacy. Annu. Rev. Ecol. Evol. 

Syst., 39, 1-19. 

Sergio, F., Blas, J., Blanco, G., Tanferna, A., López, L., Lemus, J.A., Hiraldo, F. (2011). Raptor 

nest decorations are a reliable threat against conspecifics. Science, 331, 327-30. 

Seyfarth, R.M., Cheney, D.L. & Marler, P. (1980). Vervet monkey alarm calls: semantic 

communication in a free-ranging primate. Anim. Behav., 28, 1070-1094. 

Sih, A. et al. (1985). Predation, competition, and prey communities. Annu. Rev. Ecol. Evol. Syst., 

16, 269-311. 

Sih, A., Englund, G. & Wooster, D. (1998). Emergent impacts of multiple predators on prey. 

Trends Ecol. Evol., 13, 350-355. 

Sinclair, A.R.E. & Arcese, P. (eds.) (1995). Serengeti II: dynamics, management, and 

conservation of an ecosystem. University of Chicago Press, Chicago. 

Solomon, M.E. (1949). The natural control of animal populations. J. Anim. Ecol., 18, 1-35. 

Soulé, M., Estes, J.A., Berger, J. & Martinez del Rio, C. 2003. Ecological effectiveness: 

conservation goals for interactive species. Cons. Biol., 17, 1238-1250. 



 

 30

Soulé, M.E. & Terborgh, J. (1999) Continental conservation: scientific foundations of regional 

reserve networks. Island Press, Washington. 

Stephens, D.W. & Krebs, J.R. (1986). Foraging theory. Princeton University Press, Princeton. 

Sutherland, D. R., Glen, A.S. and De Tores, P.J. 2011. Could controlling mammalian carnivores 

lead to mesopredator release of carnivorous reptiles? Proceedings of the Royal Society B: 

Biological Sciences 278: 641-648. 

Terborgh, J. & Estes, J.A. (Eds) (2010). Trophic cascades: predators, prey, and the changing 

dynamics of nature. Island Press, Chicago. 

Terborgh, J., Lopez, L., Nuñez, P., Rao, M., Shahabuddin, G., Orihuela, G. et al. (2001). 

Ecological meltdown in predator-free forest fragments. Science, 294, 1923-1926. 

Thompson, J.N. Reichman, O.J., Morin, P.J., Polis, G.A., Power, M.E., Sterner, R.W. et al. 

(2001). Frontiers of ecology. BioScience, 51, 15-24. 

Tinker, M.T, Guimaraes, P.R., Novak, M., Marquitti, F.M.D., Bodkin, J.L., Staedler, N., Bentall, 

G. & Estes, J.A. (2012). Structure and mechanism of diet specialisation: testing models of 

individual variation in resource use. Ecol. Lett., 15, 475-483. 

Wallach, A.D., Johnson, C.N., Ritchie, E.G. and O'Neill, A.J. 2010. Predator control promotes 

invasive dominated ecological states. Ecology Letters 13: 1008-1018. 

Wirsing, A.J. & Ripple, W.J. (2009). A comparison of shark and wolf research reveals similar 

behavioural response by prey. Front. Ecol. Environ., 9, 335-341. 

Wootton, J.T. & Bell, D.A. (1992). A metapopulation model of the Peregrine Falcon in 

California: viability and management strategies. Ecol. Appl., 2, 307-321. 

Ydenberg, R.C., Butler, R.W. & Lank, D.B. (2007). Effects of predator landscapes on the 

evolutionary ecology of routing, timing and molt by long-distance migrants. J. Avian Biol., 

38, 523-529. 

Zeidberg, L.D. & Robison, B.H. (2007). Invasive range expansion by the Humboldt squid, 

Dosidicus gigas, in the eastern North Pacific. Proc. Natl. Acad. Sci. USA, 31, 12948-12950. 



 

 31

  



 

 32

Figure legends 

 

Figure 1. Percentage share of papers on top predators out of the total number of papers published 

over the last four decades in the area of “Environmental Sciences and Ecology” (data from the 

Zoological Record – Web of Knowledge, accessed on December 2011). 

 

Figure 2. Percentage occurrence of papers on different groups of top predatory taxa according to 

four main research topics. Included are: (1) papers published between 2006-2010 inclusive; (2) 

with the word “top predator”, “apex predator” or “super-predator” in the title or abstract; and (3) 

that really focused on top predatory species upon detailed inspection (n = 565 papers from the 

Zoological Record – Web of Knowledge). The frequency of papers on different topics varied 

significantly among taxonomic groupings (2
20 = 114.0, P < 0.0001). In the axes legends, TP = 

top predators.
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Fig. 2 
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