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Abstract. This paper presents a particle method designed for One approach that has improved the performance of par-
high-dimensional state estimation. Instead of weighing ran-icle methods is to use mixture models rather than discrete
dom forecasts by their distance to given observations, thepproximations of probability distributions. This idea be-
method samples an ensemble of particles around an optigan with the work ofAlspach and Sorensof1972. Since
mal solution based on the observations (i.e., it is implicit). then,Anderson and Anderso1999, Chen and Liu2000),
It differs from other implicit methods because it includes the Bengtsson et a2003, Kotecha and Djufi (2003, Smith
state at the previous assimilation time as part of the optimal(2007), Hoteit et al. (2008, Dovera and Ross#2011),
solution (i.e., it is a lag-1 smoother). This is accomplished Stordal et al(2011), Reich(2012, Frei and Kiinscl{2013,
through the use of a mixture model for the background dis-Sondergaard and Lermusia013a b) and many others
tribution of the previous state. In a high-dimensional, lin- have developed similar approaches. In particular, all of these
ear, Gaussian example, the mixture-based implicit particleechniques followed from adaptations of BPF or the ensem-
smoother does not collapse. Furthermore, using only a smable Kalman filter (EnKFEvensen1994 2009.
number of particles, the implicit approach is able to detect Both BPF and EnKF begin by generating an ensemble of
transitions in two nonlinear, multi-dimensional generaliza- random model forecasts that are independent of the obser-
tions of a double-well. Adding a step that trains the sampledvations. The resulting estimates are linear combinations of
distribution to the target distribution prevents collapse duringthe forecasts, where the coefficients depend on the likelihood
the transitions, which are strongly nonlinear events. To pro-that the forecast produced the observations. This paper refers
duce similar estimates, other approaches require many mon® such methods as explicit, in analogy with the terminology
particles. from the numerical solution of differential equations.
Explicit data assimilation methods are prone to errors
when the forecast distribution is nearly singular with the dis-
1 Introduction tribution conditioned on the observations, also called the tar-
get or posterior. For example, this occurs when the model
Most particle filters perform poorly in very high dimensions. has multiple isolated attracting states and none of the fore-
Their ensembles collapse onto a single patrticle unless the ergasts are in the basin of attraction of the true stildr
semble size grows exponentially with the system dimensionet al, 1999 Evensen and van Leeuwe?000. The singu-
This is a problem of sample impoverishment, and is a manidarity can be significantly reduced, however, if the stochastic
festation of whaBellman (1957 calls “the curse of dimen- model has an invariant measure (a climatology). This point
sionality”. is the basis of the mean field filter, maximum entropy fil-
The bootstrap particle filter (BPiBordon etal.1993 isa  ter, and related techniqueByink and Restrepd®200Q Kim
straightforward method that weighs random solutions of theet al, 2003 Eyink et al, 2004 Eyink and Kim 2006, which
dynamical model based on their proximity to observations.form a parametrized transformation of the model climatology
Even if the model and observation functions are linear andwith the same mean, and possibly covariance, as the forecast
have Gaussian errors, BPF suffers from ensemble collapssamples. Nevertheless, there are many stochastic processes
as the system dimension increasBer{gtsson et g§l2008 that do not have invariant measures, including the ubiquitous
Bickel et al, 2008 Snyder et al.2009. There is also evi- Wiener process and a related example considered later in this
dence Snyder 2012 that this result is more generally appli- paper.
cable and all particle filters suffer a similar fate.
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1048 B. Weir et al.: A potential implicit particle method for high-dimensional systems

Implicit methods, unlike explicit ones, skip the construc- where M is a discrete-time dynamical mod¢E ,} is a (di-
tion of a forecast distribution and work directly with the tar- mensionless) standard normal/Gaussian process, which rep-
get. Their goal is to sample an “optimal” importance distri- resents model errof) is the (dimensional) error covariance
bution whose difference with the target is minimBlocet  matrix and/Q is any square root d@, i.e., /OVQ' = Q.
et al, 2000. This approach has a strong theoretical ba-The model dependence on the new sfijg, 1 is included to
sis and is effective in a variety of contexts, particularly in account for implicit numerical time discretizatiort§l¢eden
low to moderate dimensional problems from the geosciencegind Platen1999. In general, the initial condition is impre-
(Chorin and Ty 2009 Chorin et al, 201Q Morzfeld et al,  cisely known, and the value of its probability density func-
2012 Morzfeld and Chorin2012 Weir et al, 2013 Atkins tion (pdf) at a realizatiomg is denotedp(xo).
et al, 2013. In these applications, the implicit methods re-  The stochastic model is supplemented with noisy obser-
quire a factor of0 (10) to O(100) fewer particles than BPF  vations at a subsequen¢gn, : n = 1,2,...} of the model
and EnKF to compute estimates of comparable accuracyimes such that
(Morzfeld and Chorin2012 Weir et al, 2013.

The implicit particle method introduced in this paper Y, ZH(Xm(M)JF‘/ﬁDn )
avoids ensemble collapse in high dimensions in three waystor a given function?, (dimensionless) observation error
First, it forms a mixture model approximation of the back- process{D,} and (dimensional) covariance matf The
ground distribution of the state at the previous assimilationgog| of data assimilation is to efficiently sample from the
time. Second, it uses numerical optimization to find the mosigistribution of model solutions conditioned on a sequence
probable model solution given the observations and samplegt realizations{y1, ..., y«} of the observations2j at suc-
around that solution. Third, if the target/posterior distribu- cessjve times. The pdf of this stochastic process is denoted
tion is strongly non-Gaussian, it further improves the results (xome | y1:4), Which uses the shorthang; for a given
by refining the sampled importance distribution to better ap-sequencéy;, zjh
proximate the target. It is possible to assimilate each new observation and dis-

While it is possible to improve the estimates of BPF and carq it afterward because the target pdf satisfies the recursion
EnKF significantly, e.g., using Markov chain Monte Carlo re- rgjationship

sampling methodsWeare 2009, running-in-place i{alnay
and Yang 2010, the finite-size EnKFBocquet 2011), and Promee+1) | Y1k+1) & p (Xoma) | y1:x)
iterative EnKF Bocquet and Sakgw2012), only their sim- P (Xm@)+1me+1) [ Xme)) - P (k1| Xmk+1)) - (3)

plest forms are considered here. Some particle filteas ( This follows from an application of Bayes' theorem, the

Leeuwen201Q van Leeuwen2011 Ades and van Leeuwen Markov property of the state, the conditional independence

201.3 do, in fac_t, perform wellin high d_imension_s. Yetitre- ot he observation errors, and a second application of Bayes’
mains unclear if these approaches satisfy the tail decay Profheorem Using the convention that®= 0, andy1.0 =0
erties necessary for convergenGe(veke 1989. Surveys of Eq. @) abplies itk — 0 as well ' ’

many other assimilation techniques can be found in the re- The model erroi.. and observation errdd. need not be
m n

wevxr/]s ofvan.Leeuwferr(]ZOOQ andBocquet et ?'(”2010- o Gaussian in general. However, this paper assumes the a pri-
The remainder of the paper proceeds as follows. The statg; . jication of an anamorphosis transformati@ertino

estimation problem is introduced next. After that, Sect. 3 de'et al, 2003 Weir et al, 2013 to the state and observation so
scribes the mixture-based implicit particle smoother (Mlps)that the corresponding errors are Gaussian random variables.
in a general form. This method is applied to a high-

dimensional example with a linear model and Gaussian2.1 The effective dimension

statistics in Sect. 4 and to multi-dimensional generalizations

of the double-well problem in Sect. 5. Both sections include The state of nearly every geophysical model is a collec-

comparisons with BPF, EnKF, and the implicit particle fil- tion of variables, e.g., velocity, pressure and temperature,

ter. The final section summarizes the results and conclusionsvaluated at each point of a grid. Since the number of grid

from these examples. Throughout, vectors are written in boldoints is often0 (10°) or greater, the state dimension is high

italics, matrices in regular bold, random variables in capitalas well. Fortunately, the effective dimensidBigkel et al,

letters and their realizations in lowercase letters. 2009 of the problem is usually much smaller. For exam-
ple, the model can have a low-dimensional attractor, or states
and observations separated by large distances can have neg-

2 State estimation ligible correlations. Dimensional reduction takes advantage
of the smaller effective dimension by projecting the prob-
The system state is a stochastic prodgés : m =0,1,...} lem onto the effective subspace. There are a number of dif-
in N, dimensions that satisfies the equation ferent techniques, including dynamically orthogonal decom-
position Sondergaard and Lermusigu013a b), localiza-
Xnt1=MXm, X1 + \/6Em+1, (1) tion (many variations exist, b@tt et al, 2004 is one of the
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most well known), and partial noise reductidvidqrzfeld and  very accurate. In this case, it is often appropriate to use a
Chorin 2012. one-component mixture model, since the statistical evidence
The second fundamental assumption of this paper is thegainst the Gaussianity of the true distribution is minimal

a priori application of any possible dimensional reduction, (e.g., the multivariate normality test bfardia, 1974).

and hence that the eigenvalues of the model and observa-

tion error covariance matrices are bounded away from zero3-1 Gaussian mixture models

Although the reduced model can have many possible forms o _ _ )
the lowest frequency mode of a climate model is quite often 1 N€ assimilation of thek +1)-th observation begins with an

a double-well, i.e., a nonlinear model with two stable fixed ENSemble ofV,, particles resulting from thé-th assimila-
points Majda et al, 2003 Kravtsov et al.2005. Under the O™

influence of stochastic perturbations, its solutions tranS|t!on{x(t)(k) ~p(xm | yux) i = 1,...,Np}.

periodically between these two points. It is perhaps the sim-

plest energy balance model capable of reproducing the tranGiven these samples, one may compute an approximation
sitions characteristic of global temperature recofist¢ra  that is a mixture ofv,, Gaussian components,

1981). The models considered below combine double-wells N

and linear maps to extend this scenario to problems in multi- . B

ple dimensionz with multiple attracting statzs. P (x¥mao | y11) = j;ajN(xm(k)’ m-Bj). “)

~ p (Xme | Y1k) -

3 The mixture-based implicit particle smoother where the weigh ;, mearu ; and covarianc®; of the com-

o ) . o ponents are all estimated from the samples.
The assimilation technique to follow is a modification of the Here, the only assumption d; is that it is symmetric
implicit particle filter (IPF) introduced byChorin and Tu  anqg positive-semidefinite. In the case tBatis not positive
(2009 and extended to parameter estimationVidgir et al.  qefinite, its inverse is taken as the Moore—Penrose pseudoin-
(2013. In'the latter, the me’ghod is cont!nued sequentially by yerse Moore, 1920 Penrose1957) and its determinant as
constructing a kernel density estimagilyerman 1989 of e product of its non-zero eigenvaluesBlf is anN, x N,
the background distribution of the model parameters. In thismarix of all zeros, thetV'(x ;, B;) denotes the Dirac delta
paper, the previous state,) plays the role of the model pa-  ;nction atp;. Y
rameters. Although it is successful in examples where EnKF Following SL13, MIPS uses the expectation-maximization
fails, the kernel-based implicit approach requires a relativelyeny) algorithm @empster et al. 1977 McLachlan and
large number of particles) (1000, to avoid collapse in @  kyishnan 200§ to find the maximum likelihood estimate

0 (10) dimensional sample space. One possibility is that thiS(ML/MLE) of «;, u;, andB;. At iterationn, the EM update
requirement is primarily due to the deficiencies of the kernelig computed in two steps:

density estimate.

As an alternative to kernel density estimat®@sndergaard
and LermusiauxX2013a b), referred to as SL13 from now @)
on, suggest using a mixture modéfi¢Lachlan and Peel 0 _ ojnN (xm(k);“/’"’Bf’">
2001). The mixture-based implicit particle smoother (MIPS) Tjn = Y« N<x(i) ) B )
does exactly that. It differs from the approach of SL13 in §&hn m(ky® Hn> Bln

Tin =T
1

1. Expectation,

’

two ways: it constructs a mixture approximation of the back-
ground of the previous staten, rather than the next state
Xm+1), and it uses optimization to find probable model o
solutions rather than using an analysis step based on the 2- Maximization,
Kalman filter. 1
Figure 1 is a graphical comparison of a one-component Gjnt1 = 3—Ljn:
mixture model and kernel density estimate of a standard nor-
mal density. Even in two dimensions, the kernel density es-

timate requiresO (1000 samples to have any visual simi-
larity with the true density. The mixture model approxima-
tion with 0(100) samples, on the other hand, is compara-
ble to the true density. Both estimates are quite poor with
10 samples, and their errors only increase as the dimension
grows (McLachlan and PegR00Z; Silverman 1986. Given

P
_ -1 @) ,.(0)
Wint1=Tj0 ) T u¥mi:
i
-1 @ (,.0)
Bj,n+1 = Tj,n [tjfn <xr’:‘|(k) - ﬂj,n-ﬁ—l)

1
6) T
Xmky — Hjn+l .

just a handful of samples in very many dimensions, it is This is one of many possible choices of clustering methods
thus unlikely that any representation of the true density is(seeFrei and Kiinsci2013 for an example of an alternative).

www.nonlin-processes-geophys.net/20/1047/2013/
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(a) Sample statistics

(b) Kernel density

Fig. 1. Continuous estimates of the density of a two-dimensional standard normal random variable. Contours are plotted at equal intervals of
the logarithm of the (thin circles) true density and (thick curves) estimated densities. The estimategaré#ussian with sample mean

and covariance anfb) kernel density estimate from the same samples. The number in parentheses is the sample size. The kernel density
estimates are computed using the optimal bandwidth and have the same first two moments as theSiaraptes)(1986.

3.2 The number of components and the densitied/(u ;, B;) are thus Dirac delta functions.
This is the traditional particle filter approach, which repre-
What remains is an approach for specifying the numfgr  sents the background as a sum of delta functions, making no

of components in the mixture. At one extreme, parametric assumptions.
For simplicity, this paper assumes th¥f, = 1 until N, is
1 Y o so large that there is no ensemble collapse. After this point, it
= N Zxk ) is safe to takev,, = N,. Given a small number of particles in
Pi=1 it N, =1, very high dimensions, the method therefore relies upon sim-
1 Y o 0 T plifying parametric assumptions. On the other hand, in the
B= N (xk - IL) (xk - ﬂ) , limit as N, — oo, it maintains the convergence properties
Pi=1 of particle filters. An approximation for the number of parti-

i o cIesN; at which to make the transition is derived for linear
where the covariandg has the normalization/V, because 554 Gaussian problems in the following section. The appro-
the EM algorithm finds the MLE. This is a completely para- priate value ofv* for nonlinear and non-Gaussian problems
metric representation of the background distribution typicalig ot immediately obvious, but a reasonable choice usually
of ensemble implementations of the Kalman filter. At the ¢4, pe determined from numerical experimentation. While

other extreme, it is not considered here, pickiny,, based on the Akaike

or Bayes information criteria (SL1¥onishi and Kitagawa
aj=1/Np, it N.o— N 2008 may have the same convergence properties and be
wj= x}((j)7 B, =0, "o more efficient for finite values a¥,.

Nonlin. Processes Geophys., 20, 104166Q 2013 www.nonlin-processes-geophys.net/20/1047/2013/
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3.3 The target density number of parametric forms. Rather than make this restric-
tive assumption, implicit techniques use importance sam-
Given a mixture model approximation to the background, pling (Geweke 1989, which draws samples from an alter-
there is a corresponding approximation to the targetnate density, called the importance, then weighs the samples
Marginalizing overxom)—1 and using the conditional in-  to account for the difference between the actual and sampled

dependence of the state and observation, the target is densities.
The “optimal” importance is a Gaussian approximation of
P (Fmmirn | y2ae1) = p (¥mao | y1:0) the component density with the same made In general,
mk+1) the mode, which is also the global minimizer @f, must
H P (Xm+1|Xm) (®)  be found using numerical optimization, a task that is by no
m=m()+1 means trivial. A byproduct of any quasi-Newton optimization
°p (yn Ixm(n>). method is an approximatio®; of the Hessian ofp; at vj,

_ ) and hence a quadratic approximatigpnof ¢; such that
By definition of the modelX) and observation?),

* 1 T
em+1=Q V2 [xpi1 — MG, Xmi1)], Vi) =¢j+3 (” - ”7) TR (” - ”7) :

—RY2r, _
dn =R [yn = (em)]. whereg? = ¢;(v%) andS; = ®;*. The cost functiony; is

and expressions for the conditional pdigx,,+1|x,) and  the basis of the “optimal” importance densjtyleXFX—l/fj),
P(¥n|Xmm)) follow from the change of variables for- where

mula. If the time discretization of the model is explicit: "
M@, Xpi1) = M(x), then vj= exp(—w;‘-‘) y @0)" det(S;),

( %)) o eX 15 (6) andN, is the dimension of. The resulting Gaussian mixture
PXm+1]¥m) XEXP\ =5€p11€m+1 | approximation of the target densigyis
1 -1
p(y,1|xm(n>)aexp(—éd,{d,,) @ Q(xm<k>:m(k+1>|y1;k+1)=Zaﬂ{,~ eXp(—l//j).
J

Otherwise, Eq.q) is more complex, but the algorithm below  The “optimal” importance is actually optimal if the com-

remains the same. ponent cost function is a quadratic function of{(Doucet
Substituting the mixture approximatiod)@nd the expres- et al, 2000. In this case, the component distribution is Gaus-

sions @) and (7) into Eq. ©) gives the approximation of the sian and, given the exact valuesujfand®,, is identical to

target, the “optimal” importance. In other cases, including an exam-

. 1 ple below, there are better choices for the importance.

P (Xm@o:m@e+1) | Y1kt1) o Zdjﬂj exp(—¢;),

i 3.5 The algorithm

whereg; =,/ (2m)Nx det(Bj), and the component cost func- MIPS begins by determining the importance density for each

tionsg; are defined such that component in three steps:
1 Ty 1. Compute the mixture model approximation to the
0= 5 (xm(k) — [L]) B] (Xm(k) — [L]) baCkgrOUnd Ok’m(k)-
1y 1, 2. Find the mode* of 87 exp(—¢;) and Hessiam, of
_ = J J J J
+5 2 ement 5k t1dk1- ¢; at the mode.
m=m(k)+1

. . X L 71
Finally, to simplify notation, le denote the vector of inde- 3. Define the covariance matr; such thasS; = (Dj :

pendent variables that determine the gasti.e., It then proceeds as follows for each partixﬁq}(k):

Xmk) 4. Generate a uniform random numbet (0, 1], and find
v= : , and  ¢j=¢;v). the component indekthat satisfies
Xm(k-+1) =1 !
3.4 Implicit sampling jzzl ! ; !
In general, sampling directly from the component density using the convention that the sum frgha=1to j =0
,Bj‘lexp(—go.,') is impossible unlesg; has one of a limited is zero.

www.nonlin-processes-geophys.net/20/1047/2013/ Nonlin. Processes Geophys., 20, 108@-2013
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5. Draw a samplev”) from the Gaussian importance By construction, the difference between components in the
yl‘lexp(—lp,). mixture model is the only source of variability in the weights.

) . This is because the component cost functions,
6. Give the sample the weight P

1

— [ rg-1
o B 1exp(—q01(l)) ¢ji=5 (k= nrj) By (xx—nj)
w =
1 o\’ 1 _
Vi eXp(‘!”[l ) + E (Xk+1 —Axk)TQ 1(xk+l —Axy)
-1 @ @) 1 _
xvihy exp(lpl i ) ’ (8) + > (k1 —Hxpr)T R (pig1 — Hxern)

@ @) ;
whereg, a”(q)lﬁz denote the values of the functions 5re quadratic and the component densities are Gaussian. It is
1 . .
evaluated ab™’. thus possible to sample the component densities exactly. The

Afterward, the weighted samples can be transformed intd@Sulting samples have weigh® ¢hat satisfy
a uniformly weighted ensemble by resampling with replace—w(,-) O( ﬂ_l
ment, also known as the bootstrdgfron, 1979. Since this Vb

step adds noise to the estlmates, itis best to fesamp'e Onk)(/hich depends only on the component of the mixture (recall
when the effective sample siz€dng et al, 1994 Liu, 1996 that/ is a random function af)

Doucet et al. 2000 falls below a given fraction ofV,. Expressions for the mean and covariance of the compo-

There are a variety of improvements to the bootstrap tha,hent densities, and hence the weights, follow from similar

r.educe th(_a added noise as vyeII. This reductio_n, however, '%Igebra to the Kalman smootheRduch 1963 Jazwinskj
likely (_jomlnated by the error m_the representation of the tar—lgm' Dropping the component indéto simplify notation,
get Kitagawa 1996. Although it is not presented here, the the mode is the solution of the linear equations
generalization of the EM algorithm to weighted samples is
straightforward. g1 (xf—p)— ATQ? (x},1—Ax}) =0,
In two special cases, MIPS is equivalent to other as-__, . Toe1 .
similation techniques. First, if there is a single componentQ (xk+1_Axk) —H'R (yk+1— ka+1) =0.
and everything is linear and Gaussian, MIPS is an ensem:, .
: ~~ "It can be expressed as the backward recursion,
ble Kalman smoother. If the model or observation functions
are nonlinear or ifN,, # 1, it is not an ensemble Kalman _x _ _
smoother (for two methods that are, ses Leeuwen and xk’f =Ant K(;ka HAM)’
Evensen1996 Evensen and van Leeuwe?000. Second, xp=n+Cxi—An),
if N, = N,, MIPS is equivalent to IPF. This is because the where
covariance of each mixture component is the degenerate form
B; = 0 (see SecB.2), which fixes the value of ) for each P/ — ABAT + 0,
particle. 1
Another variation to the above algorithm that can reduce K = pfHT (prHT 4 R) ,
the variance of the weights is to perform importance sam- .
pling on the full mixture distribution rather than its individ- ¢ =pBaTf (pf) .
ual components. IN,, = N, this approach is equivalent to
an implementation of the marginal particle filtélgas etal. At every point, the Hessian of the cost function is the block
2005. Its biggest drawback is that it must evaluate every matrix
component density, rather than just one, at every sample to
compute the weights. 1 |:B—l +ATQ 1A -ATQ ! :|
B -Q7'A Q7 '+HTRMH|
4 Alinear and Gaussian example
Its inverse, the covariance matrix is
As a simple demonstration of ensemble collapse in high di-
mensionsBengtsson et al2008, Bickel et al.(2008, and P’ CP?
Snyder et al(2008 propose an example where there are ob->~ | pacT pa |’
servations every time step, i.e. (i = n, the model and ob-

servation are linear functions such that where the matrices are again the same as in the Kalman
smoother:
M(xm) :Axma H(xm) = me

and the distribution of the initial condition is Gaussian. Pt = ('x —KH )va

Nonlin. Processes Geophys., 20, 104166Q 2013 www.nonlin-processes-geophys.net/20/1047/2013/
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PS:B—i-C(P“—Pf)CT, 35
BPF
andl, is theN, x N, identity matrix. 3r — — —IPF
Substituting the expressions back into E8). &nd restor- +— — MIPS1
ing the indexX shows that 251 7]
w® = p (g1l By, > 2 e
1 R < 15} -7
27)Ms det()) 27 kT 1 .
where 7
05 r P e

Ji=yis1—HAm, and @ =HP/H" +R. U

0 1 p— —

0 200 400 600 800

In other words, the weights are the values of the pdf of the N
innovationsy,;, whose covariance &;. x

Fig. 2. Theoretical lines such that[1/ max w?] = 1/0.9 for the
(solid) bootstrap particle filter, (dashed) implicit particle filter and
(dot-dashed) mixture-based implicit smoother withy, = 1. The
dot-dashed curve is identically zero. Similar to Fig. 3Ssfyder
(2012 with a corrected axis label.

4.1 Ensemble collapse

A fundamental result dBengtsson et a(2008, Bickel et al.
(2008, andSnyder et al(2009 is that for importance sam-
pling methods

E [1/ man(")} —1+ /2NN, /o + 0 (In N,,/oz) , (9) Substituting this into Eq.9), neglecting the higher-order
! terms, and using the IPF expressionddrgives

where
o?=E [(Iogw("))z} —E [Iogw(i)]z.

To simplify the analysisSnydern(2012) takes

N; =exp(0?/162),
= exp[Nxa2 <3a2/2+ >+ 1) /162(q2 + 1>2i| )

In practice, computational resources may necessitate taking
A=al,, Q=4%,, N, =1 even well beyond this threshold, maintaining a tran-
H=I,, R=I,, sition toN,, = N, only to preserve the theoretical properties

of the particle filter. Often, even for nonlinear models, the
and a standard normal prior on the initial condition. He thenchoiceN,, = 1 performs quite well, as is shown below.

shows that, provided/, > 1, Tablel provides a numerical comparison to the theoretical
lines in Fig.2. In general, the number of particles necessary
) N, <a2 + qz) (gaz +39%+ 1) for BPF, to avoid collapse is greater than the transition value
o 2
Nya? (§a2+q2+1)/(q2+1) for IPF. N = exp(N, /324),

These two cases are depicted in FAdor an example where yet by a factor less than 2. Furthermore, the difference be-
a?=¢?=0.5. The line for MIPS with a one component tween the two goes to zero a& — oo. The reason for the
mixture (MIPS1) is identically zero because all of the terms discrepancy is that the convergence in E).i¢ quite slow

in Eg. @) are constant for this example: the first two terms (David and Nagaraj@003 Ex. 10.5.3). While more accurate
are constant because there is only one component in the mixthresholds are possible, in realistic applications, the model
ture, and the final term is always 1 because the componeriind observation nonlinearities are likely to have a significant
costy and its quadratic approximatigh are identical. effect on the weights and thus the choice\gf.

Itis also evident from Fig2 how to choose&v,, in a simple
way to avoid collapse. IV, is less than the value of the IPF
line, let N,, = 1. Otherwise, letV,, = N, to revert to using
IPF. The thresholav; at which to make this change occurs
when

5 Multiple-well problems

This section considers three examples: a standard, one-
dimensional double-well and two generalizations of it to
multiple dimensions. Although it is simple, the nonlinearity

@ —
E [1/ maxw ' } =1/09. of the double-well is significant enough to cause difficulties

www.nonlin-processes-geophys.net/20/1047/2013/ Nonlin. Processes Geophys., 20, 108@-2013



1054 B. Weir et al.: A potential implicit particle method for high-dimensional systems

Table 1. The dependence @1/ max; w®]on N, andN, for the depicted in Fig3. In the first examplel0), the deterministic
implicit particle filter. The number of particle§), varies along the equations

rows and the state dimensiav, along the columns. Estimates are dx

computed from 1000 trials, and typical sampling errors(@.01). — = f(x)

The italic values are the closest points to the dashed line ir2Fig. dr

have 8 stable fixed points. The corresponding stochastic
Np\Ny 100 200 400 800 equations have an invariant measure (climatology) that is ap-
proximately the sum of 8 Gaussians centered at these points.

2 1.08 1.05 1.04  1.03 The pdf of this measure is the limit as—> oo of the solu-

4 1.15 111 107 1.05 . .

8 124 116 111 1.08 tion of the Fokker—Planck equation (also known as the Kol-
16 134 1922 114 110 mogorov forward equatioriksendal2003. In the second
32 142 126 117 1.11 multiple-well example 11), the deterministic equations have

two stable, two-dimensional invariant sets in the limit> 0.
The solution of the corresponding Fokker—Planck equation,

with data assimilation methods that rely on parametric asike that of a two-dimensional Wiener process, is a measure

sumptions about the target, notably the extended KalmaH"hose variances in these two subsets go to infinity as time
filter (Miller et al, 1994 anéi EnKF Miller et al, 1999 increases. Consequently, the stochastic equations have no in-

Evensen and van LeeuweP000. For every example, the va%]mt measured dq fth . in th
discrete modelM is the result of the Euler—-Maruyama € non-standard form of the continuous mogein the

method Kloeden and Plater1999 applied to a continuous second multiple-well examplel{) is meant to aid compar-
model f, i.e ison with BPF and EnKF, which typically only apply to ex-

plicit time discretizationsY). It follows from applying back-
M, Xm11) = Xm + T f (xm), ward/implicit Euler Kloeden and Plateri999 to a rotation
map. This ensures the stability of the discrete model. Implicit
the time stepr is 0.02, observations occur every 200 time sampling methods, on the other hand, are straightforward to
steps,Q = 0.5z1,, the observation operator is the identity, implement with implicit time discretizations. The only differ-
R =0.1l, and the initial condition for every component of ence is in the form of the cost functig. This is a notable
the state has mean 1 and standard deviation 0.1. These valuagvantage of the implicit approach.
are roughly equivalent to those used by SL13. In the double-

well problem,N, =1, an . .
ell problem, N, = 1, and 5.1 Transition detection

f(x) =4x —4x3, _ o
Figure 4 compares the results of EnKF, BPF, the implicit

The multiple-well examples have one of two possible forms: particle filter (IPF) and the mixture-based implicit particle

smoother with a 1 component mixture model (MIPS1) using

i 4x1 — 4x§ ] 10 particles for the double-well problem. Both implicit meth-
Axp — 4x% ods perform well, yet MIPS1 requires just over a tenth of the
4x3 — 4x3 number of floating point operations of IPF. This is because
Jfx)= 4—4xy J (10) it solves a single optimization problem instead of 10, while
. including the previous statem, in the optimization prob-
) lem only increases the dimension of the problem from 200 to
L A 201.
or Both BPF and EnKF miss the transition even after repeated
_ 3 _ observations because their forecasting step rarely generates a
4xq — 4x; ) particle in the correct well. This is evident in the BPF and
(—tx2—x3)/(1+ Tz) EnKF estimates in Figl, which display noticeably less vari-
Fl) = (—txs+x2)/(1+77) (11) ability while in the correct well than the implicit estimates.
4—4xq ’ As a result, artificial inflation of the model error covariance
: (Anderson and Anderspri999 could improve the perfor-
4—4xy mance of the explicit methods in these examples.
! - The estimates of every method for the multiple-well prob-
wherex; denotes the-th element of the vector. lems are qualitatively similar to a combination of the double-

The models for the two multiple-well examples)f and  well problem with the linear problem. In the dimensions
(112) are intended to illustrate two different possibilities for where the modeff is nonlinear, the problem resembles the
the asymptotic statistics of the sample solutions. Projectionglouble-well, and in the dimensions where the moflé lin-
into three dimensions of both types of sample solutions areear, the problem resembles the linear example.

Nonlin. Processes Geophys., 20, 104166Q 2013 www.nonlin-processes-geophys.net/20/1047/2013/



B. Weir et al.: A potential implicit particle method for high-dimensional systems 1055

(b)

(a)

2 i 1

Fig. 3. Examples of three-dimensional projections of the twin solution for the two multiple-well exanf@)éswells with three transitions
and(b) two wells with one transition. The number of transitions in the left panel is very rare and is used for visualization purposes.

(a) EnKF (b) BPF
2 T T 2 r
twin
1.5 ;_+++ estimate | ]|
+  obs.
E
©
<
o
£
x
E
pe]
<
o
S
x
400 0 100 200 300 400

0 100 200 300
time (non-dim.)

Fig. 4. Comparison of the estimates with 10 particles of(@eensemble Kalman filte(b) bootstrap particle filtec) implicit particle filter

time (non-dim.)

and(d) mixture-based implicit particle smoother wiW,, = 1.
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Table 2. Percentage of trials in which an estimate computed with 200 " " T

10 particles is in the same well as the twin solution at the final as- \ True
similation time. The well is determined by the sign of the elements \ — — — Local
of the state vector. Results are computed from 100 trials each with 150 | ' —  — Refined | |
at least one transition. /’
Ny EnKF BPF IPF/MIPS - /
2] .
3 100} /
1 100% 85% 100% e .
4 100% 80% 100% /
16 96% 89% 100% /
64 70% 79% 100% S0t ,
256 39% 49% 100% :
S e ettt
=20 10 20

As the state dimensioN, increases, EnKF and BPF are
increasingly less likely to detect the transitions from well to
well. Table2 quantifies this likelihood for the first example Fig. 5. Plots of the true cost function and its quadratic approxima-
(some of the variability in the results for BPF is most likely tions along a line in sample space. The direction of the line is paral-
due to sampling errors). Results for the second example artl to the eigenvector of the Hessidnwith the smallest eigenvalue,
comparable. Unlike the explicit methods, the implicit meth- and the mode is translated to 0. The curvature of the local approxi-
ods consistently detect the transition because they find aRation (dashed) is determined by the second derivative of the cost
optimal solution based on the observation. In these examnfunction at its minimum, while the curvature of the refined approxi-

ples, the model and observation functions and covariance@ation (dot-dashed) is adapted to better reflect the global properties

have a particularly simple form, and the problem can be de—Of the cost function.

composed into a collection of decoupled problems. If this de-
composition is used, the performance of the explicit methods
does not degrade as the dimension increases. Nevertheless, ple v from the Gaussian importange X exp(—).

distance along eigendirection

this decomposition is only possible in very special cases. Then compute a new Hessi@*+1, where
5.2 Hessian refinement Ot — g o A

. L. . . T
Although the implicit methods conslsteptly detect the transi- AD) (W") B <p(")> (v(n) — v*) (v(n) — v*)
tion from one well to another, their weights collapse at the

re . _ (0™ —v*)" (000 — p¥)’
transition. This happens in MIPS1 because the component

costg, is far from its quadratic approximatiof, resulting and update the covariance mat8o be the inverse of

in significant variation in the term P+l

exp<1//(i) - <P(i)) . While it is not presented here, the extension of the refinement
to N, > 1is straightforward.

As a simple example, suppoggx) = kx2+x* for some The iteration on the Hessian follows from an application

small positive numbet. Theny (x) = kx2, and importance  of the stochastic gradient descent algorithnRabbins and
sampling based o will generate very many samples far out Monro (1951). Sufficient conditions for its convergence are
on the tails of the target density and very few in the region ofthate, is positive and, a8 — oo,
high probability. Moreover, for a fixed/,, the weight of the
sample closest to the origin approaches & approaches 0. ¢, >0, Y e, —oo and Y €f <oo.

In many examples like the above, it is possible to decrease n n
the variance of the weights by finding a better approximationél_
to the covariance of the component density than the invers .
Hessian. One approach is to repeatedly sample the impoﬁrably Kgshner and Y_|n20_03 Chap. 5?' The resul_t of the .
tance density and update the Hessian based upon the agré gration IS an approx_lmat}on of Hess_lan whose INVETSE 1S
ment of the component cogtand importance cost. This the covariance that minimizes the variances of the weights,

results in a variation of the MIPS algorithm with the third a cl§1|m which is made precise in Appen(jlx A,' .
step (see SecB.5) replaced by the refinement step Figure5 compares the true cost functignwith approxi-
’ mations based on its local properties and the Hessian refine-

3. Begin with ®® equal to the Hessian at the mode. ment for the double-well example depicted in FgThe plot
For n from 1 to a given numbewv,, draw a sam- is along a line in sample space parallel to the eigenvector of

he final limit condition, however, can be weakened consid-
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the initial Hessian with the smallest eigenvalue. In this exam-Appendix A
ple,
Minimization of the variance of the weights

1
en=—-n"4 and N, =100 ) . .
2 In general, the variance of the weights with respect to the

Itis apparent that sampling from a Gaussian whose cost func3€NSYa (v [y 1:x+1),

tion is based on the refined Hessian is far more efficient
than if the cost function were based on the local approxi-Val[w]=E [ ] Bqlw]

mation. Finally, the similarity of the results with the example
@(x) =kx?+x* is due to the fact that the transition is the measures the success of an importance sampling method. It

point in the assimilation where the nonlinear terms of thedetermines both the effective ensemble size and, to leading

function f matter most. order, the variance of the sample mean of a general func-
tion (provided it satisfies appropriate integrability conditions;
Kong et al, 1994 Liu, 1996 Doucet et al.2000).

6 Conclusions The goal of the Hessian refinement is to find an approx-

. . o imation @ of the matrix that minimizes the variance of the
A mixture model approximation of the distribution of the weights @1). Since the partition functioR, [w] is indepen-
background state enables particle methods to adjust the baclg, ¢ ofd,

ground position of the particles and is often more accurate

than a kernel density estimate. When combined with an im- 9 2

plicit assimilation method, this approach, the mixture- basedacp { glw?] = Eqlw] }
particle smoother (MIPS), is a possible solution for high di-

(A1)

mensional problems. This is true for a high-dimensional, lin- E, (w2,
: BCDI
ear, Gaussian example, where MIPS does not collapse. J 5
With only a small number of particles, the implicit method 0 p(v|yLr+1)
. L : , = q (| y1x+1) dv,
is able to detect transitions in an example with multiple at- 0Pi; J g (v|yrrse1)?
tracting states. To detect the same transitions, explicit ap- 9 1
proaches like BPF and EnKF require considerably more par- = / (V| y1k+1) [ }
8®1J Q(U|Y1zk+1)

ticles. This number increases with the system dimension,

provided the problem does not admit further dimensional _ _/ Pl yresn)? 9
reduction. Moreover, with the addition of an iteration that q (| y1r41)? 09;;
trains the proposal covariance to the true covariance, MIPS

can track transitions without weight collapse given only a By definition,

handful of particles.

If MIPS is to be applied to a realistic, high-dimensional as-
similation problem in the geosciences, there are a number of Pij
improvements and simplifications to consider. In particular, 0 vy
with a limited number of samples in very high dimensions, <o, { der®)

[q (W] y1rs1)] do.

ij

the analytically computed values of the maqieand covari- 1 r

anceS; may lead to better approximations of the component exp[fﬂ* > (v - v*) ¢ (v - v*)} } )

meanu ; and covarianc®; than the sample estimates. Per- 1

haps most importantly, the optimization step in MIPS can re- =5 [qu - (v — v*) (v - v*)T] g (| y1k41) -
L

quire very many floating point operations, and its efficiency
is vital to the applicability of the method as a whole. How-
ever, the examples in this paper show that there is reasop
to believe this additional computational requirement enable
the implicit approach to produce accurate estimates in hig
dimensions even with a very small number of particles. 9 [E [ )
q | W ]

8(131']'

At this point, it is possible to apply the Robbins—Monro
eration (Robbins and Monradl95]) to the integral objective
Eequation

—E,[w]?} =o0.

However, this approach performs poorly in practice because
of the exponential dependence of the weights on the differ-
ence between the model cost and quadratic cost, which is
very often large in magnitude. The approximation of the min-
imizer follows from expanding the square of the weights into
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