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Abstract
Plethodontid salamanders are diverse and widely distributed taxa and play critical roles in

ecosystem processes. Due to salamander use of structurally complex habitats, and

because only a portion of a population is available for sampling, evaluation of sampling

designs and estimators is critical to provide strong inference about Plethodontid ecology

and responses to conservation and management activities. We conducted a simulation

study to evaluate the effectiveness of multi-scale and hierarchical single-scale occupancy

models in the context of a Before-After Control-Impact (BACI) experimental design with mul-

tiple levels of sampling. Also, we fit the hierarchical single-scale model to empirical data col-

lected for Oregon slender and Ensatina salamanders across two years on 66 forest stands

in the Cascade Range, Oregon, USA. All models were fit within a Bayesian framework. Esti-

mator precision in both models improved with increasing numbers of primary and secondary

sampling units, underscoring the potential gains accrued when adding secondary sampling

units. Both models showed evidence of estimator bias at low detection probabilities and low

sample sizes; this problem was particularly acute for the multi-scale model. Our results sug-

gested that sufficient sample sizes at both the primary and secondary sampling levels could

ameliorate this issue. Empirical data indicated Oregon slender salamander occupancy was

associated strongly with the amount of coarse woody debris (posterior mean = 0.74; SD =

0.24); Ensatina occupancy was not associated with amount of coarse woody debris (poste-

rior mean = -0.01; SD = 0.29).Our simulation results indicate that either model is suitable

for use in an experimental study of Plethodontid salamanders provided that sample sizes

are sufficiently large. However, hierarchical single-scale and multi-scale models describe

different processes and estimate different parameters. As a result, we recommend careful

consideration of study questions and objectives prior to sampling data and fitting models.
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Introduction
Salamanders are a diverse, widespread, and often abundant group of organisms occurring in a
broad range of habitat types and serve critical roles in ecosystem dynamics such as nutrient
cycling and food webs [1, 2]. Evolutionary studies often use salamanders as subjects because of
their novel morphological adaptations, broad geographic distributions, and ancient phylogenies
[3–5]. However, life history traits such as limited dispersal and low reproductive rates, and pref-
erences for cool, moist micro-habitats, can render some species vulnerable to habitat modifica-
tion, exotic species, and disease, and, as a result, many taxa are threatened or imperiled [6–9].

Ecological roles of most salamander species are poorly documented [10, 11]. Due to their
multi-stage life histories and occupancy of structurally complex aquatic and terrestrial habitats,
studying salamanders poses a unique set of challenges to investigators [12–14]. Long-term
studies, preferably with experimental manipulations, are required to understand mechanistic
population responses to disturbances events and gradients [11, 15, 16]. However, in most cases
only a portion of the population (e.g., in fossorial or in-stream species) is available for sampling
[17–20] as many individuals may be sub-surface during sampling. Also, only a portion of these
available individuals will be detected due to variation in environmental conditions (e.g., habitat
complexity) and animal behavior [21]. Failure to account for this imperfect detection causes
bias in naïve estimators of occupancy and abundance [22, 23]. In addition, regression coeffi-
cients for associations and/or effects will likely be biased, leading to ineffective or counter-pro-
ductive conservation and management prescriptions [22]. Finally, disturbances induced by the
sampling process can modify salamander habitat and behavior, and these additional sources of
variation can bias inferences and future sampling efforts [17]. As a result, sampling methods
and estimators of quantities of interest (e.g., occupancy or abundance) require careful thought
and evaluation before deployment [24, 25].

We evaluated sampling designs and models for estimating occupancy and detection proba-
bilities for plethodontid salamanders within the context of a planned before-after control-
impact manipulative study, and applied them to empirical data on Oregon slender (Batracho-
seps wrighti) and Ensatina (Ensatina eschscholtzii) salamanders as examples. The Oregon slen-
der salamander (BAWR) is endemic to the Oregon Cascades, USA, and is distributed widely in
Douglas-fir forests from ~200-2500 feet in elevation, where the species demonstrates a strong
reliance on decayed coarse woody debris [26]. Ensatina salamanders (ENES) are distributed
broadly in coniferous and deciduous forests from British Columbia, Canada, to southern Cali-
fornia, USA [27].

Occupancy is a state variable of interest in conservation and management studies (e.g.,
determining species distribution as a function of environmental covariates) and may be defined
at different scales. An appropriate choice of scale will depend on factors such as species’ home
range and dynamics, scientific or management questions of interest, and sampling constraints
[28]. Further, scientific or management interest related to occupancy processes may exist at
multiple spatial scales, for example at both local and regional scales [29]. Multi-scale occupancy
models are a valuable extension to standard single-scale occupancy models, as they can be used
with nested samples to evaluate patterns of habitat selection and use at different spatial scales
while accounting for dependencies in occupancy status across scales (i.e., local scale occupancy
depends on regional scale occupancy)[30]. Spatio-temporal models are yet another extension
of occupancy models that account for variation across time. Several approaches exist to
account for temporal variation, including implicit or explicit process dynamics, as well as
empirical statistical models used for repeated measures [31–33].

We used simulations to evaluate estimator properties for single-scale and multi-scale occu-
pancy models [29, 34], with empirical correlation structures to account for temporal
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dependencies, for the analysis of a planned before-after control-impact study. We generated
empirical results for the hierarchical single-scale occupancy model using field data for both sal-
amander species and discuss the relative importance of empirical and simulation results in the
context of both observational and experimental studies. Researchers and managers can use
results from our evaluations to design efficient studies on basic and applied aspects of salaman-
der ecology, conservation, and management. Our results are likely applicable to a broad range
of other taxa for which occupancy is evaluated.

Materials and Methods

Site Selection & Sampling
We sampled BAWR and ENES at 66 forested harvest units in the Cascade Range, OR, USA.
Weyerhaeuser and Port Blakely Tree Farms LP owned the harvest units and provided permis-
sion for sampling to occur after reviewing all sampling procedures and experimental manipula-
tions. Field sampling did not involved threatened or endangered species. Harvest unit age
ranged from 35–90 (�x = 60; SD = 8) years and size from 20–183 ha (�x = 79; SD = 33). Clearcut
harvests were used to regenerate all units. Harvest units occurred in one of two study blocks:
Clackamas (Clackamas County, OR) or Snow Peak (Linn County, OR)(S1 Fig). We selected
harvest units randomly for inclusion within a long-term experimental study of salamander
responses to contemporary management prescriptions.

Within each harvest unit, we sampled seven 81 m2 (9×9 m) plots in 2013–2014. We chose
plot sizes to incorporate multiple salamander home ranges [28] and to allow systematic search-
ing of habitat features. We selected each 81 m2 plot randomly and sampled over three consecu-
tive 10 minute intervals in a single day (sampling occurred between 0800–1600 and from
April-June in 2013 and 2014). During each 10 minute interval, one observer surveyed the plot.
Although the same harvest units were sampled in both years, we selected a new set of plots to
sample in each year (i.e., each plot received a maximum of three 10 minutes surveys). Spatial
and temporal replication was necessary to estimate and incorporate detection into estimates of
occupancy [35]. Observers employed a light touch methodology [36, 37] in which all surface
objects, including leaf litter and moss blankets on logs, were turned over to observe salaman-
ders. All surface objects were then returned to as close to their original position as possible so
as to not negatively impact the habitat quality within a plot for salamanders. Observers did not
survey the same objects during each interval, but aimed to sample the entire plot over the
course of the three intervals. Salamanders were not handled with this survey method. We fol-
lowed a removal sampling protocol in which sampling stopped once both species were
observed in a plot [31]. During sampling, observers quantified number of pieces of coarse
woody debris (CWD; all logs> 25 cm DBH (small end) and> 1 m in length).

Statistical Models
The sampling design described above incorporates replication at two spatial scales (unit-level
and plots within units) and two temporal scales (year and visit). Our objective in formulating a
statistical model was to estimate patterns of occupancy at relevant scales of interest while
accounting for the sampling design and adjusting for imperfect detection. To this end, we con-
sidered two different statistical models each representing a distinct occupancy process.

The first approach, which we refer to as the “hierarchical single-scale model”, is a modified
version of the basic MacKenzie occupancy model [35], that incorporates random effects to
account for both the nested spatial sampling design and repeated measurements from the same
unit across time. Specifically, we let uijk denote the occupancy of plot k in year j from harvest
unit i, which takes the value of 1 when the plot is occupied and 0 otherwise. We assume that
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plot-level occupancy follows a Bernoulli distribution uijk * Bern(ψijk), where ψijk is the proba-
bility that plot k of harvest unit i during year j is occupied. Within-plot occupancy is assumed
to be closed across all visits within a year. We further assume that occupancy probability is
defined in terms of a mean model, μijk, and a unit-specific random intercept, b0i: logit(ψijk) =
μijk + b0i. The mean model may be parameterized in terms of harvest unit level, year level and
plot level covariates, while the random effect imparts a correlation among plots within a har-
vest unit and among measurements on the same harvest unit over time. We assume indepen-
dence among plots in different harvest units, and conditional independence among plots
within the same harvest unit, given the unit-level random effects. For the detection process, we
let yijkl denote the detection status of plot k from harvest unit i during year j and visit l, taking
the value of 1 when the species is detected and 0 otherwise. We considered species detection to
also follow a Bernoulli distribution yijkl = Bern(uijk � pijkl), with detection probability pijkl.

The second approach, which we refer to as the “multi-scale”model, is a modified version of
methods for multi-scale inference introduced in [29, 34]. In this approach, we allow for two
nested but distinct occupancy processes, one acting at the harvest unit level, and the other
acting at the plot level, conditional on harvest unit occupancy. We let zij denote the occupancy of
harvest unit i in year j, which takes the value of 1 when the harvest unit is occupied and 0 other-
wise. We assume that zij follows a Bernoulli distribution zij* Bern(θij) with harvest unit occu-
pancy probability θij. Similar to plot-level occupancy for the single-scale model, we parameterize
unit-level occupancy probability in terms of a mean model μij and a unit-specific random inter-
cept, b0i: logit(θij) = μij + b0i. The random intercept in this model accounts for repeated mea-
surements on the same harvest unit across years. We represent the plot-level occupancy as a
Bernoulli random variable uijk* Bern(zij � ψijk). Under this parameterization, plot-level occu-
pancy probability is equal to ψijk when zij = 1, and equal to 0 when zij = 0. The detection process
is again considered to follow a conditional Bernoulli distribution yijkl = Bern(uijk � pijkl), with
detection probability pijkl, and where yijkl = 1 if the species is detected and 0 otherwise. Covariates
may be included in any of these models, but are restricted to harvest unit and year variables for
θij, to plot, year or harvest unit variables for ψijk, and visit, plot, year, or harvest unit variables for
pijkl. Under this model, we assume independence among harvest units and conditional indepen-
dence on measurements of the same harvest unit over time, given the unit-specific random
effects. Plots within a harvest unit are also considered conditionally independent given the par-
tially latent occupancy status zij.

Both the hierarchical single-scale and multi-scale models may contain effects acting at dif-
ferent scales. The primary distinction between the two models is the scale at which an assumed
occupancy process manifests: strictly at the plot level for the hierarchical single-scale model or
separately at both the plot and harvest unit levels for the multi-scale model. For example, in the
hierarchical single-scale model, we assume that habitat selection is taking place at the plot scale
only, but that factors at a larger scale (the harvest unit) may influence this selection. For the
multi-scale model, we assume that two different selection decisions are taking place: at the har-
vest unit first, and conditional on a harvest unit being selected, a second selection decision is
made at the plot scale. Given this distinction, we cannot directly contrast the performance of
these models. Instead, we present the results here for each model as two distinct options to be
considered for analysis.

Simulation Study
We conducted a simulation study to evaluate the effectiveness of each occupancy model in the
context of a Before-After Control-Impact (BACI) [38] experimental design with multiple levels
of sampling. Our goal was to assess the impact of sample size on the consistency and efficiency
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of the treatment effect estimator of a BACI analysis, and to aid in the design of a planned
manipulative experiment. We simulated data for both the hierarchical single-scale process and
the multi-scale process discussed in the previous section. Models were then fit to data simu-
lated under the assumed model (e.g., the multi-scale model was only fit to data simulated from
the multi-scale process). The impact of model misspecification and checks for model misspeci-
fication were not considered in this study.

To simulate a BACI design, we assumed that N harvest units would be split evenly among
two treatments (“control” and “impact”), and would be followed for two years: one year
“before” and one year “after”. Furthermore, n plots were assumed to be placed within each of
the N harvest units, with each plot visitedm times. In this setting, harvest units represent our
primary sampling units and are the experimental units with respect to the treatment. Plots
within harvest units are a secondary sampling unit and represent sub-samples with respect to
the applied treatment. As with our empirical study, we assumed that different plots within a
harvest unit were sampled across years and could therefore be considered conditionally inde-
pendent sampling units. Unlike our empirical study, the simulation study did not stop visits
after the first detection.

The mean model used to simulate occupancy data from the hierarchical single-scale model
was of the form:

logitðcijÞ ¼ b0 þ b0i þ b1Yearij þ b2Treatmenti þ b3Treatmenti � Yearij; ð1Þ

where ψij is the expected plot-level occupancy of year j in harvest unit i, Yearij is an indicator
variable for Year = “after”, and Treatmenti is an indicator variable for “impact” stands. The
random intercept b0i is assumed to follow a normal distribution with mean = 0 and variance =
s2
b; and is included to account for correlation among plots within a harvest unit. Under this

occupancy parameterization, exp(β3) is interpreted as the relative effect of the impact treatment
on plot-level occupancy-odds, after controlling for year and stand-level variation. Thus, the
parameter β3 can be considered an estimator for the impact treatment effect. For simplicity, no
covariates, including treatment effects, were included in the detection probability model.

The mean model used to simulate data from the multi-scale model was of the form:

logitðyijÞ ¼ a0 þ a0;i þ a1Yearij þ a2Treatmenti þ a3Treatmenti � Yearij; ð2Þ

where θij is the expected harvest unit-level occupancy of harvest unit i in year j, Yearij is an
indicator variable for Year = “after”, and Treatmenti is an indicator variable for “impact” har-
vest units. We used constant values for both the conditional plot-level occupancy, ψijk, and
detection probability, pijkl, for plot k and visit l. As with the hierarchical single-scale model, the
random intercept a0,i is assumed to follow a normal distribution with mean = 0 and variance =
s2
b: Under this parameterization, exp(α3) is interpreted as the relative effect of the impact treat-

ment on harvest unit-level occupancy-odds, after controlling for year and harvest unit-level
variation.

We draw attention to the different interpretations of the “treatment effect” in each of these
models. Under the hierarchical single-scale model, the treatment effect is estimated for plot
level occupancy, whereas under the multi-scale model, the effect is estimated for harvest unit-
level occupancy. The two occupancy models correspond to distinct occupancy processes with
different interpretations. Consequently, we used different parameter values in our simulation
study for the two different models. In each case, we chose parameters to fall within an expected
range for our application to BAWR and ENES (Table 1).

We evaluated all parameter combinations in Table 1, giving a total of 90 unique conditions
for each model. Each unique condition was simulated 500 times. All datasets were simulated in
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R [39] and we fit all models using JAGS [40] called from R using package ‘R2jags’ [41]. For
both models, we used 3 chains of length 10000 each, with a burnin of 5000 and 1/10 thinning.
We checked convergence for occupancy and detection model parameters using the Gelman-
Rubin statistic [42]. The results summary included only those simulations where all mean
model convergence statistics were less than 1.1. We included the R code used to conduct the
simulation study in S1 and S2 Files.

Empirical Analysis
We chose to fit the hierarchical single-scale model to the empirical data collected across two
years on 66 harvest units in the Cascade Range, Oregon, USA. These data represent pre-treat-
ment conditions in harvest units that will be included in a long-term BACI design to investigate
the impact of timber harvest on BAWR and ENES occupancy. Our goals in this analysis were
to obtain preliminary estimates of salamander plot-level occupancy in control conditions; to
understand the association between occupancy and coarse woody debris; and to estimate detec-
tion probabilities. We could have chosen to fit the multi-scale model to our dataset. However,
we selected randomly harvest units to be included in the study from a larger pool of harvest
units, all of which were known to be occupied. Consequently, no variation existed in occupancy
status at the harvest unit level, and we could not model the upper-level occupancy process. For
both BAWR and ENES, we modeled plot-level occupancy as a function of CWD, Year, and
Block:

logitðcijÞ ¼ b0 þ b0i þ b1CWDij þ b2Yearij þ b3Blocki; ð3Þ

where CWDij is the coarse woody debris count for plot j in unit i, Yearij is an indicator for
whether plot j was sampled in 2014, and Blocki is an indicator for harvest units in the Clacka-
mas tree farm. We sampled coarse woody debris on plots each year during salamander
sampling.

Detection probability was modeled as a quadratic function of Julian date and an indicator
variable for year:

logitðpijkÞ ¼ g0 þ g1Julian Dateijk þ g2Julian Date2ijk þ g3Yearij; ð4Þ

where Julian Dateijk is the Julian date for visit k of plot j in harvest unit i, and Yearij is an indica-
tor for whether plot j was sampled in 2014. We centered and scaled Julian date prior to
analysis.

We fit all models in a Bayesian framework using N(μ = 0, σ2 = 3) priors for the plot-level
occupancy and detection probability intercepts, and N(μ = 0, σ2 = 4) priors for occupancy and

Table 1. Parameters used to simulate data under the hierarchical single-scale andmulti-scale occu-
pancymodels.

Parameter description Hierarchical single-scale model Multi-scale model

Number of stands 20, 30, 40, 50, 60 20, 30, 40, 50, 60

Number of plots/stand 5, 7, 9 5, 7, 9

Number of visits/plot 3 3

Pre-treatment stand occupancy NA 0.95

Pre-treatment plot occupancy 0.7 0.5

Post-treatment stand occupancy NA 0.3, 0.6

Post-treatment plot occupancy 0.1, 0.3 0.5

Detection probability 0.15, 0.3, 0.5 0.15, 0.3, 0.5

doi:10.1371/journal.pone.0142903.t001
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detection covariates. A Gamma(2,1) prior was used for the random effects standard deviation.
We fit the models using JAGS, called from R, with three chains of length 55,000, a burnin of
length 5,000, and 1/10 thinning. We assessed convergence using the Gelman-Rubin statistic
and visual inspection of the chains [42]. The JAGS model used for this analysis is included in
S3 File. The detection data and covariates for both BAWR and ENES are included in S1 and S2
Tables.

Ethics Statement
We conducted this research in compliance with all Oregon and USA laws and regulations. The
Oregon State University Institutional Animal Care and Use Committee (IACUC) approved all
activities involving the sampling and handling of live vertebrate animals.

Results

Simulations
We used the results of the simulation study to focus on three quantities of interest related to
the treatment effect estimator: bias, precision, and coverage probability. We calculated bias as
the difference between the true value of the parameter and the expected value of the estimator,
and (inverse) precision as the mean posterior standard deviation of the treatment estimator.
Coverage probability was calculated as the proportion of times a 95% equal-tail credible inter-
val contained the true value of the treatment effect parameter. Bayesian posterior credible
intervals often show close to nominal coverage probabilities in both small and large sample
problems [42, 43], and we examine their performance in our results.

Although we fit our models in a Bayesian framework, we would like to understand these fre-
quentist properties of the model estimators, as they provide useful pre-experimental guidance
on the use of the models and design considerations. Any Bayesian estimate will, to some extent,
depend on the priors used in the analysis. Nevertheless, we consider it instructive to examine
these pre-experimental properties of the model estimators, even under a limited set of
conditions.

The hierarchical single-scale model showed consistent results for the average posterior
mean of the treatment effect estimator for all sample sizes when detection probability was 0.5,
but some evidence of bias when detection probability was 0.15 (Fig 1). Bias was generally small
(<10%) for all detection probabilities when the number of harvest units was at least 40. Estima-
tor bias for the multi-scale model was strongly dependent on both the number of simulated
harvest units as well as the number of plots per harvest unit, particularly at lower detection
probabilities (Fig 2). Although bias was generally low when detection probability was 0.5, sub-
stantial bias existed with low detection probabilities, particularly in cases with less than 50 har-
vest units (Fig 2). However, these trends suggest that with sufficient sample size at both the
primary and secondary sampling units, approximately unbiased estimates can be obtained for
the treatment effect estimator under either model in a BACI design, at least for the prior distri-
butions and range of parameter values considered in this study.

We observed improved posterior estimator precision with increasing numbers of harvest
units, as expected (Figs 3 and 4). Number of plots per harvest unit, which represent subsam-
ples, also played a role in estimator precision by affecting the amount of information available
to estimate occupancy of the primary sampling unit. These trends also suggest improved preci-
sion with increasing detection probability, but very little impact due to the size of the treatment
effect.

Coverage probabilities for the single-scale model treatment effect estimator (Table 2, S3
Table) were close to nominal, but somewhat conservative with an average value of 0.97.
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Coverage probabilities for the multi-scale model treatment effect estimator were highly conser-
vative, with 100% of all intervals containing the true value. This result indicates that the poste-
rior standard deviation of the treatment effect parameter is not a good surrogate for the
standard deviation of the estimator sampling distribution. The hierarchical single-scale model
(Fig 5, S3 Table) showed generally good calibration between sampling variability and posterior
estimates of variability when detection probability was 0.5 for all sample sizes considered in
this study. As detection probability decreased, posterior variability tended to be greater than
the sampling variability of the treatment estimator. Results from the multi-scale model show,
across all conditions included in this study, that the average posterior variability is substantially
greater than the sampling variability of the treatment estimator (Fig 6). The trends for the
multi-scale model (S4 Table) suggest that posterior credible intervals for the treatment effect
estimate will tend to be highly conservative, exceeding nominal coverage rates and limiting the
efficiency of estimating the sign and magnitude of putative treatment effects.

All of the above results are based on a single set of prior distributions, chosen beforehand to
reflect subject matter knowledge regarding plethodontid salamander behavior. Although we

Fig 1. Average, by combination of parameters, of all posterior mean estimates of the treatment effect estimator ‘Beta3’ (see Eq 1) in the
hierarchical single-scale occupancy model.Results are shown on the logit scale. Panels show the results for different combinations by simulated
detection probability and post-treatment occupancy. Horizontal dashed lines show the true coefficient value.

doi:10.1371/journal.pone.0142903.g001
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think that this choice of priors is appropriate for our current application, these priors are
potentially informative and have the potential to affect estimator properties such as bias and
precision. At the suggestion of a reviewer, we repeated our simulation study with relaxed priors
—N(μ = 0, σ2 = 10) for covariate parameters—for a reduced set of the conditions in Table 1.
Results for this simulation study are summarized in S5 and S6 Tables. The hierarchical single-
scale model with relaxed priors showed a negative bias in the treatment estimator expected
value across most conditions (Fig 7). The magnitude of bias was affected by both sample size
and detection probability, showing relatively small bias with moderate detection probabilities
and larger sample sizes, and substantial bias with low detection probabilities. Results for the
multi-scale model with relaxed priors showed a mix of positive and negative bias depending on
the simulation conditions (Fig 8). Under both the single-scale and multi-scale models, estima-
tor precision and coverage probabilities using the relaxed priors were substantially the same as
with our original choice of priors (S5 and S6 Tables).

Fig 2. Average, by combination of parameters, of all posterior mean estimates of the treatment effect estimator ‘Alpha3’ (see Eq 2) in the multi-
scale occupancy model.Results are shown on the logit scale. Panels show the results for different combinations by simulated detection probability and
post-treatment occupancy. Horizontal dashed lines show the true coefficient value.

doi:10.1371/journal.pone.0142903.g002
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Empirical Evaluations
Estimated plot-level mean occupancies from the hierarchical single-scale model were higher in
the Clackamas tree farm than the Snow Peak tree farm for BAWR (0.66 vs. 0.43), but lower for
ENES (0.20 vs. 0.63)(Table 3). The results also showed a strong association between coarse
woody debris count and BAWR plot-level occupancy. We estimated approximately 35% higher
odds of occupancy for each additional piece of CWD found in a plot. In contrast, no clear asso-
ciation existed between ENES occupancy and CWD.

Detection probabilities were estimated to be lower in 2014 than in 2013 for both BAWR
(0.21 vs. 0.33) and ENES (0.09 vs. 0.14)(Table 3). Detection probabilities tended to increase
later in the season for BAWR, but decrease later in the season for ENES.

Discussion
Diverse life history strategies and behavioral variation make Plethodontid salamanders chal-
lenging organisms to study [17, 19, 44]. Evaluation of sampling designs and estimators for

Fig 3. Average standard deviation, by combination, of all posterior mean estimates of the treatment effect estimator ‘Beta3’ (see Eq 1) in the
hierarchical single-scale model.Results are shown on the logit scale. Panels show the results for different combinations by simulated detection probability
and post-treatment occupancy.

doi:10.1371/journal.pone.0142903.g003
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responses of interest are critical to provide strong inference about Plethodontid ecology and
responses to conservation and management activities. We used simulations to evaluate perfor-
mance of two candidate occupancy models in an analysis of a BACI experiment, and to set

Fig 4. Average standard deviation, by combination, of all posterior mean estimates of the treatment effect estimator ‘Alpha3’ (see Eq 2) in the
multi-scale model. Results are shown on the logit scale. Panels show the results for different combinations by simulated detection probability and post-
treatment occupancy.

doi:10.1371/journal.pone.0142903.g004

Table 2. Estimated coverage probabilities for nominal 95% equal-tail credible intervals of the treatment effect estimator from hierarchical single-
scale andmulti-scale occupancy models. Results in this table are limited to combinations with detection probability of 0.3 and seven plots. Results for
other conditions are consistent with these trends (S3 and S4 Tables).

Number of
plots

Single-scale model
coveragePost-treatment

occupancy = 0.1

Single-scale model
coveragePost-treatment

occupancy = 0.3

Multi-scale model
coveragePost-treatment

occupancy = 0.3

Multi-scale model
coveragePost-treatment

occupancy = 0.6

20 0.97 0.98 1.00 1.00

30 0.98 0.99 1.00 1.00

40 0.96 0.98 1.00 1.00

50 0.96 0.96 1.00 1.00

60 0.97 0.97 1.00 1.00

doi:10.1371/journal.pone.0142903.t002
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appropriate sample sizes for the experiment. Our results indicated expected improvements in
precision with increasing numbers of primary sampling units, but also highlighted the potential
gains accrued when adding secondary sampling units. Importantly, our results identified con-
ditions that could suffer from excessive estimator bias under particular choices of prior distri-
butions. Both models showed evidence of estimator bias at low detection probabilities and low
sample sizes, a problem that was also dependent on the choice of prior distribution. However,
the results also suggested that sufficient sample size at both the primary and secondary sam-
pling levels could ameliorate this issue.

Another insight from this study relates to the calibration between posterior uncertainty and
sampling variability. Under some conditions, good calibration existed between these two quan-
tities for the hierarchical single-scale model, suggesting that posterior credible intervals could
have a similar pre-experimental interpretation as confidence intervals. However, in all cases
studied for the multi-scale model and in many cases for the hierarchical single-scale model, the
posterior variability was substantially greater than the sampling variability. Under these

Fig 5. Comparison of the standard deviation of posterior mean estimates of ‘Beta3’ vs. the average posterior standard deviation of ‘Beta3’ for the
hierarchical single-scale model.Results are shown only for combinations with seven plots. Results for five and nine plots are not shown, but have trends
similar to those shown here. Panels show the results for different combinations of detection probability and post-treatment occupancy.

doi:10.1371/journal.pone.0142903.g005
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conditions, interpreting credible intervals as confidence intervals appears unjustified and
Bayesian interpretation of results is preferred.

Based on the simulation results, we expanded the size of our multi-year BACI experiment
from 45 to 66 harvest units and maintained seven plots per harvest unit. This change should
help to reduce estimator bias and improve precision.

The results of the simulation study are limited in several ways. Our study did not fully
address the sensitivity of results to the choice of priors. Our limited comparison of two differ-
ent prior distributions highlights sensitivity of estimator properties to these choices, even with
priors that may be considered ‘reasonable’ based on subject matter considerations. We there-
fore stress the importance of evaluating model performance within applied contexts prior to
fitting the model to data, as well as the need for posterior model checking.

We did not consider issues of lack-of-fit, variable selection, or the impact of model misspeci-
fication on estimator performance. These issues are important, but we considered them to be
outside the scope of the study. In our particular application, some of these issues are less of a
concern, as certain aspects of the model will be determined by the sampling design. For

Fig 6. Comparison of the standard deviation of posterior mean estimates of ‘Alpha3’ vs. the average posterior standard deviation of ‘Alpha3’ in the
multi-scale model. Results are shown only for combinations with seven plots. Results for five and nine plots are not shown, but have trends similar to those
shown here. Panels show the results for different combinations of detection probability and post-treatment occupancy.

doi:10.1371/journal.pone.0142903.g006
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example, all design-based factors will be included in the occupancy model(s), using a pre-deter-
mined functional form, regardless of statistical ‘significance’.

We did not address the question of how one might select between the two models that we
explored in the simulation study. As the two models represent two distinct processes for occu-
pancy, scientific judgment can and should be considered in the choice of model. In cases such
as our empirical example, the choice of models may be guided by species distribution consider-
ations apparent in the raw data. When limited background information is available to support
one model over the other, or when a goal of the analysis is to infer which model is a better
descriptor of the data, a range of options are available for Bayesian model selection and com-
parison [45, 46]. In all cases, it is incumbent on the analyst to perform appropriate diagnostic
checks.

In the empirical analysis, we wanted to obtain preliminary estimates of salamander occu-
pancy and detection under control conditions; examine the association between salamander
occupancy and coarse woody debris; and determine suitability of models for evaluation of data

Fig 7. Average, by combination of parameters, of all posterior mean estimates of the treatment effect estimator ‘Beta3’ (see Eq 1) in the
hierarchical single-scale occupancy model under a relaxed set of priors.Note we ran only a subset of cases in Table 1 for this analysis. Results are
shown on the logit scale. Panels show the results for different combinations by simulated detection probability and post-treatment occupancy. Horizontal
dashed lines show the true coefficient value. Prior sensitivity can be assessed by comparing with Fig 1.

doi:10.1371/journal.pone.0142903.g007
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Fig 8. Average, by combination of parameters, of all posterior mean estimates of the treatment effect estimator ‘Alpha3’ (see Eq 2) in the multi-
scale occupancy model under a relaxed set of priors.Note we ran only a subset of cases in Table 1 for this analysis. Results are shown on the logit scale.
Panels show the results for different combinations by simulated detection probability and post-treatment occupancy. Horizontal dashed lines show the true
coefficient value. Prior sensitivity can be assessed by comparing with Fig 2.

doi:10.1371/journal.pone.0142903.g008

Table 3. Posterior estimates of model parameters and standard deviations (SD) for both Oregon slender (BAWR) and ensatina (ENES) salaman-
ders, Oregon Cascades, USA, 2013–2014. All estimates are reported on the logit scale to two significant digits. Estimates for coarse woody debris (CWD)
and Julian date (JD) are based on standardized covariates.

BAWR ENES

Model Term Mean SD Mean SD

Occupancy Intercept -0.26 0.48 0.52 0.78

Block = Clackamas 0.93 0.41 -1.9 0.72

Year = 2014 0.012 0.55 2.1 1.1

CWD 0.74 0.24 -0.01 0.29

Detection Intercept -0.69 0.38 -1.8 0.33

JD 0.22 0.11 -0.20 0.10

JD2 -0.031 0.11 0.035 0.11

Year = 2014 -0.64 0.38 -0.58 0.34

doi:10.1371/journal.pone.0142903.t003
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collected within a BACI experimental design. Our results suggest higher plot-level occupancy
of Oregon slender salamander than ENES at Clackamas; the reverse is true for Snow Peak. Our
results also helped to quantify the positive association between BAWR occupancy and CWD
count, a trend which had been observed during stand pre-selection. Oregon slender salaman-
ders are thought to rely on CWD for foraging and nesting substrates, as opposed to the more
generalist affinities of ENES [26]. However, we note that both BAWR and ENES appear to be
relatively abundant on our study sites. For organisms occurring as relatively abundant and
well-distributed populations, estimating effects of habitat change may be difficult if the
response variable is occupancy as sample units may remain occupied even if population size
changes substantially.

Finally, the detection probability estimates for both BAWR and ENES were similar to condi-
tions examined in the simulation study, and suggest low bias for the BACI treatment-effect
estimator under either model (and our choice of priors), given that we have included 66 harvest
units in our study. However, due to relatively low detection probabilities, we can anticipate that
the multi-scale model treatment-effect credible intervals for ENES will be substantially larger
than the estimator sampling variability. Consequently, the intervals can be expected to exceed
nominal coverage, and will be conservative if used to assess evidence of a putative treatment
effect.
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