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Abstract

We characterize how regional watersheds function as simple, dynamic systems
through a series of hysteresis loops. These loops illustrate the temporal relationship
between runoff and terrestrial water storage using measurements from NASA’s Gravity
Recovery and Climate Experiment (GRACE) satellites in three regional-scale water-5

sheds (>150 000 km2) of the Columbia River Basin, USA and Canada. The direction
of the hystereses for the GRACE signal move in opposite directions from the isolated
groundwater hystereses, suggesting that regional scale watersheds require soil water
storage to reach a certain threshold before groundwater recharge and peak runoff oc-
cur. While the physical processes underlying these hystereses are inherently complex,10

the vertical integration of terrestrial water in the GRACE signal encapsulates the pro-
cesses that govern the non-linear function of regional-scale watersheds. We use this
process-based understanding to test how GRACE data can be applied prognostically
to predict seasonal runoff (mean R2 of 0.91) and monthly runoff (mean R2 of 0.77) in
all three watersheds. The global nature of GRACE data allows this same methodology15

to be applied in other regional-scale studies, and could be particularly useful in regions
with minimal data and in trans-boundary watersheds.

1 Introduction

At the most fundamental level, watershed processes can be described as the collec-
tion, storage, and release of water (Black, 1996; McDonnell et al., 2007). At a more20

complex level, watersheds typically function as non-linear, dynamic systems governed
by their unique climate and geology (Kirchner, 2009). Gaining insights into hydrologic
processes and behaviors helps to provide a process-based understanding of water-
sheds as dynamic environmental systems (Aspinall, 2010), and to identify connections
that advance hydrologic science and hydrologic prediction (Wagener et al., 2007). At25

the local scale, in situ instrumentation can quantify the non-linear relationship between
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streamflow and water stored in a watershed as snow, soil moisture, groundwater and
reservoirs (Appleby, 1970; Brutsaert, 2008; Kirchner, 2009; Sayama et al., 2011).
These four primary storage components, along with landscape and topography, govern
the fluxes of water through a catchment, and play an important role in the hysteretic na-
ture of storage and runoff dynamics (McGlynn and McDonnell, 2003; McNamara et al.,5

2011). Knowledge of these processes is fundamental to developing an understanding
of a watershed’s hydrologic behavior. However, observations over larger regions can
be technically challenging and costly, and in situ measurements from small basins do
not necessarily represent the complexity inherent to watersheds at more broad scales.
This scaling problem limits our capacity to understand and predict regional hydrologic10

processes, which is often the practical scale of watershed management (Blöschl, 2001;
Western et al., 2002; Skøien et al., 2003; Peel and Blöschl, 2011; Thompson et al.,
2011).

In the absence of large scale observations, past hydrological studies have typically
relied on in situ measurements as a proxy for regional scale hydrological processes.15

For example, in higher latitude or mountainous regions measurements of snow water
storage have provided a simple metric that has been used in water resource plan-
ning for decades (Cayan, 1996; United States Army Corps of Engineers, 2001), and
are often correlated to streamflow gauged downstream (Dozier, 2011). While informa-
tive, this approach can often provide hydrological forecasts that are misleading, be-20

cause point-based measurements do not fully represent the broad-scale variability of
rugged mountain terrain (Dozier, 2011; Nolin, 2012; Webster et al., 2014; Ayala et al.,
2014). Similarly, measurements of soil moisture in the upper 2000 mm of the soil rely
on point-based data that are often distributed at the regional scale, but do not effec-
tively represent the true variability of soil moisture found at the regional scale (Western25

et al., 2002; Brocca et al., 2010). A complete understanding of groundwater stores and
fluxes (deeper than 2000 mm) at regional scales also remains elusive, despite its in-
creasing importance in water resources management (Wagener et al., 2007; Gleeson
et al., 2012; Famiglietti and Rodell, 2013; Barthel, 2014). In addition to contributing
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to streamflow, groundwater serves as an important water resource for consumptive
use (Gleeson et al., 2012). While local-scale methods have been applied with moder-
ate success in the past, current trends in climate and in consumptive water demand
suggest that long-term changes in hydrological fluxes will have a major impact at the
regional scale (Milly et al., 2008). As a result, the supply and demand of water is also5

expected to shift, especially at the regional scale (Wagener et al., 2010; Gleick, 2014a).
Hydrologic models can help address the questions of scale and bridge the gap be-

tween local scale observations and regional-scale processes by estimating the pri-
mary components of water storage (snow, soil moisture, reservoir, and groundwater)
across a larger spatial grid. Regional-scale modeling approaches are integrated into10

water resource management operations for navigation, human consumptive use, irri-
gation, and hydropower (Payne et al., 2004; Rodell et al., 2004). Models can also be
applied diagnostically to test scientific hypotheses and provide a better understanding
of the physical processes that govern real world systems, such as the connections be-
tween snowmelt, streamflow, and groundwater (Beven, 2007, 2010; Moradkhani and15

Sorooshian, 2008; Kirchner, 2009; Clark et al., 2011; Capell et al., 2012). Despite their
utility, developing and validating a model can be both time consuming and reliant on
multiple data inputs, which even in the most well-instrumented basins provides sparse
geographic coverage (Bales et al., 2006; Zang et al., 2012). The lack of an integrated
measurement of water storage and streamflow has limited regional-scale hydrologic20

insights to model-based studies (Koster et al., 2010; Mahanama et al., 2011).
Since 2002, broad-scale measurements of changes in the amount of water stored

across and through the earth have been available from NASA’s Gravity Recovery
and Climate Experiment (GRACE) satellites (Tapley et al., 2004). GRACE measures
monthly changes in the Earth’s gravitational field that are proportional to regional25

changes in total water storage (Wahr et al., 2006). GRACE satellites provide a monthly
record of terrestrial water storage anomalies (TWSA), which represent the changes
in the vertical sum of water at the Earth’s surface stored in snow, surface, soil and
groundwater. Water losses to runoff and evapotranspiration are implicit in the GRACE
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storage signal, removing the added layer of complexity typically required to model the
terrestrial water balance.

GRACE data, coupled with modeled and measured variations of water stored in
snow, surface reservoirs and soils, have successfully been decomposed to quantify
regional groundwater changes (Rodell et al., 2009; Famiglietti et al., 2011; Voss et al.,5

2013; Castle et al., 2014) and have contributed to improving water balance calculations
(Zaitchik et al., 2008; Li et al., 2012). More recent efforts have quantified the relation-
ship between regional water storage and specific streamflow events (Reager et al.,
2014), and have described regional storage-streamflow hysteresis for large basins
(Riegger and Tourian, 2014). Although these previous studies have provided new in-10

sights into regional watershed hydrology, their analyses are more diagnostic in nature
and did not explore the processes behind the observed behavior.

In this paper, we use GRACE observations of terrestrial water storage observations
to expand upon a fundamental concept in watershed hydrology – that the temporal re-
lationship between storage and runoff can be used to quantify complex watershed be-15

havior at broad scales, including groundwater recharge amounts and timing, baseflow
recession characteristics, and long lead-time streamflow prediction (Brutsaert, 2008;
Sayama et al., 2011; Reager et al., 2014; Riegger and Tourian, 2014). The temporal
relationship between coincident TWSA and discharge observations at three scales in
the Columbia River Basin (CRB) of western North America is investigated using climate20

and geology as a framing principle to describe the shape of the storage-streamflow hys-
teresis. We associate regional and temporal differences in the hystereses with varying
watershed dynamics. Finally, we compare the prognostic abilities of GRACE observa-
tions to individual modeled estimates of snow and soil moisture to predict streamflow
at regional scales.25

12032

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/12027/2014/hessd-11-12027-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/12027/2014/hessd-11-12027-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 12027–12062, 2014

GRACE
storage-streamflow

hystereses reveal the
dynamics of regional

watersheds

E. A. Sproles et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2 Study area

Our study area is the Columbia River Basin (CRB; 41–53◦ N and 110–122◦ W). This
basin has wet winters, with up to 70 % of annual precipitation falling between Novem-
ber and March, 50–60 % of which occurs as snow (Serreze et al., 1999; Nolin et al.,
2012). The spring months (April to June) are also wet, but warmer. Precipitation during5

the spring combines with snowmelt to swell rivers and potentially exacerbate flood-
ing. Snowmelt also serves as a critical component of the hydrologic cycle recharging
aquifers and filling streams later in the year. These contributions bridge the tempo-
ral disconnect between wet winters and dry summers when demand is at its peak as
farmers, fish, hydropower and municipal users vie for over-allocated water resources10

(United States Army Corps of Engineers, 2001; Oregon Water Supply and Conser-
vation Initiative, 2008). However, concerns with winter surplus and summer scarcity
are not uniform across the CRB, since climate and geology vary greatly. Two of the
study watersheds, the Upper Columbia (155 000 km2) and the Snake River basin
(182 000 km2), represent distinctly different climatic and geologic provinces of the CRB15

(described and illustrated in Fig. 1). The Upper Columbia is wet and is characterized by
steep topography of fractured rock and poor groundwater storage. In contrast, the arid
Snake River basin is bowl-shaped with mountains on three sides. The interior of Snake
River basin is a broad plain with well-developed soils and high aquifer storage. The
Columbia River at The Dalles (614 000 km2) encompasses the Upper Columbia and20

the Snake River sub-basins, and its climate and geology are an integration of the two
(Fig. 1). A distinct climatic feature of the Columbia River at The Dalles is the western
slope of the Cascade Mountains where over 3000 mm of mean annual precipitation at
higher elevations sustains a considerable seasonal snowpack. The scale of this study
was constrained to watersheds larger than 150 000 km2, the optimal minimum geo-25

graphic limit of GRACE data (Yeh et al., 2006; Landerer and Swenson, 2012).
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3 Methods and data

We used 108 months of GRACE and streamflow data over nine water years (WY;
October–September; 2004–2012). This data comprises positive, neutral, and negative
phases of the El Niño–Southern Oscillation and negative and positive phases of the
Pacific Decadal Oscillation (Feng et al., 2014; Iizumi et al., 2014). As a result, the data5

provides years of above- and below-average precipitation, snowpack, and streamflow
for the region. The three watersheds were delineated upstream from United States
Geological Survey (USGS) stream gages at 1◦ resolution, which is the resolution of
GRACE data (described below). In the CRB, these grid cells represent a dimension
of approximately 80 by 120 km. The Upper Columbia consists of the area upstream10

of the Columbia River at the International Boundary gage (USGS 12399500), just
downstream of the confluence of the Columbia and Pend-Oreille Rivers. The Pend-
Oreille is a major watershed in the upper portions of the CRB. The Snake River gage
at Weiser (USGS 13269000) provides gauged streamflow data above Hell’s Canyon
Reservoir, the largest impoundment in the Snake River basin. The USGS gage at The15

Dalles (USGS 14105700) provides the most downstream streamflow data for the CRB.
Monthly mean runoff (Q; mm) was calculated for each of the three gages using the
USGS streamflow data.

Measurements of TWSA were obtained from the GRACE RL-05 (Swenson and
Wahr, 2006; Landerer and Swenson, 2012) data set from NASA’s Tellus website20

(http://grace.jpl.nasa.gov). The errors present in the gridded GRACE data exist pri-
marily as a result of truncation (i.e., a low number of harmonics) in the spherical har-
monic solution, and smoothing and systematic noise removal (called “de-striping”) that
is applied after GRACE level-2 processing to remove spatially correlated noise (called
“stripes”) (Swenson and Wahr, 2006). This smoothing tends to smear adjacent signals25

together (within the radius of the filtering function), resulting in smaller signals being
lost, and larger signals having a coarser footprint and a loss of spatial information.
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To restore the GRACE signal lost during processing, the data were scaled using 1◦

Land-Grid Scale Factors produced by putting a 1◦ land surface model through identi-
cal processing (truncation and filtering) as the GRACE solutions, then measuring the
decrease in the signal amplitude at each 1◦ grid. These procedures are described on
the Tellus website and detailed in Landerer and Swenson (2012). Monthly 1◦ GRACE5

estimates of TWSA, and the associated 1◦ leakage and measurement errors, were
spatially averaged over each of the three study watersheds following the procedures
described in the Tellus website.

GRACE represents monthly storage anomalies relative to an arbitrary record-length
mean value, analogous to the amount of water above or below the long-term mean10

storage of a bucket, and should balance with the equation:

∆Storage = TWSA = ∆GW+∆SM+∆SWE+∆RES (1)

where all components are at monthly time steps; GW represents groundwater, SM rep-
resents soil moisture (from 0–2000 mm depth), SWE represents snow water equivalent15

(the equivalent depth of water held in snowpack), and RES represents reservoir stor-
age. The ∆ used here represents the anomaly from the study-period mean, rather than
a monthly change. To isolate monthly groundwater storage anomalies (∆GW or GWSA)
in the above equation, ∆SM, ∆SWE and ∆RES estimates were subtracted from the
monthly TWSA data using methods described in Famiglietti et al. (2011). Monthly SM20

values over the study basins were obtained from the mean of the North American
and Global Land Data Assimilation Systems (NLDAS at 1/8◦ resolution (Cosgrove
et al., 2003) and GLDAS at 1/4◦ resolution (Rodell et al., 2004), respectively), and
were spatially averaged over the three study watersheds. Monthly 1 km resolution SWE
values were obtained from the mean of NLDAS and Snow Data Assimilation System25

(SNODAS; National Operational Hydrologic Remote Sensing Center, 2004) and were
spatially averaged over the three watersheds. SNODAS data were used in place of the
GLDAS data product, which considerably underestimated SWE in mountainous areas
when compared to point-based measurements. Changes in monthly reservoir storage
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were calculated for the five largest reservoirs in the CRB (see Appendix A). Other
smaller reservoirs in the CRB were excluded when it was determined that fluctuations
in their levels were below the detection limits of GRACE.

Like all measurements, estimates of TWSA from GRACE contain error. For all of the
study basins, the range of error is well below the TWSA signal strength, approximately5

an order of magnitude below the annual amplitude (200–300 mm) of the TWSA signal
in the CRB. The basin-averaged TWSA errors (time invariant) for the three study basins
are 37 mm (Upper Columbia), 22 mm (Snake), and 25 mm (The Dalles), and are plotted
as bounds on the TWSA time series in Fig. 2a–c. Calculation of the error in individual
terms followed standard methodologies (Famiglietti et al., 2011), where error in SM is10

the mean monthly standard deviation, and standard errors for SWE and RES are 15 %
of mean absolute changes. Groundwater anomaly error is the calculated as the sum of
basin-averaged errors (added as variance) in the individual terms in the calculation of
∆GW (Eq. 1), including the error in TWSA (Swenson et al., 2006). The basin-averaged
error variance for GWSA (time invariant) in the three study basins are 45 mm (Upper15

Columbia), 26 mm (Snake), and 33 mm (The Dalles), and are plotted as bounds on the
GWSA time series in Fig. 2d–f. The individual components (SM, SWE, RES respec-
tively) for each basin are Upper Columbia (24, 6, 0.01 mm), Snake (14, 3, 0.01 mm),
and The Dalles (21, 4, 0.01 mm). Note that these error estimates are distributed across
an entire regional watershed and do not represent the error at individual monitoring20

sites.
Based on an approach similar to Reager et al. (2014) and Riegger and Tourian

(2014), we plotted the temporal relationship between TWSA and Q to examine hys-
teresis relationships in all three of the study watersheds for each individual water year
and for the monthly mean across all water years. Expanding from the integrated ter-25

restrial component of water storage, we also plotted the relationship between GWSA
and Q. We examined the branches of these hysteresis plots to measure basin ground-
water recharge amount and timing, storage peak amount and storage peak month.
In order to verify groundwater hysteresis, we compared the GRACE-derived GWSA
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to groundwater depths from well measurements at 33 sites throughout the study re-
gion (Fig. 1 and Appendix A). These data were normalized by their standard deviation,
and the mean of the 33 wells was calculated. The standard deviation of the GRACE-
derived GWSA for The Dalles was normalized to provide a direct comparison of GWSA
and in situ measurements.5

We further hypothesized that spring TWSA could predict Q later in the year for indi-
vidual months and after peak SWE accumulation (April–September). To test this prog-
nostic hypothesis we used a two-parameter power function (The MathWorks, 2013) to
evaluate the ability of TWSA in March and April to predict cumulative Q from April–
September (Qseason) and for August (QAugust), the low-flow month when demand is10

near its peak. Additionally, we tested and compared the modeled-values of SWE and
soil moisture from NLDAS, GLDAS, and SNODAS to predict Qseason and QAugust using
the same power-function analysis.

4 Results

4.1 Storage-discharge hysteresis plots15

The filling and emptying of the study basins at the regional-scale over the course of an
individual WY results in a hysteretic relationship between storage and runoff (Fig. 3a).
The hysteresis loops begin at the onset of the wet season in October, with TWSA in-
creasing (Figs. 3a and 4a–c) as precipitation is stored as snow and soil moisture. An
increase in storage that is not offset by an increase in discharge indicates a predomi-20

nance of snow inputs and the freezing of soil water. The lower branch of the hysteresis
plot (storage increase unmatched by streamflow) can be used to estimate cumulative
snow water equivalent and soil moisture in the basin. This is the water that later con-
tributes to streamflow and groundwater recharge in the spring.

The hysteresis shifts direction from February–April (inflection 1, Fig. 3a) when satu-25

rated soils and snow melt cause Q to rapidly increase. Each hysteresis loop contains
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a vertical branch of the curve during which storage is relatively constant, but streamflow
increases rapidly. This also represents the groundwater recharge branch of the loop.
As snow melts and the ground thaws, runoff is generated, recharge into soils occurs,
and basins tend to be at peak storage during this branch. Storage losses and addi-
tional precipitation inputs during this period are re-organized internally. A second shift5

(inflection 2, Fig. 3a) occurs from April–June when peak TWSA begins to decrease,
representing spring snowmelt and a switch from precipitation that falls primarily as
snow to rain; these combine to contribute to peak Q.

Once peak Q values are reached, the loop shifts direction a third time (inflection
3, Fig. 3a), receding on both axes as contributions from snowmelt diminish while10

groundwater sustains streams and provides a source for irrigated agriculture. During
this period, the relationship between TWSA and discharge is linear, corresponding to
baseflow-driven runoff processes in which each monthly change in storage causes
a proportional change in the generation of streamflow.

The hysteresis plots of TWSA-Q for an individual water year demonstrate that the15

timing and quantity of precipitation governs the size of a hysteresis loop for an individual
WY (Figs. 3a, 4a–c, and 5). For instance wet years (e.g., 2008) have bigger loops, while
dry years (e.g., 2005) are more compressed along both axes. However, the general
shape of the loops is distinct for each basin. Plotting multiple WYs provides a family
of curves for each basin that helps describe the how climate and geology governs the20

timing and magnitude of the relationship between TWSA and Q (Figs. 3a–c and 5).

4.2 Individual basin hysteresis plots

Of the three study basins, the Upper Columbia is the most hydrologically responsive,
with a mean range of 210 mm for TWSA and 50 mm for Q. The Upper Columbia’s steep
topography and wet climate fills the limited aquifer quickly, reaching a storage threshold25

and generating runoff. The steep topography moves snowmelt and rain quickly through
the terrestrial system and into the river channel until cresting in June (Figs. 4 and 5),
followed by declines in TWSA and Q from June–September.
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In contrast to the rapid response of the Upper Columbia, the Snake River receives
∼ 60 % less annual precipitation, but has an annual TWSA range that is only 26 %
less (160 mm; Figs. 4 and 5). However, the hysteresis loops for the Snake River are
collapsed (mean annual range in Q = 7 mm). The climate and geology of the Columbia
River at The Dalles (Figs. 4 and 5) are an integration of the Upper Columbia and5

Snake River, seen in the shape of the hysteresis loops (mean ranges TWSA=180 mm;
Q = 25 mm). The period from February–June more closely resembles the Snake River
basin, with gradual increases in TWSA and sharp increases in Q. The slope of the
recession from June–September has the same general shape for The Dalles as the
Upper Columbia (Fig. 4a and c), presumably from snowmelt-generated runoff.10

4.3 Groundwater-discharge hysteresis plots

The hysteresis loops describing the temporal relationship between GWSA and Q are
equally informative, with one dramatic difference – they temporally progress in oppo-
site directions of the hysteresis loops of TWSA and Q (Fig. 3). For all three water-
sheds, GWSA decreased from October–February/March (Fig. 4d–f), and does not shift15

towards positive gains until early spring and the initial stages of melt before reaching
its maximum in June. The 33 point-specific well data show considerable individual vari-
ability throughout a water year, and the mean of the mean of the standard deviations
was close to zero for all months (Fig. 6).

4.4 Streamflow forecasting20

We next present how TWSA was applied prognostically to predict streamflow.
TWSAMarch can predict the total Q from April through September (Qseason) in all three
basins with an R2 range of 0.83–0.98 and a mean R2 (R2) of 0.91 (Fig. 7a, Table 1).
Applying TWSA for April also provided similar results, but with a lower degree of skill in
predicting Q (range=0.75–0.92, R2 = 0.86).25
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TWSAMarch also served as a good indicator of August runoff (QAugust, range=0.68–

0.88, R2 = 0.77). While this overall mean is high, the range of agreement between
basins was not uniform (Fig. 7b). The skill of TWSAMarch in the Snake River (R2 = 0.68)
was considerably lower than the Columbia River at The Dalles (R2 = 0.88).

Snowpack and soil moisture play a considerable role in the hydrology of the CRB5

and are commonly used to help predict water demand and availability later in the year
(Koster et al., 2010). We compared the predictive capabilities of the modeled snow
(SWE) and soil moisture (SM) products to the GRACE TWSA data (Table 1). Compared
to SWE, TWSAMarch provided a better indicator of seasonal and August runoff in the
Upper Columbia and at the Dalles across all nine years (Fig. 6). In the Snake River,10

SM provided a slightly higher degree of skill than TWSAMarch in predicting Qseason and
QAugust. However in the Upper Columbia and The Dalles, SM provided inferior predictive
skill for Qseason and QAugust as compared to TWSA.

5 Discussion

Decades of data collection and monitoring at individual gage sites indicate that wa-15

tersheds collect, store and release water. Using one integrated measurement from the
GRACE satellites our results show these same process at the regional scale in the hys-
teresis loops of storage (TWSA) and runoff (Q). While hystereic processes have pre-
viously been identified in local-scale measurements (McDonnell, 2003; McGlynn and
McDonnell, 2003), only recently has streamflow-storage hysteresis been measured at20

the regional scale (Riegger and Tourian, 2014).
Our work builds on Riegger and Tourian’s (2014) results, and employs GRACE data

to describe how regional watersheds function as integrated, non-linear systems gov-
erned by climate and geology. Climate controls the size of the hysteresis loops by
providing a first-order control on hydrologic inputs and the storage of solid water, which25

in turn governs the ranges of TWSA and Q. However, runoff response to precipitation
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and snowmelt does not act independently from geology (Jefferson et al., 2008; Tague
et al., 2008), which controls how liquid water is stored and routed through a water-
shed, even at the regional scale. This in turn helps govern the shape of a watershed’s
hysteresis curve.

For example, basin steep slopes and fractured bedrock geology in the Upper5

Columbia cause snowmelt and precipitation to run off quickly, and a relatively small
amount is retained in the soil. This phenomena is seen in the more open shape of the
hysteresis curve in the Upper Columbia – once maximum TWSA is reached in March,
it quickly transitions to runoff (Fig. 4a). These data suggest that this is a watershed
where snow storage is the primary component of water storage, which is also reflected10

in the comparison of SWE and SM data (not shown).
In contrast, the arid and groundwater dominated Snake River basin results provide

a very different family of hysteresis curves (Figs. 4 and 5) that are compressed vertically
(Q) as compared to the Upper Columbia basin, despite showing a similar intra-annual
range horizontally (TWSA). Another distinction is that the onset of spring melt runoff15

in February does not deplete TWSA at the Snake River. Instead, TWSA continues to
increase until May, when peak runoff occurs. These data support the conceptual model
of a watershed that retains comparatively more winter precipitation in soils and aquifers
throughout the spring season, and that drains to sustain flow later in the year.

The greater Columbia River Basin upstream from The Dalles integrates the climatic20

and geologic characteristics of the Snake River and Upper Columbia as well as other
areas within the CRB. The western slope of the Cascades, which is outside of the
Upper Columbia, accumulates up to several meters of SWE each winter. The region
due east of the Cascades is characterized by a plain underlain by basalt that provides
excellent aquifer storage and helps dampen the snowmelt pulse in the spring. The25

hysteresis loops for the CRB reflect these combined characteristics, where the onset
of melt in February produces a pronounced increase in runoff similar to the Upper
Columbia. However, as with the Snake River, increases in measured TWSA are found
in the CRB through April.
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We applied these climatic and geologic insights to develop and test the hypothesis
that spring TWSA could predict Q later in the year, based on two observations: First, the
shapes of the hysteresis curves for each basin are similar (Figs. 4a–c and 5), but vary
by magnitude of annual TWSA. Second, peak TWSA occurs before the peak runoff. We
show that the integrated GRACE signal is a good baseline measurement in predicting5

seasonal streamflow across a range of water years with regards to precipitation and
streamflow. In essence, our data suggest that the water stored across and through the
Columbia River Basin in March describes the water available for the remainder of the
water year. In the CRB and in the northwestern United States, snowpack is commonly
used as a metric for predicting spring runoff. Despite its importance to the hydrologic10

cycle of the region, measurements of TWSAMarch from GRACE provide a better predic-
tion of seasonal and August runoff than model-derived estimates of snowpack. GRACE
TWSAMarch also provided a better prediction for runoff than soil moisture, except for the
Snake River basin. There March soil moisture provided a better indicator of runoff for
the rest of the year, although TWSAMarch had a similar accuracy (Table 1). Despite15

a relatively short data record, the years of our study represent a wide-range of condi-
tions with regards to climate and streamflow, which is captured in our models and is
shown in the box plots to the right of Fig. 7a and b.

Although these results are promising with regards to using GRACE as a predictive
tool for water resources, Fig. 7a and b suggest that Q is insensitive to TWSAMarch20

values below 100 mm. We recognize that all three of these regional watersheds are
managed through a complex series of dams and reservoirs that create an altered runoff
signal. Water resources managers use point-specific and model-based estimates of
water storage in the region to optimize their operations. Additionally, in the fertile plains
of the Snake River and lower CRB, broad-scale agriculture relies on both ground- and25

surface water for irrigation. Water withdrawals would be implicit in the TWSA signal
and reduce Q. Subsequent, more detailed analysis would help quantify these effects.
However the compilation of a complete irrigation dataset lies outside the scope of this
study. We also acknowledge the length of record for this study would ideally be longer.
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Regardless of the length of record or anthropogenic influence, climate and geol-
ogy still provide the first-order controls on water storage that are found in the hystere-
sis loops. GRACE encapsulates these hydrologic processes through measurements
of TWSA. The hysteresis loops expand and contract accordingly during wet and dry
years, as the intra-annual relationship between TWSA and Q represents the fluxes of5

water into and out of the watershed. Despite intra-annual differences, each of the sub-
regional watersheds can be described by a family of hysteresis curves. The predicative
capability using TWSA, the vertical sum of water, as compared to snowpack and soil
moisture further highlights the integrated nature of water storage in regional hydrology.
These integrated measurements of TWSA provide simple, but informative predictions10

of seasonal and monthly runoff.
GRACE-derived calculations of GWSA also provide insights into the hydrological

processes governing groundwater recharge and depletion, as evidenced in the GWSA
hysteresis loops. The GWSA-Q curves show an out-of-phase relationship between pre-
cipitation and groundwater recharge from the start of the wet season in October until15

February or March. This suggests that groundwater helps sustain stream flow during
the wet fall and winter and that pore space in soils and geologic materials must fill
to a certain threshold before groundwater begins to recharge and runoff is generated.
The relationship between the TWSA and GWSA curves from October–March identi-
fies how the onset of snowmelt also marks the beginning of groundwater recharge,20

and suggests that snowmelt inputs to groundwater are considerable. In the CRB this is
critical as current climate trends are projected to reduce snowpack accumulation and
exacerbate melt in the region (Wu et al., 2012; Rupp et al., 2013; Sproles et al., 2013).
Additionally, our analysis identifies summer as the time of peak groundwater storage
in all three regional watersheds. This peak corresponds to the timing of groundwater25

pump tests that are commonly conducted in June, and are used to develop ground-
water withdrawal regulations (Jarvis, 2011, 2014). Our data suggest that groundwater
pump tests should not be limited to an individual month, and should also include peri-
ods of reduced storage particularly during the winter months. The inclusion of multiple
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pump tests throughout the year could be particularly relevant as the population and
water demand is projected to increase in the region.

The point-specific well data (Fig. 6) is ambiguous and show considerable variabil-
ity with no consistent pattern regarding the timing of recharge and peak groundwater
levels (light grey lines in Fig. 6). Rather than excluding these results or selecting indi-5

vidual wells that match GRACE data we include the results from all 33 wells to help
demonstrate the variability that exists from well to well, and how site characteristics
(i.e., usage, depth, location) might not represent regional groundwater characteristics
(Jarvis, 2011, 2014). An in-depth study that couples GWSA and well data would poten-
tially help explain the ambiguity, but lie outside the scope of this study.10

GRACE is somewhat of a blunt instrument with regards to temporal (monthly) and
spatial (1◦) resolution. However, this emerging technology provides a new dimension to
regional watershed analysis by providing an integrated measurement of water stored
across and through the Earth. These measurements continue to prove their value in ret-
rospective analysis of regional hydrology (Rodell et al., 2009; Castle et al., 2014). How-15

ever, the hysteresis loops presented here and in Riegger and Tourian (2014) demon-
strate the ability of GRACE data to help develop a process-based understanding of
how regional watersheds function as simple, dynamic systems. As the temporal record
of GRACE continues to develop, its value as both a diagnostic and predictive tool will
continue to grow. In the mean time, these data have value in augmenting existing man-20

agement strategies.
Perhaps one of the most important facets of GRACE data is that it does not distin-

guish political boundaries, and it is not linked to a specific in situ monitoring agency
with limited data access, and has the capacity to bridge sparse and inconsistent on-
the-ground hydrologic monitoring networks that exist in many regions of the world.25

Previous GRACE-based analysis has shown its value in highlighting negative trends in
terrestrial water storage in trans-boundary watersheds (Voss et al., 2013; Castle et al.,
2014), and resulting regional conflict exacerbated by water shortages (Gleick, 2014b).
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GRACE provides an objective measurement of a region’s water resources that can
provide valuable insights into potential shortages or surpluses of water resources.

6 Conclusions

We have shown how GRACE-based measurements of TWSA distill the complexity
of regional hydrology into a simple, dynamic system. TWSA and derived estimates of5

GWSA reveal hysteretic behavior for regional watersheds, which is more commonly as-
sociated with hydrologic measurements at local scales. While the magnitude of the hys-
teresis curves varies across years, they retain the same general shape that is unique
to each watershed. We demonstrated the utility of these hysteresis curves by showing
how TWSA during March can be used to predict Q during the drier summer months. Be-10

cause GRACE-TWSA can augment prediction, managers could start to interpret each
year’s hysteresis curve for the upcoming spring and summer, providing greater clarity
and validation for model-based forecasts presently used by water resource managers.

Although this study focused on the CRB, which has a rich data record, GRACE data
are available at a global scale and could be readily applied in areas with a paucity of15

data to understand how watersheds function and to improve streamflow forecasting
capabilities. GRACE does not discern political boundaries and provides an integrated
approach to understanding international watersheds (Voss et al., 2013). This resource
could serve as a valuable tool for managers in forecasting surplus and scarcity, and
in developing strategies that include changes in supply and demand due to human20

consumptive needs and current climate trends (Wagener et al., 2010; Gleick, 2014a).

Author contributions. E. A. Sproles, S. G. Leibowitz, and P. J. Wigington Jr. developed the
hysteresis concept based upon background research by J. T. Reager and J. S. Famiglietti. The
data analysis was led by E. A. Sproles, but represents a combined effort from all of the authors.
J. T. Reager provided expertise in the GRACE data product, groundwater, and error analysis.25

E. A. Sproles prepared the manuscript with contributions from all co-authors.
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Table 1. Results from all three study basins using GRACE TWSA data to predict seasonal
(Qseason) and August (QAugust) streamflow as compared to using model derived snow (SWE)
and soil moisture (SM) products. Average values for the three basins are also provided. RMSE
values are in mm.

Upper Columbia Basin
Qseason QAug

TWSAMar TWSAApr SWEMar SMMar TWSAMar TWSAApr SWEMar SMMar

R2 0.93 0.92 0.82 0.03 0.76 0.73 0.56 0.09
RMSE 22.18 23.18 36.19 82.90 6.60 6.90 8.92 12.79

Snake River Basin
Qseason QAug

TWSAMar TWSAApr SWEMar SMMar TWSAMar TWSAApr SWEMar SMMar

R2 0.83 0.75 0.34 0.93 0.68 0.52 0.62 0.76
RMSE 8.76 10.55 17.23 5.80 0.43 0.52 0.47 0.37

The Dalles
Qseason QAug

TWSAMar TWSAApr SWEMar SMMar TWSAMar TWSAApr SWEMar SMMar

R2 0.98 0.91 0.67 0.00 0.88 0.91 0.46 0.02
RMSE 6.22 13.00 24.60 42.67 1.55 1.30 3.30 4.40

Average
Qseason QAug

TWSAMar TWSAApr SWEMar SMMar TWSAMar TWSAApr SWEMar SMMar

R2 0.91 0.86 0.61 0.32 0.77 0.72 0.54 0.29
RMSE 12 16 26 44 3 3 4 6
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Table A1. The reservoirs used in the GRACE analysis.

Reservoir Name Operating agency Normal
operating

capacity (m3)

Grand Coulee US Department of Interior 1.16×1010

Libby US Army Corps of Engineers 7.17×109

Hungry Horse US Department of Interior 4.28×109

Dworsha US Army Corps of Engineers 4.26×109

American Falls US Department of Interior 2.10×109
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Table A2. The groundwater wells used in the analysis that compares GRACE-derived ground-
water with location-specifc wells. USGS is the United States Geological Survey and IDWR is
the Idaho Department of Water Resources.

Well number Operating agency

434400121275801 USGS
442242121405501 USGS
452855119064701 USGS
453239119031501 USGS
453845121191401 USGS
453937121215801 USGS
453944121211301 USGS
454013121225901 USGS
454027121212501 USGS
454040121222901 USGS
454047121203701 USGS
454100119164801 USGS
454416119212801 USGS
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Figure 1. Context map and descriptions of the three study watersheds.
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Figure 2. Monthly storage anomalies for TWSA (a–c) and GWSA (d–f) for the three water-
sheds. Standard errors (a) and error variance (b) for each watershed are represented by the
blue shading.
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Figure 3. Annotated hysteresis curves of terrestrial water storage anomalies (a) and ground-
water storage anomalies (b) based upon the nine-year mean for the Columbia River at The
Dalles. These curves describe the fluxes of water moving through the watershed.
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Figure 4. Individual hysteresis curves for the three study watersheds for terrestrial water stor-
age anomaly (TWSA; a–c) and groundwater storage anomaly (GWSA; d–f). The grey areas in
the GWSA plots provide a visual reference of the error variance for each watershed. The low
topography and high storage capacity of the Snake aquifer provides a consistent groundwater
signal, as compared to the limited aquifer of the Upper Columbia, which fills and drains quickly.
Note the different scales on the y axes.
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Figure 5. Plots of the hysteresis curves for TWSA in each of the three study watersheds across
all nine water years. For visual clarity, each plot contains three water years and the nine-year
mean. Note the different scales on the y axes for each basin.
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Figure 6. Measurements of terrestrial water storage anomalies in March (TWSAMarch) effec-
tively predict the cumulative runoff for April–September (Qseason; a), and describe how these
three regional watersheds function as simple non-linear systems. TWSAMarch also predicts
mean runoff for August (QAugust; b), one of the driest months of the year when demand for water
is at its peak. The hashed lines represent the 95 % confidence intervals. The box plots to the
right of each plot represent the range of Q for the respective watershed from WY’s 1969–2012.
Note the semi-log y axis on (b).
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Figure 7. The normalized GRACE-derived groundwater anomaly compared to normalized well
data over the study period. The grey lines in the background are the 33 individual wells, and the
hashed line represents the mean of these wells. While some wells match the general GRACE-
derived GWSA, variability across wells creates a muted mean signal.
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