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Abstract
RNA-Sequencing (RNA-Seq) has been widely adopted for quantifying gene expression

changes in comparative transcriptome analysis. For detecting differentially expressed

genes, a variety of statistical methods based on the negative binomial (NB) distribution

have been proposed. These methods differ in the ways they handle the NB nuisance pa-

rameters (i.e., the dispersion parameters associated with each gene) to save power, such

as by using a dispersion model to exploit an apparent relationship between the dispersion

parameter and the NB mean. Presumably, dispersion models with fewer parameters will re-

sult in greater power if the models are correct, but will produce misleading conclusions if

not. This paper investigates this power and robustness trade-off by assessing rates of iden-

tifying true differential expression using the various methods under realistic assumptions

about NB dispersion parameters. Our results indicate that the relative performances of the

different methods are closely related to the level of dispersion variation unexplained by the

dispersion model. We propose a simple statistic to quantify the level of residual dispersion

variation from a fitted dispersion model and show that the magnitude of this statistic gives

hints about whether and how much we can gain statistical power by a dispersion-

modeling approach.

Introduction
Over the last ten years, RNA-Sequencing (RNA-Seq) has become the technology of choice for
quantifying gene expression changes in comparative transcriptome analysis [1]. The negative
binomial (NB) distribution has been widely used for modeling RNA-Seq read counts [2–4]. Al-
though early studies have shown that the Poisson model is adequate for modeling RNA-Seq
count variation from technical replicates [5], many recent RNA-Seq analyses revealed that
RNA-Seq counts from biological replicates show significant extra-Poisson variation. The NB
distribution can be derived as a mixture of Poisson distributions in the so-called Gamma-Pois-
son model. For a random variable Y having an NB distribution with mean μ and dispersion ϕ,
the variance is given by Var(Y) = μ + ϕμ2, and the dispersion parameter ϕ determines the extent
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to which the variance exceeds the mean. The square root of ϕ is also termed “biological coeffi-
cient of variation” (BCV) in [6].

The dispersion ϕ is a nuisance parameter in tests for differential expression (DE), but cor-
rect estimation of ϕ is essential for valid statistical inference. In a typical RNA-Seq experiment,
our ability to detect truly DE genes is hampered by the large number of genes, the small sample
size, and the need to estimate the dispersion parameters. To ameliorate this difficulty, many
different NB dispersion models have been proposed (see the Background section for more de-
tails) with a common theme of “pooling information across genes”. An NB dispersion model
relates the dispersion to some measure of read abundance, a, through a simple parametric or
smooth function f with a small number of parameters α (estimated from data):

log ð�ijÞ ¼ f ðaij; aÞ; ð1Þ

where i indexes genes and j indexes biological samples. For example, in [4] we let a be prelim-
inarily estimated mean relative frequencies and let f be a linear or quadratic function of log(a).
This and other dispersion models are motivated by empirical evidence of a trend—over all
genes—of decreasing size of dispersion parameter with increasing relative frequency of RNA--
Seq reads for the genes. By introducing a dispersion model f, one hopes to summarize the dis-
persion parameters for all genes by a small number of model parameters α and thus drastically
reduce the number of nuisance parameters to estimate. A dispersion-modeling approach as de-
scribed above can lead to power saving, if a correct or “close enough”model is used. While em-
pirical evidence overwhelmingly suggests a general trend between dispersion level and mean
expression, goodness-of-fit measures [6, 7] suggest simple parametric and smooth function
models may not be able to capture the total variation in dispersion (see the subsection “Back-
ground/Goodness-of-Fit Tests” for more details).

The key question that motivates this study is, even when a dispersion model shows lack-of-
fit, to what degree can it still be useful in improving the power of the DE test. It will be conve-
nient for us to consider a general trend in dispersion parameter, but also allow for variation
about the trend, as follows:

log ð�ijÞ ¼ f ðaij; aÞ þ �i; ð2Þ

where � represents an individual component in ϕ that is unexplained by the trend. Intuitively,
the strategy of “pooling information across genes” through a dispersion model f will be most ef-
fective if the overall level of residual variation in � is low. In this paper, as an approximation,
we model � using a normal distribution �i *N(0,σ2) and quantify the level of variation in � by
σ2. We estimate σ for five real RNA-Seq datasets (from human, mouse, zebrafish, Arabidopsis
and fruit fly) and then investigate the power and robustness of DE tests when the amount of re-
sidual variation in dispersion matches that from the real data. We also explore how the relative
performances of different DE test methods will change as the magnitude of σ changes.

In this paper, we focus on the overall level of deviation (summarized by σ) from an estimat-
ed model for log dispersion. Zhou et al.[8] discussed the impact of “outliers”—a small number
of highly influential outlining cases—on the performance of DE test. Under our framework, it
is possible to investigate the impact of such individual outliers by considering non-normal
models (such as a binomial or Poisson point process model) for �, but such extensions are non-
trivial and we will not pursue them in this paper. Our approach for estimating σ2 is related to
the empirical Bayes approach for estimating � under a normal prior distribution. However, our
focus in this paper is in estimating σ2, not the individual �0is. The quantity σ

2 is related to the
quantity d0 discussed in [9]. We explain this connection in more details in the subsection
“Background/Weighted Likelihood and Empirical Bayes Methods”.
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Background

RNA-Seq
In brief, a typical RNA-Seq pipeline can be summarized as follows: purified RNA samples are
converted to a library of cDNA with attached adaptors, and then sequenced on an HTS plat-
form to produce millions of short sequences from one or both ends of the cDNA fragments.
These reads are aligned to either a reference genome or transcriptome (called sequence map-
ping), or assembled de novo without the genomic sequence. The aligned reads are then summa-
rized by counting the number of reads mapped to the genomic features of interest (e.g., exons
or genes), and the expression profile is eventually represented by a matrix of read counts (non-
negative integers) where rows are genes (or some other genomic features like exons) and col-
umns are samples. Subsequent steps that rely heavily on statistical analyses include normaliza-
tion of reads and testing DE genes between samples under different environmental or
experimental conditions.

NB Regression Models
An NB regression model for describing the mean expression as a function of explanatory vari-
ables includes the following two components:

1. An NB distribution for the individual RNA-Seq read counts Yij:

Yij � NBðmij; �ijÞ;

where i = 1,. . .,m indexes genes, j = 1,. . .,n indexes samples, μij is the mean, and ϕij is the dis-

persion parameter such thatVarðYijÞ ¼ mij þ �ijm
2
ij.

2. A log-linear regression model for the mean μij as a function of p explanatory variables Xjk

(k = 1,. . .,p):

log ðmijÞ ¼ log ðNjÞ þ log ðRjÞ þ
Xp

k¼1

bikXjk: ð3Þ

These two components resemble a generalized linear model (GLM) [10], but note that the
dispersion ϕij is unknown (see the “NB Dispersion Models” subsection below). The two ad-
ditive constants, log(Nj) and log(Rj), have to do with count normalization: accounting for
different observed library sizes (Nj) and the apparent reduction/increase in the expression
levels of non-DE genes resulting from the increased/decreased expression of a few truly DE
genes [3, 11]. The normalization constants, Nj and Rj, are pre-estimated and treated as
known during GLM fitting. In many applications, the same constant (Nj Rj) is assumed for
all genes in a sample, but it may be advantageous to introduce between-gene normalization
factors to account for some gene-specific sources of technical biases such as GC-content
and gene length [12]. Between-gene normalization can be incorporated into the GLM
framework as well. See [13–15] for relevant discussions.

DE Tests
Testing differential expression can often be reduced to testing that one or more of the regres-
sion coefficients equal zero. For example, for comparing gene expression levels between two
groups, we can let p = 2, Xj1 = 1 for all j; Xj2 = 1 if sample j is from group 2 and Xj2 = 0 if sample
j is from group 1. Under this parameterization, β1 corresponds to group 1’s relative mean
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expression level and β2 corresponds to the log fold change between group 2 and group 1. The
null hypothesis isH0:β2 = 0.

In general NB regression settings, exact tests are not available, but asymptotic tests, such as
likelihood ratio test, can be used. Di et al. [16, 17] showed that the performance of likelihood
ratio test in small sample settings can be improved with higher-order asymptotics (HOA) ad-
justment. Lund et al. [18] discussed quasi-likelihood (QL) methods by replacing likelihood
ratio test with QL F-test for better FDR control, where the test statistic is based on quasi-disper-
sion parameter estimates or two variants called QLShrink and QLSpline for pooling informa-
tion across genes.

NB Dispersion Models
As mentioned in the Introduction section, many current DE analysis methods use an NB dis-
persion model to capture the general trend between dispersion and read abundance. The differ-
ent DE analysis methods can be put into the following general categories according to the
functional form f of the dispersion model and the treatment of individual variation (see Equa-
tion (2)):

1. Common: Earlier works of Robinson and Smyth [19] discussed a common dispersion
model where f is a constant. In other words, ϕij = c for all i, j.

2. Parametric function: Recognizing an evident trend between the dispersion and relative
gene expression, Di et al. [4] adopted a parametric NBP model where the log dispersions
are modeled as a linear function of the log relative mean frequencies. Referring to Equa-

tion (1), in an NBP model, aij ¼ pij ¼ mij
NjRj

and f(aij;α) = α0 + α1log(πij). A natural exten-

sion to NBP is the NBQ model which incorporates an extra quadratic term:

f ðaij; aÞ ¼ a0 þ a1 log ðpijÞ þ a2 log ðpijÞ
h i2

: ð4Þ

3. Smooth function: Anders and Huber [3] suggested fitting a non-parametric curve to cap-
ture the dispersion-mean dependence. McCarthy et al. [6] introduced a similar “trended”
(non-parametric) model. NBPSeq added an NBS model for non-parametric smooth
dispersion model.

The methods above ignore possible individual dispersion variation (i.e., �i in Equation (2))
in subsequent DE tests.

4. Shrinkage methods: McCarthy et al. [6] discussed options to use weighted average be-
tween genewise dispersion estimates and trended estimates in an empirical Bayes frame-
work (we will call this method “tagwise-trend”). The genewise estimates can also be
shrunk towards a common value [20]. Love et al. [12] added a shrinkage option in
DESeq2.

5. Quasi-likelihood methods: Lund et al. [18] suggested fitting a quasi-likelihood (QL)
model by specifying (for gene i and sample j):

VarðYijÞ ¼ FiViðmijÞ; ð5Þ

with the NB variance function ViðmijÞ ¼ mij þ oim
2
ij. Both the NB dispersion parameter

(ωi) and the quasi-likelihood dispersion parameter (Fi) are estimated from the data and
used to model the variance of the read count Yij. The QL-dispersion Fi adjusts for degrees
of freedom and accounts for uncertainty in the estimated NB variance. A shrinkage
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method is used to estimate Fi and two variants, “QLShrink” and “QLSpline”, differ in the
formulation of prior distribution of Fi. These QL-based approaches are implemented in
the QuasiSeq package. (See also, the review in the subsection “Weighted Likelihood and
Empirical Bayes Methods” below.)

6. Genewise: The NBPSeq package allows for fitting NB regression model and performing
DE test to each gene separately without assuming any dispersion model. HOA adjustment
is used to improve the performance of the likelihood ratio test.

In the above, we mainly summarized methods implemented in the R/Bioconductor packages
DESeq, DESeq2, edgeR, NBPSeq and QuasiSeq[21, 22]. They represent the wide range of
currently available options. These packages use slightly different predictors (aij in Equation
(1)) in their dispersion models, and also use different methods to estimate dispersion models,
but these differences are of no primary interest in our power-robustness analysis. As we will
see later, the main factor that influences the DE test performance is how the individual disper-
sion variation is handled.

Goodness-of-Fit Tests
Mi et al. [7] discussed a resimulation-based goodness-of-fit (GOF) test for negative binomial
models fitted to individual genes, and then extended the test to multiple genes using Fisher’s
method for combining p-values. The paper also introduced diagnostic plots for judging GOF.
McCarthy et al. [6] transformed genewise deviance statistics to normality and used QQ-plot to
examine GOF of different dispersion models. In particular, their QQ-plots (Fig. 2 in their
paper) indicated that simple dispersion models, such as a common or trended dispersion
model, showed lack-of-fit when used to model an RNA-Seq dataset from a study on oral squa-
mous cell carcinomas (OSCC). One question that motivated this study is how different DE test
methods perform when the fitted dispersion model (the trend part) shows lack-of-fit. Intuitive-
ly, the performance of different test methods, especially the ones that do not explicitly account
for individual residual variation, should be related to the level of residual dispersion variation.
We want to make this statement more precise. This motivated us to quantify the level of
residual dispersion variation using σ2 and relate the power/robustness analysis to the magni-
tude of σ2.

Weighted Likelihood and Empirical Bayes Methods
In the edgeR package, one can estimate the genewise (or tagwise) dispersion by maximizing
the weighted average of two adjusted profile likelihoods:

APLið�iÞ þ G0 � APLSð�iÞ; ð6Þ

where APLi is computed from each gene separately, and APLS represents the general trend in
mean-dispersion dependence. The detailed formulation of APLS(ϕi) has been evolving over the
years. For example, it can be formed by a (weighted) average of APLi values for genes near i.
This weighted likelihood method has its root in empirical Bayes method and APLS serves as
the prior likelihood [6, 9, 20].

To estimate G0, Chen et al. [9] considered an empirical Bayes approach using quasi-likeli-
hood. A variance function V(μ) was used to specify the mean-variance relationship according
to, for example, a Poisson or a negative binomial model, and a quasi-likelihood function:

VarðYijÞ ¼ s2
i � VðmijÞ ð7Þ

was used to model the additional variation in the mean-variance relationship between genes
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(they indexed genes with letter g while we use i in this paper). Chen et al. [9] assumed a scaled
inverse χ2 prior distribution of s2

i :

s2
i � s20 �

d0
w2
d0

with parameters s20 and d0. In comparison, the model (Equation (2)) in this paper is on the dis-
persion parameter. The parameter d0 is called the prior degrees of freedom and it plays an analo-
gous role as σ2 in this paper. For a series of simulated datasets, our estimates of σ2 is
approximately inversely proportional to estimates of d0 as explained below (see Fig. E in the
Supporting Information S1 File).

Under an empirical Bayes framework, the parameters of the prior distribution are estimated
from the data. Let Di be the residual deviance of the generalized linear model fitted to read
counts and di be the known effective residual degrees of freedom for gene i. Chen et al. [9] ex-
plained that given s2

i , the mean residual deviance, defined as

s2i ¼
1

di
Di;

has, approximately, a scaled chi-square conditional distribution:

s2i js2
i � s2

i

w2di
di

:

It then follows that the marginal distribution of s2i is a scaled F-distribution:

s2i � s20 � Fdi ;d0
:

s20 and d0 can be estimated from s2i using the method of moments. Chen et al. [9] suggested that

one can use d0
di
as G0 in the weighted likelihood (Equation (6)). Recent versions of edgeR pro-

vide this option. However, for the simulations performed in this paper, when performing DE
tests using edgeR, we estimated the dispersion parameters using the edgeR functions esti-
mateGLMTrendedDisp and estimateGLMTagwiseDisp, where similar weighted like-
lihood was considered, but the default value G0 = 10 was used (see also McCarthy et al. [6]).

The variance function (V(μ)) and quasi-likelihood function (7) described above are essen-
tially the same ones as considered in [18] (cf. Equation (5)), but the estimation methods and
the definition of di used in the two papers were slightly different (e.g., one of the reviewers
pointed out that a refinement was made in Chen et al. [9] where di is decreased slightly to allow
for bias in the residual deviance associated with exact zero counts). In [18], the estimated d0
was used for constructing the quasi-likelihood F-test. Wu et al. [23] proposed another empiri-
cal Bayes shrinkage estimator for the dispersion parameter which aimed to adequately capture
the heterogeneity in dispersion among genes. The empirical Bayes strategy has also been used
in [24] for modeling microarray data.

Other Related Work
There are also recent works on comparing the performances of DE tests: Soneson and Delor-
enzi [25] evaluated 11 tools for their ability to rank truly DE genes ahead of non-DE genes, the
Type-I error rate and false discovery rate (FDR) controls, and computational times. Landau
and Liu [26] discussed dispersion estimation and its impact on DE test performance, mainly fo-
cusing on different shrinkage strategies (none, common, tagwise or maximum). The key as-
pects of this paper are to explicitly quantify the level of inadequacy of a fitted dispersion model
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using a simple statistic, and to link the magnitude of this statistic directly to the performance of
the associated DE test.

Results
We investigate the power and robustness of DE tests under realistic assumptions about the NB
dispersion parameters. We fit the NBQ dispersion model (see Equation (4)) to real datasets to
capture the general trend in the dispersion-mean dependence. We model the residual variation
in dispersion using a normal distribution (see Equation (2)) and the level of residual variation
is then summarized by a simple quantity, the normal variance σ2. Because biological variations
are likely to differ across species, and experiments involve varied sources of uncertainty, we
choose to analyze five datasets from different species that represent a broad range of character-
istics and diversity for typical RNA-Seq experiments. The species include human (Homo sapi-
ens), mouse (Mus musculus), zebrafish (Danio rerio), Arabidopsis (Arabidopsis thaliana) and
fruit fly (Drosophila melanogaster). The Methods section includes descriptions of the datasets.
For each experiment/dataset, unless otherwise specified we will provide the following results:

1. Mean-dispersion plot with trends estimated from NB dispersion models;

2. Gamma log-linear regression as informal model checking;

3. Estimation of the variance σ2 of dispersion residuals from a fitted dispersion model;

4. Power-robustness evaluations of DE tests using datasets simulated to mimic real datasets.
The main focus of this paper is on the quantification of the level of residual dispersion varia-
tion and power-robustness investigation under realistic settings (3 and 4 above). The diag-
nostic plots and statistics (1 and 2 above) are useful in routine analysis of RNA-Seq data,
and they also help us verify that the NBQ dispersion model largely captures the general
trend in the dispersion-mean dependence.

Anders et al. [27] suggested removing genes with less than or equal to one read per million
(rpm) in at least n of the samples, where n is the size of the smallest group of replicates. We fol-
low a similar criterion but set n = 1 in order to keep more (lowly-expressed) genes in study. In
R, this is achieved by subsetting the row indices by rowSums(cpm(data)>1)>=1. The li-
brary size adjustments are computed for genes passing this criterion.

Mean-Dispersion Plots with Estimated Trends from Dispersion Models
Fig. 1 shows the mean-dispersion plots for the two treatment groups in the human dataset
(with sequencing depth of 30 million). In each plot, method-of-moment (MOM) estimates

(�̂MOM) of the dispersion ϕ for each gene are plotted against estimated relative mean frequen-

cies (on the log-log scales). For each gene i, �̂MOM
i is defined as

Xn

j¼1

½ðyij�~m iÞ2�~m i �
n~m2

i
, where yij are

the read counts and ~m i is their mean. Note that for this dataset, the library sizes (column totals)

are roughly the same. Genes with �̂MOM
i � 0 were not used in the mean-dispersion plots and

the gamma log-linear regression analysis. We also overlaid the trends from five fitted disper-
sion models representing the wide range of currently available options: common, NBP, NBQ,
NBS and trended (see the “Background/NB Dispersion Models” subsection above). We make
the following remarks:

#1 The fitted NBP, NBQ, NBS and trended dispersion models all capture the overall decreas-
ing trend in the MOM genewise estimates.

Residual Dispersion Variation and Power of DE Tests for RNA-Seq Data
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#2 The fitted models agree more in the mid-section of the expression distribution and less in
the tails where genes have extremely low or high expression levels. This kind of behavior
is common in non-parametric smooth estimates and regression models, and it has some
implications on how we design the power simulations later.

#3 Such mean-dispersion plots are informative in checking how different dispersion models
may potentially over-/under-estimate the dispersion parameters, which in turn will influ-
ence DE test results.

#4 Note that the deviation of the genewise MOM estimates from the fitted dispersion models
is not the same as the � in Equation (2), since this deviation also reflects the additional
estimation error due to small sample size.

Mean-dispersion plots for the other four datasets show similar features and are included in
Figs. A–D of the Supporting Information
S1 File.

Gamma Log-Linear Regression Analysis

As informal model checking, we fit polynomial gamma log-linear regression models of �̂MOM

on logðp̂Þ. Table 1 summarizes the variability in the logged genewise dispersion estimates

logð�̂MOMÞ explained by the linear, quadratic and cubic models (results shown for the control
group only and without pre-filtering lowly-expressed genes). The proportion of variation in

logð�̂MOMÞ explained by the fitted models varies across species (e.g., for the quadratic fit, it

Fig 1. Mean-dispersion plots for the human RNA-Seq dataset. The left panel is for the control group and the right panel is for the E2-treated group. Each
group has seven biological replicates. The sequencing depth for this dataset is 30 million. Each point on the plots represents one gene with its method-of-
moment (MOM) dispersion estimate (�̂MOM) on the y-axis and estimated relative mean frequency on the x-axis. The fitted curves for five dispersion models
are superimposed on the scatter plot.

doi:10.1371/journal.pone.0120117.g001
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ranges from 31% to 75%) and also depends on sequencing depths. The quadratic regression
model improves over the simple linear regression model by explaining an additional 2% to
11% of variation, while adding a cubic term has almost negligible effects.

Quantification of the Level of Residual Dispersion Variation
As discussed in the Introduction section, we model the dispersion residuals using a normal dis-

tribution, � ¼ logð�Þ � logð�̂Þ � N ð0; s2Þ, and thus quantify the level of residual variation
using σ2 or equivalently σ. Using the approach described in the Methods section, we estimate σ
from each of the five real datasets after fitting an NBQ dispersion model (see Equation (4)).
Table 2 summarizes the estimates and the corresponding standard errors. The magnitudes of ŝ
indicate that the fitted dispersion models do not fully explain the total variation in the disper-
sion. The NBQ dispersion model uses estimated mean relative frequencies (p̂ ij) as predictors,

and the results here suggest that there is still substantial individual variation among genes with
the same values of p̂ ij.

It is possible to turn the estimate ŝ into a goodness-of-fit test for the fitted dispersion
model. However, we want to ask whether a dispersion model is useful even when the fitted
model shows lack-of-fit. For this purpose, the quantitative measure ŝ is more intuitive than a
test p-value, since it directly reflects the degree of deviation from the fitted dispersion model. In
the next section, we will explore the connection between the magnitude of ŝ and the perfor-
mance of DE tests in terms of power and FDR.

Table 1. Proportion of variation in logð�̂ MOMÞ explained by fitted models.

Dataset

Model Human5 Human30 Mouse Zebrafish Arabidopsis Fruit Fly

Linear 73.09% 72.29% 49.20% 32.08% 36.30% 23.79%

Quadratic 75.15% 74.38% 54.85% 43.02% 41.02% 31.20%

Cubic 75.46% 74.45% 54.55% 43.77% 41.01% 32.74%

The proportion of variation in logð�̂MOMÞ explained by the fitted gamma log-linear, quadratic and cubic regression models. Results are shown for the control

group only.

doi:10.1371/journal.pone.0120117.t001

Table 2. Estimated level of residual dispersion variation in five real RNA-Seq datasets.

Dataset #samples MLE ŝ SEðŝÞ
Human30 (7, 7) 1.021 0.014

Mouse (3, 3) 1.228 0.022

Zebrafish (4, 4) 1.105 0.020

Arabidopsis (3, 3) 0.956 0.021

Fruit fly (4, 3) 1.015 0.016

The columns are: name of the dataset, the number of samples (control, treatment), the maximum likelihood

estimate (MLE) ŝ, and the standard error (SE) of ŝ.

doi:10.1371/journal.pone.0120117.t002
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Power-Robustness Evaluations
We compare the power and FDR/Type-I error control of a range of DE test methods on data-
sets simulated to mimic the five real datasets.

Simulation Setup. In our power-robustness analysis, we will compare performance of six
DE test methods. We choose one representative method from each of the categories summa-
rized in the “Background/NB Dispersion Models” subsection (prefixed with the name of the R/
Biconductor package that implements the method, and a colon): NBPSeq:genewise, edgeR:
common, NBPSeq:NBQ, edgeR:trended, edgeR:tagwise-trend, and QuasiSeq:QLSpline. These
methods represent a range of available options on how to handle the dispersion estimation.
The edgeR:common method is included solely for benchmark purpose as it is over-simplified
and not recommended for practical use. The NBPSeq:NBQ method represents parametric dis-
persion models and the NBQ dispersion model generally provides better fit than the simpler
NBP model [7]. The edgeR:tagwise-trend method represents the empirical Bayes shrinkage
methods [6]. The QuasiSeq:QLSpline method represents quasi-likelihood methods [18]. These
methods also use different tests for DE analysis. For testing DE, methods from edgeR use like-
lihood ratio test, methods from NBPSeq use likelihood ratio test with HOA adjustment, and
the QuasiSeq:QLSpline method uses QL F-test. Table 3 provides a summary of the DE test
methods compared.

We simulate two-group comparison datasets that mimic the five real RNA-Seq datasets.
From each real dataset, we randomly select 5,000 genes and fit NB regression models to them
(see Equation (3) and the “Background/DE Tests” subsection above). We generate a new data-
set of 5,000 genes based on fitted models. We specify the mean expression levels based on esti-

mated b̂ ik, with Rj = 1 and Nj reflecting the sequencing depth (e.g., Nj = 2.5×107 for the human
dataset and 1.5×107 for the mouse dataset). For all genes, we set βi1 as the estimated value from

the real data. If gene i is designated as DE, we either use b̂ i2 estimated from the real data as its

log fold change (i.e., we set bi2 ¼ b̂ i2), or let βi2 correspond to fixed fold changes of 1.2 or 1.5.
For any non-DE gene i0, we set βi02 = 0. In real data analysis, it is unknown which genes are DE.
For each dataset, we randomly designatem1 genes as DE. We consider two levels, 0.1 and 0.2,
for the percentage of DE genes (π1 =m1/m). Approximately (when using estimated DE fold
changes) or exactly (when using fixed DE fold changes) half of the simulated DE genes are
over-expressed and half are under-expressed. Early microarray studies had shown that a
smaller proportion of DE genes tend to make it more difficult to control FDR at the nominal
level [28].

Table 3. Summary of DE test methods compared.

DE Test Method Trend f Consider �? Test Note

NBPSeq:Genewise n/a yes LRT HOA adjustment

edgeR:Common constant no LRT n/a

NBPSeq:NBQ parametric no LRT HOA adjustment

edgeR:Trended smooth no LRT n/a

edgeR:Tagwise-trend smooth yes LRT empirical Bayes shrinkage

QuasiSeq:QLSpline smooth yes QL degrees-of-freedom adjustment

The columns are: name of the DE test method, the functional form f used for capturing the general trend in dispersion, whether the method considers

individual dispersion variation unexplained by the trend, the test statistic used (LRT: likelihood ratio test; QL: quasi-likelihood method), and additional

notes about the test (n/a if not applicable).

doi:10.1371/journal.pone.0120117.t003
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We specify the dispersion parameters according to Equation (2) with the trend part, f(aij;α),
being the fitted NBQ model (fitting Equation (4) to real data). The deviation from the trend is
controlled by �i and will be simulated according to aN(0,σ2) distribution. We want to choose
σ2 to match the real data, but there is some subtlety in how to achieve this: in practice, when fit-
ting the NBQ model, we use the fitted values p̂ ij as the predictors since true πij values are not

available, but when we simulate counts, the p̂ ij values are not available. Our solution is to use

πij as predictor in the NBQ model when simulating �, but choose s ¼ ~s through a calibration
approach such that if we were to fit the NBQ model to the simulated data later—using the esti-
mated p̂ ij as predictor, the estimated ŝ would match the one estimated from the real data (also

using the estimated p̂ ij as predictor). The estimated values of ŝ from real datasets are summa-

rized in Table 2. The calibrated values ~s and the details about the calibration approach are pre-
sented in the Methods section. In our simulations, we will consider different levels of residual
dispersion variation and set σ to ~s, 0:5~s or 0.

There are other factors that may potentially contribute to the difference in DE test perfor-
mance, such as the presence of outliers, the proportion of up and down-regulated genes, poten-
tial correlation between gene expression levels, to just name a few. In this paper, we will focus
on the impact of unmodeled dispersion variation on DE test performance.

Power Evaluation. For power evaluation, we plot true positive rates (TPR) versus false dis-
covery rates (FDR). For a DE test, a true positive (TP) indicates the test correctly identifies a
DE gene; a false positive (FP) indicates the test incorrectly identifies a non-DE gene as DE; and
a false negative (FN) indicates the test incorrectly declares a DE gene as non-DE. The TPR and
FDR are defined as: TPR = TP/(TP + FN) and FDR = FP/(TP + FP). A TPR-FDR curve con-
tains equivalent information as a precision-recall curve or an ROC curve, but focuses on the re-
lationship between TPR (power) and FDR. The power of a DE test depends on the alternative
hypothesis and will likely vary between genes. The TPR reflects the average power of a test to
detect truly DE genes in a simulated dataset. If we compare the TPR of the tests at the same
FDR level, we are essentially comparing the size-corrected power.

The upper row of Fig. 2 shows the TPR-FDR plots for the six tests performed on each of the
five datasets simulated to mimic the five real datasets. In particular, the simulated datasets have
the same level of residual dispersion variation σ2 as estimated from the five real datasets, and
the fold changes of DE genes are also estimated from real data. A better method will have its
TPR-FDR curve closer to the lower-right corner, indicating a lower FDR for achieving a fixed
power, or a higher power for a fixed tolerable FDR. For four of the datasets, the QuasiSeq:
QLSpline, edgeR:tagwise-trend and NBPSeq:genewise methods outperform the NBPSeq:NBQ,
edgeR:trended and edgeR:common methods, with the edgeR:common method being the worst.
For the simulation dataset based on the Arabidopsis real dataset, no test dominates at all
FDR levels.

It is somewhat surprising that the performance of the simple NBPSeq:genewise method is
comparable to the best methods in all cases. This indicates that if the level of residual dispersion
variation is as high as the estimated (see Table 2), the potential power saving through disper-
sion modeling is quite limited.

The relative performance of the tests will change if the level of residual dispersion variation
(σ2) changes. The lower row of Fig. 2 shows the TPR-FDR plots when σ is simulated to be half
the estimated values (s ¼ 0:5~s), again with DE fold changes estimated from real data. The per-
formance of the NBPSeq:NBQ and trended methods has much improved and is better than the
NBPSeq:genewise method in three of the datasets (the ones based on mouse, zebrafish and Ara-
bidopsis). When we further reduced σ to 0 in our simulations, all methods outperformed the
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NBPSeq:genewise approach. The QuasiSeq:QLSpline and edgeR:tagwise-trend methods man-
aged to perform consistently well as we vary the magnitude of σ.

To understand how each method performs under a wide range of situations, we also per-
formed simulations where the fold changes for DE genes were fixed instead of estimated from
real data, while other settings (e.g., the percentage of DE genes, σ and ~s) remained the same as
before. Figs. 3 and 4 show the TPR-FDR plots when the fold changes of DE genes were fixed at
1.2 (low) and 1.5 (moderate) respectively. In general, the NBPSeq:genewise, edgeR:tagwise-
trend and QuasiSeq:QLSpline perform better than edgeR:common, NBPSeq:NBQ and edgeR:
trend, which is consistent with the observations when the fold changes are estimated from real
data. In the low DE fold change case and when the residual dispersion variation is as estimated
(upper row of Fig. 3), there is more separation between the QuasiSeq:QLSpline method and the
edgeR:tagwise-trend method. In the simulation based on the mouse data, the NBPSeq:genewise
method outperforms all other methods for finding the first 25% of truly DE genes (i.e., in the
plot region where TPR� 0.25), but it is eventually outperformed by QuasiSeq:QLSpline and
edgeR:tagwise-trend if a greater percentage of truly DE genes need to be detected. Similar trend
is observed in simulations based on the zebrafish and fruit fly datasets. This indicates the
NBPSeq:genewise method can have advantage for detecting DE genes with small fold changes.
There is less separation between QuasiSeq:QLSpline and edgeR:tagwise-trend methods when
the DE fold changes were specified to be 1.5. Again, the performance of all methods assuming a
dispersion model (i.e., all methods except NBPSeq:genewise) improves significantly when the
residual dispersion variation is halved.

FDR and Type-I Error. In practice, the Benjemini-Hochberg method [29] is commonly
used to control the FDR of DE tests. In Table 4, we compare the actual FDR of the different DE
tests based on the simulation results when the nominal FDR is set to 10% using the Benjemini-
Hochberg method. The results are based on the datasets simulated to mimic the human

Fig 2. True Positive Rate (TPR) vs. False Discovery Rate (FDR) plots for the six DE test methods performed on RNA-Seq datasets simulated to
mimic real datasets. The fold changes of DE genes are estimated from real data. The columns correspond to the following datasets (left to right) used as
templates in the simulation: human, mouse, zebrafish, Arabidopsis, and fruit fly. The level of residual dispersion variation, σ, is specified at the estimated
value (~s) in panels labeled with A (first row), and half the estimated value (0:5~s) in panels labeled with B (second row). In each plot, the x-axis is the TPR
(which is the same as recall and sensitivity) and the y-axis is the FDR (which is the same as one minus precision). The percentage of truly DE genes is
specified at 20% in all datasets. The FDR values are highly variable when TPR is close to 0, since the denominator TP + FP is close to 0.

doi:10.1371/journal.pone.0120117.g002
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dataset, where we vary the percentage of DE genes (10% and 20%) and we vary σ from estimat-
ed value (s ¼ ~s), to half the estimated value (s ¼ 0:5~s), and then to 0. We consider three
ways to specify fold changes (FC) for DE genes: estimated from data, FC = 1.2 and FC = 1.5.
The QuasiSeq:QLSpline and NBPSeq:genewise methods have good controls on FDR in all
cases, and are conservative in some cases. The edgeR:tagwise-trend method has good FDR con-
trol when the percentage of DE genes is high (20%), but underestimates FDR in several cases
when the percentage of DE genes is low (10%). For the NBPSeq:NBQ and edgeR:trended

Fig 3. True Positive Rate (TPR) vs. False Discovery Rate (FDR) plots for the six DE test methods performed on RNA-Seq datasets simulated to
mimic real datasets. The fold changes of DE genes are fixed at 1.2 (half of the DE genes are over-expressed and the other half are under-expressed). Other
simulation settings are identical to those described in Fig. 2 legend.

doi:10.1371/journal.pone.0120117.g003

Fig 4. True Positive Rate (TPR) vs. False Discovery Rate (FDR) plots for the six DE test methods performed on RNA-Seq datasets simulated to
mimic real datasets. The fold changes of DE genes are fixed at 1.5 (half of the DE genes are over-expressed and the other half are under-expressed). Other
simulation settings are identical to those described in Fig. 2 legend.

doi:10.1371/journal.pone.0120117.g004

Residual Dispersion Variation and Power of DE Tests for RNA-Seq Data

PLOS ONE | DOI:10.1371/journal.pone.0120117 April 7, 2015 13 / 25



methods, the FDR control improves as the residual dispersion variation decreases and as the
percentage of truly DE genes increases. The edgeR:common method does not have good con-
trol of FDR in almost all scenarios.

Fig. 5 shows what will happen if one uses the reported FDR to identify DE genes. We uses
one of the simulated human data as an example (the fold change is specified to be 1.2 for the
designated 20% DE genes, and s ¼ ~s), since the tests are well separated here. For methods that
do not correctly control FDR, such as NBPSeq:NBQ and edgeR:trended, if one identifies DE
genes according to a cutoff on reported FDR (e.g., 10%), more genes will be detected as DE
(than if one were able to use the actual FDR) at the cost of underestimated FDR.

The FDR control is closely related to the test p-values. Fig. 6 shows the histograms of p-val-
ues computed for the non-DE genes in one of the datasets used for the FDR comparison above
(fold change estimated from data, 20% DE and s ¼ ~s). The histograms from the NBPSeq:gene-
wise and QuasiSeq:QLSpline methods are replacedclosermore close to uniform. For the edgeR:
common, NBPSeq:NBQ and edgeR:trended methods, the histograms are asymmetric v-shaped:
there is an overabundance of small p-values as compared to a uniform distribution, but the his-
tograms also indicate that these tests are conservative for many genes. Similar patterns have
been observed for other dispersion-modeling methods by Lund et al. in [18]. The edgeR:tag-
wise-trend method produces conservative p-values.

Fig. 7 shows similar histogram comparisons when σ was reduced to half the estimated value
(0:5~s), while fold change and DE percentage remained the same. The null p-value histograms
from the NBPSeq:NBQ and edgeR:trended methods have improved and are closer to the uni-
form distribution. The edgeR:tagwise-trend method produces a slight overabundance of small
p-values. The edgeR:common method is still unsatisfactory.

Table 4. Actual FDR for a nominal FDR of 0.1.

Actual FDR for 10% Nominal FDR

Fold Change σ %DE Genewise QLSpline Tagwise-Trend NBQ Trended Common

~s 10% 9.72% 7.84% 12.5% 28.3% 29.3% 39.6%

20% 7.90% 6.57% 6.76% 17.3% 18.2% 25.3%

Estimated from data 0:5~s 10% 11.8% 10.5% 14.2% 13.3% 14.4% 38.3%

20% 10.7% 8.03% 11.5% 13.4% 14.1% 23.9%

0 10% 11.2% 10.2% 16.2% 10.6% 11.9% 26.6%

20% 7.19% 5.61% 9.88% 6.86% 7.46% 17.4%

~s 10% 9.72% 10.5% 10.4% 35.9% 37.3% 54.8%

20% 5.23% 7.05% 9.48% 18.6% 19.3% 28.6%

FC = 1.2 0:5~s 10% 11.3% 10.0% 14.6% 16.0% 17.8% 27.9%

20% 7.87% 8.79% 9.54% 10.1% 10.8% 18.7%

0 10% 10.7% 9.47% 13.1% 9.09% 9.72% 22.3%

20% 8.72% 9.83% 12.5% 9.68% 10.2% 16.0%

~s 10% 9.92% 10.8% 12.9% 19.0% 19.9% 23.4%

20% 7.26% 7.17% 7.06% 11.6% 12.2% 15.1%

FC = 1.5 0:5~s 10% 7.13% 7.25% 9.87% 12.1% 13.2% 17.5%

20% 6.11% 5.78% 7.40% 9.13% 9.38% 13.5%

0 10% 9.71% 7.59% 12.8% 8.32% 9.14% 18.7%

20% 7.53% 10.4% 9.70% 7.63% 7.63% 11.6%

We consider three settings for DE fold changes (estimated from data, fixed at 1.2 and fixed at 1.5), three levels of σ (the estimated value s ¼ ~s, half the

estimated value s ¼ 0:5~s, and no variation σ = 0) and two levels of percentage of DE genes (10% and 20%).

doi:10.1371/journal.pone.0120117.t004
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Conclusion and Discussion
We quantified the residual dispersion variation in five real RNA-Seq datasets. Using simula-
tions, we compared the performance—in terms of power and FDR/Type-I error control—of
six representative DE test methods based different dispersion models. We demonstrated that
the level of residual dispersion variation is a crucial factor in determining the performance of
DE tests. When the residual dispersion variation is as high as we estimated from the five real
datasets, methods such as NBPSeq:NBQ and edgeR:trended, which ignore possible residual dis-
persion variation, fail to control Type-I errors and give suboptimal power. The QuasiSeq:
QLSpline and edgeR:tagwise-trend methods have similar size-corrected power, but the edgeR:
tagwise-trend method underestimates FDR when the percentage of DE genes is low or when
the fold changes of the DE genes is low. QuasiSeq:QLSpline and edgeR:tagwise-trend both ac-
count for individual dispersion variation. QuasiSeq:QLSpline also makes degrees-of-freedom

Fig 5. True Positive Rate (TPR) vs. False Discovery Rate (FDR) plots for the six DE test methods
performed on RNA-Seq dataset simulated to mimic the human dataset.On each curve, we marked the
position corresponding to a reported FDR of 10% with a cross. The fold changes of DE genes are fixed at 1.2
(half of the DE genes are over-expressed and the other half are under-expressed). Other simulation settings
are identical to those for the upper row of Fig. 2.

doi:10.1371/journal.pone.0120117.g005
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adjustment to address the uncertainty in estimated NB dispersions. Based on these observa-
tions, we recommend incorporating individual variation and using degrees-of-freedom adjust-
ment to improve robustness and Type-I error control for DE test methods that use a
dispersion model.

The NBPSeq:genewise method does not rely on a dispersion model, and it uses an HOA
technique to improve small-sample performance of the likelihood ratio test. The NBPSeq:gene-
wise method has good Type-I error and FDR control in all simulations. The power of the
NBPSeq:genewise method is comparable to that of the QuasiSeq:QLSpline and edgeR:tagwise-
trend methods when the level of residual dispersion variation is high. This indicates that when
the level of dispersion variation is high, the power saving available through dispersion model-
ing is limited.

Reducing the level of dispersion variation boosts the performance of DE tests that use a dis-
persion model. One may attempt to improve the dispersion model by considering different
functional forms of the trend and/or including additional predictors. We plan to explore such
possibilities in our future research. It is not well understood what factors contribute to the
count and dispersion variation in an RNA-Seq experiment: possible factors to consider include
transcript length, GC-content, and so on.

One notable difference between the NBPSeq:genewise method and a dispersion-modeling
method is that the former detects more DE genes with small fold changes, while a method

Fig 6. Histograms of p-values for the non-DE genes from the six DE test methods. The simulation dataset is based on the human dataset with σ
specified as the estimated value s ¼ ~s. Out of a total of 5,000 genes, 80% are non-DE.

doi:10.1371/journal.pone.0120117.g006
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using a dispersion model tends to detect DE genes with large fold changes. This phenomenon
agrees with what we observed in the power simulation when the DE fold change was fixed to be
low, 1.2. Fig. 8 illustrates this point using MA plots. This is because current dispersion models
often assume the dispersion is the same for genes with similar mean levels (those genes having
the same x-values). Under such assumptions, large fold changes tend to correspond to more
significant test results. The behaviors of the edgeR:tagwise-trend and the QuasiSeq:QLSpline
methods are intermediate between the NBPSeq:genewise method and a dispersion-modeling
method such as the edgeR:trended model.

For the six methods we compared, edgeR:common, edgeR:trended, edgeR:tagwise-trended
use likelihood ratio test. NBPSeq:genewise and NBPSeq:NBQ use HOA-adjusted likelihood
ratio test. From our past studies, we know that HOA adjustment mainly corrects for Type-I
error and does not significantly change the power when compared to the unadjusted likelihood
ratio test. So the differences between the these five methods in the power comparison are main-
ly attributable to how they handle the dispersion estimation, especially with respect to the two
factors highlighted in Table 3: 1) whether they consider a trend f in log dispersion, and 2)
whether they consider possible additional individual variation �i. The HOA adjustment in
NBPSeqmay have contributed to the different Type-I error performances. QuasiSeq:QLSpine
uses a different test for DE and differs from the above five methods in more aspects. Regarding
the dispersion estimation, it considers the general trend f in the dispersion, considers additional

Fig 7. Histograms of p-values for the non-DE genes from the six DE test methods. The simulation dataset is based on the human dataset with σ
specified as half the estimated value s ¼ 0:5~s. Out of a total of 5,000 genes, 80% are non-DE.

doi:10.1371/journal.pone.0120117.g007
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individual variation, and uses some degree-of-freedom adjustment. We believe all three aspects
contributed to its performance.

We used aN(0,σ2) distribution to model the residual dispersion variation �i (see Equation
(2)). We believe this is a reasonable starting point. The authors in [23] made a similar assump-
tion and used simple diagnostic plots to show the normality assumption was reasonable. To
rigorously test this assumption, however, is challenging due to the small sample size. It might
be more useful to consider alternative model assumptions on �, compare results and investigate
sensitivity to model assumptions. In future, we will also consider the possibility that σmay vary
with some other variables, such as the mean level. However, the general conclusion that the
performance of the DE tests depends on the level of the residual dispersion variation should
remain valid.

Methods

Description of RNA-Seq Datasets
Experiment information for all species and the raw/processed data are available at the Gene Ex-
pression Omnibus (GEO) of the National Center for Biotechnology Information (NCBI).
Table 5 gives a brief summary of the datasets analyzed in this paper, including the dataset
names in the SeqDisp R package we develop (see the Software Information section), the SRA
accessions that provides all the metadata describing a particular study (see the NCBI website
for different accession types), and published references. In the Supporting Information S1 File,
see “Access to the Datasets” section and Table A for more details.

Human RNA-Seq Data. The Homo sapiens (human) RNA-Seq experiment was discussed
in [30]. In this study, researchers compared the gene expression profiles for human cell line
MCF7 cells (from American Type Cell Culture) under treatment (10 nM 17β-estradiol (E2))
versus control. Information for this experiment, the raw and processed data are available at
NCBI GEO under accession number GSE51403.

Liu et al. [30] focused more on the technical side of RNA-Seq experiments by investigating
the trade-offs between sequencing depth (where a higher depth generates more informational
reads) and the number of biological replicates. Seven biological replicates of both control and
E2-treated MCF7 cells were sequenced, and the RNA-Seq reads in each sample were down-
sampled to generate datasets of different depths (a total of seven depths from 2.5M to 30M).
We include datasets from two sequencing depths (5M and 30M) in our R package, but mainly

Fig 8. MA plots for the edgeR:trended, NBPSeq:genewise, edgeR:tagwise-trend and QuasiSeq:QLSplinemethods performed on the mouse
dataset. Predictive log fold changes (posterior Bayesian estimators of the true log fold changes, the “M” values) are shown on the y-axis. Averages of log
counts per million (CPM) are shown on the x-axis (the “A” values). The M- and A- values are calculated using edgeR. The highlighted points correspond to
the top 200 DE genes identified by each of the DE test methods.

doi:10.1371/journal.pone.0120117.g008
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focus on the dataset with 30M sequencing depth for analyses. See [30] and NCBI GSE51403 for
detailed descriptions of the dataset.

Mouse RNA-Seq Data. TheMus musculus (mouse) RNA-Seq experiment was discussed
in [31]. This experiment used RNA-Seq to study the impact of competent versus abnormal
human embryos on endometrial receptivity genes in the uteri of 25-day wild-type C57BL/6
mice. Information for this experiment and the raw data are available at NCBI GEO under ac-
cession number GSE47019. The raw data are downloaded from NCBI Sequence Read Archive
(SRA), and processed using the pipeline described in [27].

We summarize the samples of “Control Salker”, “Developmentally competent embryo con-
ditioned media Salker” (abbreviated as DCECM) and “Arrested embryo conditioned media
Salker” (abbreviated as AECM) into the mouse dataset in the SeqDisp R package. We only
consider the control and DCECM groups in the analyses.

Zebrafish RNA-Seq Data. The Danio rerio (zebrafish) RNA-Seq experiment was dis-
cussed in [32], and information for this experiment and the raw data are available at NCBI
GEO under accession number GSE42846. This study compared gene expression profiles of zeb-
rofish embryos infected with Staphylococcus epidermidis versus control. Four biological repli-
cates are prepared for the control group (Non-injected 5 DPI) and for the treatment group (S.
epi mcherry O-47 5 DPI).

Arabidopsis RNA-Seq Data. The Arabidopsis thaliana (Arabidopsis) RNA-Seq experi-
ment was discussed in [33], and information for this experiment and the raw data are available
at NCBI GEO under accession number GSE38879. This study analyzed 7 days old seedlings
from two lines of Arabidopsis (rve8-1 RVE8::RVE8:GR and rve8-1) treated with dexametha-
sone or mock. The overall design includes transgenic line rve8-1 RVE8::RVE8:GR and rve8-1
treated with DEX or mock with three biological replicates each, for a total of 12 samples. Our
analyses only focus on the RVE8:GR_mock control group, and the RVE8:GR_DEX
treatment group.

Fruit Fly RNA-Seq Data. The Drosophila melanogaster (fruit fly) RNA-Seq experiment
was discussed in [34], and information for this experiment and the raw data are available at
NCBI GEO under accession numbers GSM461176 to GSM461181. The experiment compared
gene expression profiles of fruit fly S2-DRSC cells (FlyBase cell line) depleted of mRNAs en-
coding RNA biding proteins versus control. The dataset fruit.fly in our SeqDisp pack-
age is directly obtained from the pasilla Bioconductor package [35], which provides per-
exon and per-gene read counts computed for selected genes in [34]. It can also be accessed
from data(pasillaGenes) once pasilla is loaded. The dataset contains three and four
biological replicates of the knockdown and the untreated control, respectively. See the
pasilla package vignette for more information.

Table 5. Summary of RNA-Seq datasets analyzed in this article.

Organism Name in SeqDisp SRA Accession References

Homo Sapiens human30/human5 SRP031476 [30]

Mus Musculus mouse SRP022850 [31]

Danio Rerio zebrafish SRP017511 [32]

Arabidopsis Thaliana arabidopsis SRP013873 [33]

Drosophila Melanogaster fruit.fly SRP001537 [34, 35]

doi:10.1371/journal.pone.0120117.t005
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Quantifying the Level of Residual Dispersion Variation
Estimating σ2. In the RNA-Seq context, we use Yij to denote the read count for gene i in

sample j, where i = 1,� � �,m and j = 1,� � �,n. We model a single read count as negative binomial
with mean μij and dispersion ϕij:

Yij � NBðmij; �ijÞ;

and assume a log-linear model for μij, i.e., logðmijÞ ¼ offsetþ X 0
jbi (see also Equation (3)). We

further assume a parametric distribution as the prior distribution for the dispersion parameter
ϕij:

log ð�ijÞ ¼ log ð�0
ijÞ þ �i;

where �i *N(0,σ2). The prior mean, logð�0
ijÞ, is preliminarily estimated according to a disper-

sion model (e.g., NBQ or a smooth fit like NBS) and is treated as known. Our goal is to estimate
σ2.

Let θij = log(ϕij) and y
0

ij ¼ logð�0
ijÞ, so that yij ¼ y0

ij þ �i. Across allm genes, we assume that

�i’s are independent, and denote the prior distribution of �i by π(�ijσ2). The joint likelihood
function of the unknown parameters (σ2,β) is

Lðs2; bÞ ¼
Ym
i¼1

Z
Liðbij�iÞpð�ijs2Þd�i; ð8Þ

where Li(βij�i) is the likelihood of βi from gene i for a given �i:

Liðbij�iÞ ¼
Yn
j¼1

Pr yijjyij ¼ y0ij þ �i; biðyiÞ
� �

:

We want to estimate σ2 by maximizing the profile likelihood of σ2:

Lpðs2Þ ¼max
b

Lðs2; bÞ: ð9Þ

It is difficult to maximize βi with respect to an integrated likelihood. We instead consider

Lpðs2Þ �
Ym
i¼1

Z
Liðb̂ ið�iÞj�iÞpð�ijs2Þd�i; ð10Þ

where b̂ ið�iÞ is the MLE of βi for fixed �i (and thus fixed ϕij). b̂ ið�iÞ can be obtained by the stan-
dard iteratively reweighted least squares algorithm [36].

Let lið�iÞ ¼ log Liðb̂ ið�iÞ j �iÞ
� �

and π(�ijσ2) be the normal density. Equation (10) can be re-

written as

Lpðs2Þ �
Ym
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2ps2

p
Z

exp lið�iÞ �
�2i
2s2

� �
d�i: ð11Þ

The dependence on yij is implicit through li(�i) in Equation (11). We approximate the integral
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in Equation (11) using the Laplace’s method [37]. Let ��i maximize

gið�iÞ ¼ lið�iÞ �
�2i
2s2

;

so that

g 0ið��i Þ ¼ l0ið��i Þ �
��i
s2

¼ 0:

Then
1ffiffiffiffiffiffiffiffiffiffi
2ps2

p R
exp lið�iÞ �

�2i
2s2

� �
d�i in Equation (11) can be approximated by

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s2g 00i ð��i Þ

q exp gið��i Þ
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2ð�l 00i ð��i Þ þ 1=s2Þ
q exp lið��i Þ �

��2i
2s2

� �
:

Evaluation of ŝ. To evaluate the estimation accuracy for σ, we perform a set of simulations
using the human RNA-Seq dataset as the “template” in order to preserve observed relation-
ships between the dispersions and gene-specific mean counts. We simulate 5,000 genes with a
single group of seven replicates: the mean structure μ is randomly generated according to a log-
normal distribution with mean 8.5 and standard deviation 1.5 (both on the log scale and the
values are chosen to mimic the real dataset); the trend of the dispersion is estimated from the
real dataset according to an NB2 or an NBQ model; individual residual variation �i is simulated
according toN(0,σ2) and added to the trend. We compare ŝ with true σ specified at eight levels
that are within a reasonable range for typical RNA-Seq data: 0.1, 0.3, 0.5, 0.7, 0.9, 1.2, 1.5 and
2.0. At each level of σ we repeated the simulation three times using different random number
seeds for generating �i *N(0,σ2). Fig. 9 shows the simulation results. We highlight the median
value (out of three repetitions) in solid blue point at each σ level, and ideally these points

Fig 9. Estimation accuracy of ŝ. In the simulation, the dispersion is simulated according to an NB2 (left panel) or an NBQ (right panel) trend with added
individual variation εi *N(0,σ2). The x-axis is the true σ value and the y-axis is the estimated ŝ. For each true σ value, the simulation is repeated three times.
The blue dots correspond to the median ŝ values.

doi:10.1371/journal.pone.0120117.g009
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should follow the y = x reference line. We see that there is some bias in the estimation. The bias
will increase for smaller sample sizes. We see that ŝ is more accurate for σ values between 0.3
and 0.9 and less so for σ values outside this range. The results (not shown) are similar when we
use the NBP (log-linear) and NBS (smooth function) models to capture the general trend in
the dispersion.

Calibration. As discussed in the “Results/Power-Robustness Evaluations/Simulation
Setup” subsection, when simulating the RNA-Seq datasets, we want to choose a σ that matches
the level of residual dispersion variation in real data. We want to correct for potential bias in
the estimator ŝ. We also need to account for the discrepancy between πij (used when simulat-
ing the data) and p̂ ij (used when fitting the dispersion model). This is achieved by a calibration

approach [38]. The calibrated ~s’s are essentially obtained from a calibration plot. Fig. 10 shows
the calibration plot for the mouse dataset (subsetted to 5,000 genes). We choose the σ value at
eight levels: 0.5, 0.7, 0.8, 0.9, 1.0. 1.1, 1.2 and 1.5, and simulate the dispersion ϕij according to

log ð�ijÞ ¼ log ð�NBQ
ij Þ þ �i ¼ a0 þ a1 log ðpijÞ þ a2½log ðpijÞ�2 þ �i;

where �i * N(0,σ2) is the residual variation on top of an NBQ dispersion model with the pa-
rameters αi,i = 0,1,2, estimated from the mouse dataset. At each level of σ, we simulate three
datasets and obtain three ŝ’s. We then fit a quadratic curve to the eight median ŝ values as a

Fig 10. The calibration plot for estimating residual dispersion variation σ for the mouse dataset. The x-
axis is the σ value used to generate the data. The y-axis is the estimated ŝ. The horizontal line correspond to
the ŝ estimated from the mouse dataset.

doi:10.1371/journal.pone.0120117.g010
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function of σ, with a 95% prediction interval superimposed in dashed curves. The ŝ estimated
from the mouse dataset is also calculated, and the value is shown as a horizontal solid line. The
intersection of the fitted quadratic curve and the horizontal line (the solid red point) has its x
coordinate being the calibrated ~s. Similarly, the intersections between the upper/lower bound
of the 95% prediction interval with the horizontal line determine the associated 95% calibration
interval (CI) for the calibrated ~s. We only include the calibration plot for the mouse dataset as
an illustration. Table 6 summarizes the calibrated ~s with 95% CI for each of the five
real datasets.

Software Information
The proposed approach of estimating the level of residual dispersion variation σ is imple-
mented as an R package named SeqDisp (released at https://github.com/gu-mi/SeqDisp,
under GPL-2 License). The package also provides graphical functionality to generate diagnostic
plots for comparing different dispersion methods. All datasets (raw read count tables) analyzed
in this article are included in the package. The R codes for reproducing all results in this article
are available at the first author’s github page.

Supporting Information
S1 File. Supplementary Information on Datasets, Plots and Discussions. Access information
to the datasets analyzed in this article (Table A), the mean-dispersion plots (Figs. A–D), and

discussion of the relationship between ŝ and d̂0 (Fig. E) are provided in the Supporting Infor-
mation S1 File.
(PDF)
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Table 6. Calibrated ~s values for the five real datasets.

Dataset #samples Calibrated ~s 95% CI

Human30 (7, 7) 0.915 (0.90, 0.93)

Mouse (3, 3) 1.025 (0.99, 1.06)

Zebrafish (4, 4) 0.975 (0.94, 1.02)

Arabidopsis (3, 3) 0.855 (0.80, 0.92)

Fruit fly (4, 3) 0.890 (0.86, 0.93)

We also report the 95% calibration interval (CI) for each point estimate.

doi:10.1371/journal.pone.0120117.t006
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