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Abstract

Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal 
evolution involves the repeated ‘selection and succession’ of rare variant cells that acquire a growth advantage over the 
remaining cell population through the acquisition of ‘driver mutations’ enabling a selective advantage in a particular 
micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: 
(i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an 
indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to 
permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which 
cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible 
for the initiation of clonal evolution? What are the roles of genotoxic and non-genotoxic carcinogens in carcinogenesis? 

 at O
xford Journals on July 14, 2015

http://carcin.oxfordjournals.org/
D

ow
nloaded from

 

http://www.oxfordjournals.org/
mailto:acarnero-ibis@us.es?subject=
http://carcin.oxfordjournals.org/


S20 | Carcinogenesis, 2015, Vol. 36, Supplement 1

What are the underlying mechanisms responsible for chemical carcinogen-induced cellular immortality? Here, we explore 
the possible mechanisms of cellular immortalization, the contribution of immortalization to tumorigenesis and the 
mechanisms by which chemical carcinogens may contribute to these processes.

An introduction to cellular senescence
Since the early 1980s by seminal works of Newbold et al. (1,2) it 
is known that cellular senescence is a barrier to tumorigenesis. 
Recent genetic experiments have contributed to explain why 
oncogenic signals need to bypass this barrier to induce tumors. 
Therefore, carcinogens, to promote tumorigenesis, must bypass 
this senescence barrier (1). But, what is this barrier and how it 
can block the process of carcinogenesis?

In continuous culture, somatic cells show a spontaneous 
decline in growth rate that is unrelated to the amount of time 
elapsed during culture; however, this decline is related to a 
decreasing number of population doublings. Somatic cell aging 
eventually terminates in a quiescent but viable state termed 
replicative senescence (3). Cells in this state exhibit specific fea-
tures and this behavior is observed in a wide variety of normal 
cells (4). Furthermore, it is widely accepted that normal human 
somatic cells, with the exception of stem cells and tumor cells, 
have an intrinsically limited proliferative lifespan, even under 
ideal growth conditions. Cells that display characteristics of 
senescence are also observed in response to other internal or 
external stimuli, such as oncogenic stress, DNA damage or cyto-
toxic drugs (5).

Characteristic senescent features include flat morphol-
ogy in culture, multinucleation and a terminal arrest resulting 
in increased levels of many cell cycle inhibitors. Moreover, the 
senescent phenotype is associated with dramatic changes in 
gene-expression (6–9). Senescent cells show altered lysosome/
vacuole function and accumulation of mitochondrial damage, 
which lowers adenosine triphosphate production and increases 
reactive oxygen species (ROS). Furthermore, enzymes and lipids 
are damaged by secondary chemical modifications, such as oxi-
dation, glycation or cross-linking, accumulating in the cytosol 
and lowering the rate of essential cellular functions (10–12).

The onset of senescence triggers the generation and accu-
mulation of distinct heterochromatic structures known as 
senescence-associated heterochromatic foci (SAHF) (13), which 
provide an explanation for the stability of the senescent state. 
Senescent cells also show altered DNA methylation processes 
(14,15) and display molecular characteristics of DNA damage 
(16–18), including nuclear foci of phosphorylated histone H2AX 

and DNA-damage checkpoint factors, such as 53BP1, MDC1 and 
NBS1 (9,16). Senescent cells also contain activated forms of the 
DNA-damage checkpoint kinases Chk1 and Chk2. These and 
other markers suggest that telomere shortening initiates senes-
cence through a DNA damage response. These characteristics 
also explain why other DNA damage stressors, such as culture 
shock, can potentially initiate senescence without telomere 
involvement (11,19).

The finite number of divisions during replicative senescence, 
which is commonly known as the ‘Hayflick limit’, is attributed 
to the progressive shortening of chromosome ends containing 
the telomeres, which is the proposed molecular mechanism of a 
senescence clock (20). Eukaryotic cells cannot replicate the dis-
tal ends of their telomeres, which shorten in length with every 
cell division until they reach a critical threshold at which cells 
stop dividing (21,22).

As mentioned previously, cellular senescence can be elicited by 
other types of stress, including oncogene activation (23). This phe-
nomenon is observed with many but not all oncogenes, including 
RAS and its effectors RAF, MEK and BRAF as well as PI3K or AKT 
(24–27). Also, the activation of other proliferative genes such as 
CDC6, cyclin E and Signal transducer and activator of transcription 
5 (STAT5), or the loss of tumor suppressor genes, such as PTEN, 
Spn or NF1, can trigger a DNA damage response and induce senes-
cence (28,29). This response is associated with DNA hyper-replica-
tion and seems to be the cause of oncogene-induced senescence 
(OIS) in vitro (30–33). Thus, oncogene- or stress-induced senes-
cence does not rely on telomere shortening (34,35). Stress-induced 
premature senescence shares some of the morphological and bio-
chemical features of replicative senescence activated by telomere 
shortening (36–40), supporting the hypothesis that senescence is a 
common response to cellular damage (41).

Recently, a physiological role for senescence in embryonic 
development has been also uncovered (42,43). This function 
seems to be dependent on the cyclin-dependent kinase (CDK) 
inhibitors p21CIP1 and p15INK4b but independent of other cell 
cycle inhibitors, DNA damage or p53. This senescence during 
embryonic development is regulated by the PI3K/FOXO and 
TGFb/SMAD pathways (42,43).

Senescence and immortalization: two sides 
of the same coin
Immortalization can be defined as the process by which cells 
grown in vitro acquire unlimited proliferation potential through 
the bypass of the antiproliferative barrier of senescence. It is 
accepted that bypassing cellular senescence through the dis-
tinct alterations of pathways involved in its activation allows 
human somatic cells to undergo immortalization and acquire 
a growth advantage (44–47). As envisioned, one of the rate-lim-
iting steps en route to full immortalization is the activation (or 
de-repression) of telomerase. Spontaneous telomerase re-acti-
vation in human somatic cells grown in vitro is a very rare-event, 
with a frequency of re-activation that varies across different 
human cell types (from 10−8/−10 in humans to 10−5 in mice). It is 
therefore accepted that telomerase re-activation is required to 
achieve complete immortalization since it is necessary to main-
tain telomere length and prevent replicative senescence. The 

Abbreviations  

BaP benzo(a)pyrene 
CDK cyclin-dependent kinase
CoQ10  coenzyme Q10 
GC genotoxic carcinogen 
MEF mouse embryo fibroblasts 
NAC N-acetyl-cysteine
NGC non-genotoxic carcinogen 
OIS oncogene-induced senescence 
PB phenobarbital 
ROS reactive oxygen species 
SAHF senescence-associated heterochromatic foci 
SASP senescence-associated secretory phenotype 
SHD Syrian hamster dermal cell
SOD superoxide dismutase.
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vast majority of cancer cells (~90%) have up-regulated telom-
erase activity, while the rest utilizes the alternative-telomere 
lengthening pathway (a homologous recombination-based 
lengthening) as a mechanism for telomere length maintenance. 
Furthermore, virtually all human cancers lack functional p53/
pRb pathways, which are widely regarded as two of the key 
senescence signaling routes (48,49). These pathways often 
carry mutations in sets of genes that are known to collabo-
rate in vitro to bypass the senescence response. In recent years, 
many groups have documented the presence of senescent cells 
induced by oncogenic signaling in several precancerous tissues 
obtained from humans and mice (23,50–53). These studies indi-
cate that OIS is an authentic process that occurs in vivo. More 
importantly, these studies suggest that OIS is an active process 
that occurs in response to oncogenic stimuli and offers a protec-
tive mechanism against tumor development. Therefore, cellular 
senescence is viewed as a key early barrier in carcinogenesis (4).

In this context it is essential to clarify major differences 
between early passage human and rodent cells with respect 
to the senescence barriers that need to be bypassed to achieve 
full immortalization. Cells from small rodents (mice, rats and 
hamster) have a single barrier to immortalization, that can be 
readily bypassed via pRB pathway (mutational or epigenetic) or 
p53 (mutational) pathway inactivation. Human cells (fibroblasts 
and variety epithelial cells) require, in addition, bypass of tel-
omere-driven replicative senescence through reactivation of tel-
omerase (transcriptional derepression of hTERT) an extremely 
rare event. The differences originate from the fact that rodent 
cells have telomerase permanently ‘on’ even when irreversibly 
senescent (54).

Effector pathways
Cellular senescence pathways are believed to have multiple lay-
ers of regulation, with additional redundancy inherent in these 
layers (55–57). In addition to canonical signal transduction lay-
ers, regulation by miRNAs and methylation have recently been 
uncovered (15,58). Many of the functional studies in which a 
putative senescence gene is overexpressed indicate that a single 
gene/pathway is required for repair and subsequent reversion 

to senescence, suggesting that senescence is essentially a reces-
sive phenomenon. Over all, most tumors have elongated tel-
omeres via the up-regulation of telomerase activity and carry 
one or more inactivating mutations in the effector pathways. 
These mutations confer ‘immortality’ to tumors. If this prop-
erty can be achieved by genetically altering proteins involved 
in senescence, environmental carcinogens may promote a simi-
lar phenotype and therefore should be carefully examined. The 
reasoning, however, is complicated; for example acute altera-
tions of the senescence pathways, such as the inhibition of a 
tumor suppressor (pRb, p16INK4a), are often recognized by the 
cell as an unwanted proliferative signal and preventive senes-
cence is triggered in response. It seems that chronic and/or sus-
tained downregulation of a percentage of this signaling activity 
is more probably to achieve the goal of immortalization, but 
very little research has been conducted with regards to this 
topic. Furthermore, this mechanism is an essential portion of 
the hypothesis that environmental carcinogens may extend the 
lifespan of cells.

The dynamics of senescence exhibit two different steps: 
cell cycle arrest and further acquisition of senescence features, 
which include permanent arrest.

Senescence effector pathways converge at the point of cell 
cycle arrest through CDK inhibition. Therefore, most pathways 
known to be involved in senescent arrest impinge either directly 
or indirectly on this process. Namely, the most known effec-
tor pathways are the p16INK4a/pRB pathway, the p19ARF/p53/
p21CIP1 pathway and the PI3K/mTOR/FoxO pathway (39,48,59–61), 
all of which exhibit a high degree of interconnection (Figure 1). 
Two pathways have been proposed to be responsible for the acqui-
sition of irreversible arrest and senescence: the pRB pathway and 
the mTOR pathway. There is a high degree of redundancy among 
all of these effector pathways (Figure 1). If senescence program 
is not activated, cells are only transiently arrested with the pos-
sibility of resuming growth once the proliferation constraints 
have been eliminated (9,62). It has also been shown that if mTOR 
is activated under conditions of proliferative arrest, then arrest 
becomes permanent and the cell undergoes senescence (63,64). 
This can also be accomplished by producing permanent changes 
in the chromatin, especially at E2F transcription sites, which 

Figure 1. Simplified scheme of the effector pathways contributing to cellular senescence.
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result in a blockade of transcription of proliferative genes (13). It 
has been shown that permanent inactivation of pRb, perhaps in 
combination with phosphatases (65), may signal for the differen-
tial recruitment of silencers to the heterochromatin of promoter 
sites. Human cells show heterochromatin compaction during 
senescence (SAHF), which is dependent on the pRb pathway (66). 
These SAHFs cause stable silencing of cell cycle genes and seem to 
be a factor in the stability of permanent arrest during senescence.

The p53 pathway

Replicative senescence, cellular stress or oncogenic Ras can 
activate p53 and promote cellular senescence, which limits the 
transformation potential of excessive signaling events (67–69). 
Inhibiting the function of p53 substantially extends the lifespan 
of several cell types in culture (70). Consistent with these findings, 
senescence is associated with the transactivation of p53 in cell 
cultures (71). Telomere shortening activates a DNA-damage check-
point associated with genomic instability and leads to p53 activa-
tion in vitro and in vivo (72). Deletion of p53 attenuates the cellular 
and organismal effects of telomere dysfunction, which establish 
a key role for p53 as the gatekeeper of telomere shortening (72).

As expected, other p53 regulatory proteins are involved in 
senescence. Overexpression of MDM2 targets p53 for degra-
dation and induces functional p53 depletion (73). Expression 
of p14ARF (INK4 alternative reading frame), another factor 
that is up-regulated during senescence and shares the INK4A 
locus with p16INK4a, releases p53 from MDM2 inhibition and 
causes growth arrest in young fibroblasts (73,74). ARF-defective 
mouse cells are efficiently immortalized (74,75), as do cells 
overexpressing MDM2.

Activation of p53 induces the up-regulation of the CDK inhib-
itor p21CIP1, which directly inhibits the cell-cycle machinery 
(49) and correlates well with the declining growth rates observed 
in senescent cultures. In human cells, depletion of p21CIP1 is 
sufficient to bypass senescence (76). However, in mouse embryo 
fibroblasts, the absence of p21CIP1 does not overcome senes-
cence (77,78). This finding suggests that at least one additional 
downstream effector is needed for p53-induced growth arrest 
during senescence. Other p53 effectors, such as 14-3-3-sigma 
and GADD45 (both of which inhibit the G2/M transition), or the 
downregulation of myc (79) are also potentially involved, thus 
underlining the redundancy of senescence effectors. It was also 
demonstrated that Ras modifies p53-dependent transcriptional 
activation in a quantitative, rather than qualitative manner and 
that the senescence response depends on factors other than p53 
activation (9). p53 activation appears to be necessary for growth 
arrest but due to the possible requirement for additional signals 
is not sufficient to induce senescence.

The retinoblastoma pathway

The activities of tumor suppressors are mainly attributed to 
their ability to bind and inactivate the E2F family of transcrip-
tion factors, which transactivates several genes encoding cell 
cycle proteins and DNA replication factors that are required for 
cell growth (80,81). pRb and its related proteins p107 and p130 
are members of the pocket protein family (82). The pocket pro-
teins are substrates for cyclin/CDK complexes (83) which in turn 
are inhibited by CDK inhibitors of the CIP/KIP and INK4 families 
of proteins. Both classes of inhibitors are up-regulated during 
cellular senescence (23), reducing pRb phosphorylation and thus 
preventing E2F inactivation.

Overexpression of pRb and some of the regulators of the 
pRb pathway, such as the CDK inhibitors, trigger a growth 
arrest which mimics the senescent phenotype (24). Moreover, 

inactivation of pRb by viral oncoproteins, such as E7, SV40 large 
T antigen and E1A, extends the cellular lifespan (84–86). Other 
members of the pocket protein family may also be involved. 
In mouse embryo fibroblasts (MEFs), p130 levels decrease as 
population doublings increase, and MEFs from triple pRb, p130 
and p107 knockout mice are immortal (87). Nevertheless, a cer-
tain degree of complementation has been observed among the 
pocket protein family members (87); thus, it is difficult to assess 
the role of each protein in replicative senescence.

It is likely that pRb possesses more tumor suppressive activ-
ity than the other pocket proteins because mutations that alter 
p107 and p130 are very rarely observed in human cancers (88). 
Indeed, pRb seems to have a non-redundant role in tumor sup-
pression and is thought to permanently repress E2F target genes 
during cellular senescence but not during quiescence. These 
observations suggest that loss of pRb, but not p107 or p130, 
results in a defective senescence response (89).

Given that CDK inhibitors of the INK4 (p16INK4a, p15INK4b, 
p18INK4c and p19INK4d) and CIP/KIP (p21CIP1, p27KIP1 and 
p57KIP2) families block the CDK inactivation of pRb (90), a loss-
of-function of INK4 proteins would conceivably have similar 
consequences as a loss-of-function of pRb. Several types of 
human cells accumulate p16INK4a and/or p15INK4b protein as 
they approach senescence (91,92). Senescent fibroblasts poten-
tially contain p16INK4a levels greater than early passage cells. 
The deletion or promoter methylation of p16INK4a is com-
mon in immortalized tumor cell lines (93), and several non-
tumorigenic in vitro immortalized cell lines also lack functional 
p16INK4a protein. Expression of p16INK4a-specific antisense 
RNA in naive MEFs increases the probability that these cells will 
undergo immortalization (75). In accordance with this observa-
tion, mouse cells that are rendered nullizygous for p16INK4a via 
targeted deletion undergo immortalization more readily than 
normal control cells (94,95). However, these cells still exhibit 
normal senescence kinetics. p16INK4a knockout mice develop 
normally through adulthood and are fertile, which indicates 
that the individual INK4 proteins are not essential for develop-
ment. However, p16INK4a deficiency results in a low suscepti-
bility to spontaneous tumor development and increased tumor 
susceptibility under specific carcinogenic protocols (94,95). This 
may be due to the fact that mouse cells rely on ARF rather than 
p16INK4a for cellular senescence. Interestingly, Syrian ham-
ster cells appear to be more similar to human cells by using 
p16INK4a instead of ARF as their primary senescence effector 
(96). It is possible that systems based on these cells to screen for 
senescence-bypassing carcinogens are more predictive of the 
human response than other rodent cells.

The polycomb group of proteins is critical for the tran-
scriptional repression of the INK4a-ARF locus (Figure 1). Mouse 
embryonic fibroblasts deficient for the polycomb group protein 
BMI1 undergo premature cellular senescence due to the de-
repression of both the INK4a and ARF genes (97). The polycomb 
group proteins are chromatin remodelers that repress gene 
expression by shaping chromatin structure (98,99).

The Id family of helix–loop–helix transcriptional regulatory 
proteins coordinates cell growth and differentiation pathways; 
it also regulates G1-S cell-cycle transitions. Although depending 
on the cell line, loss of Id1 increases the expression of the tumor 
suppressor p16INK4a but not ARF. Id1 depletion also reduces 
CDK2 and CDK4 kinase activity, which leads to premature 
senescence (100,101). Id1 directly inhibits p16Ink4a promoter 
activity via its helix–loop–helix domain but does not affect ARF. 
Therefore, Id1 may be a context-dependent inhibitor of cellular 
senescence via the repression of p16INK4a.
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In line with this, Ras-induced activation of PPP1CA, the cat-
alytic subunit of PP1α, is necessary to induce Ras-dependent 
senescence (102). PPP1CA stabilizes the active unphosphorylated 
form of pRb in a p53-independent manner. Unphosphorylated 
pRb will bind and inactivate E2F factors. This action blocks 
cell cycle progression and alters local chromatin (13) struc-
ture, resulting in the production of SAHFs. These transitions 
result in the accumulation of heterochromatin around E2F-
responsive promoters in senescent cells, which stably silences 
E2F-regulated genes and forms SAHFs (13).

PI3K/AKT/mTOR/FoxO constitutes an important pathway 
regulating the signaling cascades of multiple essential biologi-
cal processes (103–105). Many components of this pathway are 
genetically altered in cancer cells. AKT is a master kinase that 
phosphorylates MDM2 (among other proteins) and promotes 
its translocation to the nucleus, where it negatively regulates 
p53 function (106). One of the most conserved functions of 
AKT is its role in cell mass increase through the activation of 
the mTOR complex 1 (mTORC1 or the mTOR/raptor complex), 
which is regulated by both nutrients and growth factor signal-
ing. mTORC1 is a critical regulator of translation initiation and 
ribosome biogenesis and plays an evolutionarily conserved role 
in cell growth control (107). PI3K has been related to the induc-
tion of cellular senescence in several ways that are still not fully 
understood. Early works from Collado et al. (108), suggest that 
PI3K inhibition induces senescence through the activation of 
p27kip1. However, further works also indicated that the over-
expression of active P110a (catalytic subunit of PI3K) or AKT 
induces OIS in primary cells in culture and in vivo (77,109–112). 
On the other hand, loss of PTEN triggers cellular senescence 
through a p53-dependent mechanism (51) and results in indo-
lent prostate cancer. Therefore, concomitant or sequential loss 
of PTEN and p53 results in a dramatic acceleration of prostate 
tumorigenesis. Studies in murine mouse models have shown 
that p53 is the preferred mutation upon PTEN loss. In consti-
tutively active AKT or PI3K transgenic models, an increase in 
benign lesions are observed if senescence is induced upon AKT 
activation (53,113).

AKT activation can also stimulate proliferation through mul-
tiple downstream targets and impinge on cell-cycle regulation. 
AKT phosphorylates some members of the FoxO family while 
they are present in the nucleus, thus creating binding sites for 
14-3-3-sigma proteins that trigger their export from the nucleus. 
Through this mechanism, AKT blocks the FoxO-mediated tran-
scription of target genes that promote apoptosis, cell-cycle 
arrest, and metabolic processes (Figure 1) (114,115).

FoxO transcription factors are an evolutionary conserved 
subfamily that regulates a number of cellular processes involved 
in cell-fate decisions in a cell-type- and environment-specific 
manner, including metabolism, differentiation, apoptosis and 
proliferation (116). A key mechanism by which FoxO determines 
cell fate is through regulation of the cell cycle machinery. FoxO 
plays a crucial role in regulating cellular senescence by control-
ling the expression of a number of cell cycle regulators, includ-
ing p27kip1 (108). Moreover, overexpression of FoxO or p27KIP1 
in primary mouse embryo fibroblasts can recapitulate this phe-
notype, promoting premature cell cycle arrest, changes in cell 
morphology and increases in senescence-associated markers. 
The ability of FoxO to induce G0/G1 arrest is lessened in p27Kip1 
and p130 double deficient fibroblasts (117), suggesting that both 
p27Kip1 and p130 are important for mediating FoxO-dependent 
cellular senescence associated G0/G1 arrest. Further evidence of 
a role for FoxO in cellular senescence is supported by a recent in 
vivo study demonstrating that OIS also involves the repression 

of the PI3K–PKB signaling pathway and the induction of FoxO 
(118).

mTOR is an essential convergence point for the PI3K/AKT/
FoxO pathways (119). mTOR is the master regulator of protein 
synthesis (120). It has been proposed that for growth arrest to 
become permanent (i.e. undergo senescence), a high level of 
mTOR activation is necessary (121,122). In fact, rapamycin treat-
ment, which inhibits mTOR, can divert senescence into quies-
cence, allowing the cell to resume growth once conditions are 
more favorable (123,124). It has been proposed that this contri-
bution is due to the function of mTOR as a sensor of cellular 
nutrients and energy status as well as growth factor signals. 
mTOR then integrates those signals and ‘decides’ whether the 
amount of metabolites and energy are sufficient to permit pro-
tein synthesis (107,125).

Carcinogen-induced bypass of cellular 
senescence
With these studies in mind, we identified a number of targets 
for which their alteration will contribute to immortalization. 
However, only a handful of genes are commonly measured: p53, 
hTERT and the INK4a/b locus. The rest of the genes are not com-
monly tested, and we do not know whether these genes are impli-
cated in carcinogen-induced immortalization or to what extent 
they may contribute. Furthermore, to date, most carcinogen 
studies consider the initiation or progression of tumors as the 
measurable endpoint; however, they do not generally consider 
immortalization to be one of these endpoints. Immortal cells do 
not form tumors and need a further signal (oncogenic activation 
for example) to initiate carcinogenesis (Figure 2). Therefore, the 
identification of carcinogens is biased toward those chemicals 
that are able to produce alterations in several hallmark analy-
ses and those capable of inducing a full-grown tumor. Therefore, 
we can expect that carcinogens altering a broad range of targets 
be more effective in these settings. Thus, DNA-damage (geno-
toxic) or methylating/demethylating agents (non-genotoxic) are 
easily identified since produce general changes in the genome. 
However, these searches come with a drawback, DNA-damage 
chemical compounds have been shown to induce senescence in 
a cell population, with only a few immortal (tumoral perhaps) 
clones arising from the whole culture. These clones are immor-
tal due to DNA mutations (or epigenetic silencing) randomly 
occurring at a immortalizing gene site (1,2,96). The frequency of 
these immortal/tumoral clones is still high in comparison with 
spontaneous occurring immortal clones. However, it is expected 
that the same carcinogen hitting a naive culture that is already 
immortal (non-tumoral), either because stem properties of the 
targeted cell or because other non-carcinogenic compound is 
inhibiting only senescence (Figure 2), will induce a much higher 
level of tumoral clones from the cellular population, and would 
therefore behave as a much more potent carcinogen. This may 
also hold true for other compounds considered carcinogens but 
non-hazardous due to the low doses found in the environment, 
which may be reconsidered, since low doses of this compounds 
in the presence of a compound inhibitor of senescence might 
induce high tumorigenicity (Figure 2).

However, the literature regarding immortalization-only 
agents is very limited.

Genotoxic and non-genotoxic carcinogens
Chemicals are classified based on their carcinogenic capacity, 
and the IARC has categorized the carcinogenicity of all known 
chemicals (or agents) into four groups (http://monographs.iarc.
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fr/ENG/Classification/index.php) ranging from carcinogenic in 
humans to most likely not carcinogenic in humans. Each car-
cinogen can be further classified based on its mode of action 
into the genotoxic carcinogen (GC) group or the non-genotoxic 
carcinogen (NGC) group. GCs are defined as chemicals or agents 
that directly initiate carcinogenesis via a direct interaction with 
DNA, thus initiating DNA damage and chromosomal aberrations 
that can be detected by genotoxicity testing. In contrast, NGCs are 
agents capable of inducing cancer via a secondary mechanism, 
such as the result of indirect action on DNA with the capacity to 
alter signal transduction pathways or gene expression. GCs can 
be detected using genotoxicity testing (Table  1), which detects 
changes to the cell at the molecular and cellular levels. These 
changes include mutations in genes, DNA strand breaks, forma-
tion of DNA adducts, chromosomal aberrations and aneuploidy, 
all of which can be detected using the validated methods listed 
in Table 1. Nowadays, sequencing of entire genomes through next 
generation sequencing technologies allows the identification of 
mutations generated by these GCs and the identification of spe-
cific altered pathways. The mechanism of GCs in the immortaliza-
tion process is thought to be through direct inactivation (via point 
mutations and deletions) of the effector pathways. For example, 
the powerful mutagenic carcinogens N-methyl-N-nitrosourea 
(MNU) (CAS# 684-93-5) and benzo(a)pyrene (BaP) (CAS# 50-32-8) 
have been shown to be efficient immortalizing agents in a Syrian 
hamster dermal (SHD) cell transformation assay (129) through 
the direct inactivation of the tumor suppressors p53 and p16 (96). 
An inactivating p53 mutation was observed in 70% of the clones 
induced with BaP or MNU carcinogens in immortalized SHD cells. 
Most mutations were within the DNA binding domain of p53 
in known as ‘hot spot’ codons that confer either inactivation or  

gain-of-function mutations (96,130). BaP has also been shown 
to immortalize human mammary epithelial cells (131), but the 
mechanism of complete immortalization is not known. A screen 
of p53 mutations in the two BaP-treated immortal mammary 
epithelial clones derived from the primary cell line identified no 
p53 mutations in exons 4–9, and high levels of p53 protein were 
observed via immunohistochemistry (132). This indicates that 
there may be other pathways or proteins involved in the immor-
talization processes.

Physical carcinogens (such as ionizing radiation) are also pow-
erful immortalization agents with different mechanisms and fre-
quencies in rodent and human cells. For example, x-rays, neutrons 
and gamma rays produce immortal clones in SHD cells, with a 
single dose in all immortal variants containing a CDKN2A/B locus 
deletion (96). In contrast, immortalization of human mammary 
cells by ionizing radiation is a relatively infrequent event (133). 
One such immortal variant generated by a fractionated cumula-
tive dose (30 Gy in total) of IR (76-R30) showed a complete loss of 
p53 protein. Similarly, methyl sulphate, a powerful clastogen, is 
an efficient immortalizing carcinogen in mammalian SDH cells 
and Chinese hamster cells (129) and has a similar mode-of-action 
to that of ionizing radiation.

There is no evidence of a complete immortalization of pri-
mary human cells with genotoxic carcinogens, indicating that 
robust antiproliferative barriers exist in human cells. Such 
stringent barriers (OIS, replicative senescence and stasis as 
observed in HMECS) exist in human cells to act as tumor sup-
pressors and to maintain genomic integrity. However, there is 
evidence of an increase in the tumorigenicity of spontaneously 
immortalized human oral keratinocytes infected with HPV-
16/18 E6/E7 viruses when exposed to long-term BaP in culture 

Figure 2. Proposed carcinogenic roles for different chemical compounds underlining the relevance of ‘immortalization’ compounds. (I) Compound acting on somatic 

cells at different levels (DNA-damage for example) Compound A may induce senescence. (II) The same compound A acting on a stem cell that does not have replicative 

constraints will induce tumorigenesis. (III) If the same compound A acts after an ‘immortalization’ compound (compound B) that overrides the senescence barrier, the 

compound will be carcinogenic in these somatic cells. (IV) Similar to III, but in this case, both compounds act in a mixture.
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(134). The immortalization of human cells by the HPV-16 E6/
E7 viruses occurs through the inactivation p53 or Rb1, respec-
tively (135). However, the immortalized human oral keratino-
cytes are non-tumorigenic (134). It is the extended exposure to 
the genotoxic carcinogen BaP that increases the tumorigenic-
ity and malignant phenotype of the immortalized human oral 
keratinocytes, possibly as a result of increased mutation rates 
and inefficient repair of DNA damage caused by the genotoxic 
carcinogens.

NGCs (Table  1) can induce immortalization in SHD cells at 
frequencies comparable with genotoxic carcinogens, probably 
through epigenetic mechanisms (96,136). Phenobarbital (PB) is a 
sedative that is also used as a hypnotic and antiepileptic agent. 
It is prescribed to people with epilepsy and has been classified as 
a class 2B carcinogen by IARC. PB was shown previously to pro-
mote cancer of the liver and thyroid in animal studies initiated by 
known carcinogens. It also promotes a reduction in the expres-
sion of p21CIP1 (the CDKN1A product), which was observed when 
PB was used in combination with N-nitrosodiethylamine. These 
results suggested a potential involvement of PB at the G1-S cell 
cycle transition during liver carcinogenesis and senescence (128). 
Some data suggests that PB may also affect oncogenes, such as 
c-Myc, K-Ras and Fos, during rat liver cell line transformation 
(137). PB Induces cellular transformation in SHD cells at doses of 
750 µg/ml, with a frequency of 2 × 10−7 (138), and induces morpho-
logical transformation in Syrian hamster embryo assays at a fre-
quency of 1.11% at a dose range of 0.06–2.0 mM (139).

In contrast, nickel-chloride (a very potent NGC with a fre-
quency of immortalization greater than that of BaP; 9 × 10−7 com-
pared with 6 × 10−7) induces the bypass of OIS by inactivating the 
p16INK4a-Rb pathway via the direct methylation of the p16INK4a 
tumor suppressor promoter and silencing the expression of the 
gene (96). Although it must be noted that the frequency of immor-
talization of nickel-induced HMECs is much lower compared with 
SHD cells. Other carcinogenic metals (such as arsenic, chromium 
and cadmium) are now thought to induce carcinogenesis in cells 
via epigenetic mechanisms (140); however, the exact mechanisms 
of the induction of complete immortalization in mammalian cells 
are not known (141). This is mainly due to the lack of accurate cell-
based assays that are capable of measuring the carcinogenicity 
of NGCs (142). In addition, the current methods of classification 
have resulted in a high rate of false-positive data regarding NGCs 
present in IARC groups 1, 2A and 2B, which has initiated inter-
est in devising better methods (cell-based and weight-of-evidence 
based) for the identification of NGCs. Essentially, the methods for 
the identification of chemicals capable of inducing only immor-
talization effects are not well developed.

Specific targeting of immortalization-related 
proteins

Telomerase

Telomerase activators readily promote the elongation of tel-
omeres and extend the lifespan of the cell. There are data 

suggesting that acetaminophen activates telomerase (143–146), 
which could lead to the immortalization of cells. However, there 
is also data indicating that acetaminophen can inhibit CDK4 
and CDK2, thus imposing a cell cycle checkpoint at G1 and effec-
tively blocking cellular proliferation. Another candidate could be 
bisphenol A, a chemical widely used in plastics (147–151). Like 
acetaminophen, it can activate telomerase and some data sug-
gest that it induces cyclin A, cyclin D3, cdc2 and pRb. This activ-
ity is consistent with a bypass of senescence and an induction of 
proliferation (152). However, as mentioned previously, an acute 
induction of pRb phosphorylation might induce senescence by 
activating ARF and p53 (153). Chronic, low dose exposure has not 
been tested and the expected results are uncertain.

Several saponins from the plant genus Astragalus, including 
cycloastragenol (TAT2) and TA-65, have been used in traditional 
Chinese medicine and are currently sold as nutraceuticals with 
the promise of extending healthy life through the activation of 
telomerase. Cycloastragenol has been shown to transiently acti-
vate telomerase in CD8+ T lymphocytes from HIV-infected human 
donors, retarding telomere shortening and improving proliferation 
and the antiviral response (154). TA-65 has been shown to moder-
ately activate telomerase in human keratinocytes, fibroblasts and 
immune cells in culture; furthermore, TA-65 diminished the per-
centage of senescent CD8 T lymphocytes in vivo in the absence of 
any adverse events observed in the human subjects (155). Studies 
with TA-65 in mice demonstrated that the compound increased 
the average telomere length, thus decreasing the percentage of 
critically short telomeres. Furthermore, the dietary supplementa-
tion of female mice with TA-65 led to an improvement in glucose 
tolerance, osteoporosis and skin fitness without increasing global 
cancer incidence (156). Although these plant saponins have been 
historically used in traditional Chinese medicine and are currently 
used as nutraceuticals, no detrimental effects were reported until 
recently. More research is necessary to ensure that these saponins 
are not increasing cancer risk through the activation of telomer-
ase in combination with other chemicals.

Cotinine, a nicotine metabolite found in tobacco, exhibits 
a biological half-life 10 times longer than that of nicotine and 
has been shown to induce abnormal cell proliferation through 
the reactivation of telomerase in human vascular smooth mus-
cle cells in a dose-dependent manner (157). Although there is 
some controversy about the effects of the isoflavone genistein, 
which is present in many Fabaceae beans, it has been shown to 
enhance telomerase activity at physiologically achievable con-
centrations (~1 μM) in prostate cancer cells through the activa-
tion of STAT3, Signal transducer and activator of transcription 
3, (158). Nevertheless, at higher pharmacological concentrations 
(>10 μM), genistein has been shown to inhibit telomerase in all 
cell lines analysed (159). Thus, depending on the physiological 
concentration, the compound can have a bilateral effect on tel-
omerase activity in cancer cells. Ginkgo biloba extracts are cur-
rently used as nutraceuticals in many food supplements and 
have been shown to induce telomerase activity, resulting in a 
reduction of endothelial progenitor-cell senescence in a dose-
dependent manner. The mechanism through which the ginkgo 

Table 1. List of known NGCs and their immortalization frequencies in mammalian cells

Carcinogen Immortalization frequency Mechanisms of immortalization

Nickel-derived compounds, including 
nickel chloride

9 × 10−7 Epigenetic silencing of p16 (96)

Diethylstilbestrol 4 × 10−7 Allelic loss and point mutation in ETRG-1 gene (126)
Reserpine 3 × 10−7 Unknown but thought to be epigenetic (127)
Phenobarbital 2 × 10−7 Reduces expression of the CDKN1A product p21 (128)
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extract induces telomerase activity is not well understood, but 
the PI3K signaling pathway seems to participate (160).

Resveratrol, a stilbenoid that is produced by several plants 
and is currently used in food supplements and cosmetics, has 
been shown to activate telomerase in human mammary epi-
thelial and endothelial progenitor cells, most probably through 
the up-regulation of SIRT1 or the activation of the AKT signaling 
pathway (161–163).

Although the most obvious effect of telomerase on tumor 
promotion is the facilitation of the bypass of the replicative 
senescence barrier that limits the number of divisions of the 
tumor cells through telomere stabilization, telomere attrition 
in the absence of telomerase activity can also favor the onset 
of a malignant phenotype. In fact, short telomeres can give 
rise to dicentric chromosomes, which can undergo several 
rounds of chromosomal bridge-breakage-fusion cycles during 
cell division, causing a high degree of chromosomal instability. 
In the presence of wild type p53, cells with highly rearranged 
genomes will enter crisis and, subsequently, die. Nevertheless, 
in the absence of p53 activity, alterations resulting from these 
bridge-breakage-fusion cycles would eventually increase the 
mutability of the genome, thereby accelerating the appearance 
of a malignant phenotype (164). The subsequent recovery of tel-
omerase activity would eventually facilitate the reconstruction 
of longer telomeres and the fixation of the aberrant karyotypes 
that favor malignant phenotypes (165). Substantial evidence for 
this hypothesis is still lacking, but several circumstantial stud-
ies incorporating comparative analyses of premalignant and 
malignant lesions in the human breast point in this direction 
(166,167). This evidence highlights an essential point of this 
review: the combination of otherwise innocuous chemicals can 
give rise to pro-tumorigenic (or tumorigenic) phenotypes.

Thus, telomerase inhibitors may have a potential pro-carci-
nogenic role if individuals are exposed during the early phases 
of the process of tumorigenesis or under specific molecular or 
cellular circumstances. Many natural compounds have been 
identified as telomerase inhibitors, including allicin [an organo-
sulfur compound found in garlic (168)], curcumin [a compound 
found in the spice turmeric (169)], silibinin [found in Silybum 
marianum (170)], sulforaphane [found in cruciferous vegetables, 
such as broccoli or cabbages (171)], EGCG [epigallocatechin gal-
late, found in tea (172)], helenalin [a lactone present in Arnica 
plants (173)], rubromycin [found in Streptomyces collinus (174)], 
among others. Nucleoside analogs used in HIV treatment, such 
as AZT, have also been shown to inhibit telomerase (175).

p53 is the gatekeeper of cellular stress. Its inhibition extends 
cellular lifespan and is necessary to bypass OIS. A  number of 
chemical inhibitors, such as pifithrin, have been reported to 
directly bind and inhibit p53 activity (176). Although the expo-
sure to pifithrin is limited because it is a laboratory product, it is 
expected that some chemicals either from nature or syntesized 
by man can produce the same effects.

The effect of antioxidants on p53 is clear (177–179). While 
superoxide dismutase (SOD) which converts O2•

− to H2O2, was 
found to increase p53 activity, catalase, a scavenger of H2O2, inhib-
ited p53 activation. Interestingly, aspirin, a scavenger of •OH, sup-
pressed the activation of p53 (180). Increased formation of •OH 
enhanced p53 activation at the protein level but not at the tran-
scriptional level (181). Maehle et al. (182) found that p53 gene struc-
ture and expression was altered in human epithelial cells after 
exposure to nickel; however, in contrast, a low incidence of point 
mutations was detected in the p53 tumor suppressor gene iso-
lated from nickel-induced rat renal tumors. Regarding the effects 
of arsenic on p53, various studies have reported conflicting results 

spanning the range of arsenic demonstrating no effect on p53 to 
arsenic inducing p53 phosphorylation and, ultimately, leading to 
a decrease in p53 expression (183–186). Another mechanism by 
which metals affect p53 is via zinc substitution, which is essen-
tial for the binding of p53 to DNA. Metals substituting zinc can 
inactivate p53 without mutation or oxidation. Several studies have 
confirmed that mutations arise in p53 following exposure to NO• 
(187). Experiments have also indicated that exposure of cells to 
a high level of NO• and its derivatives during chronic inflamma-
tion in the absence of wild-type p53 and therefore negative iNOS 
regulation may increase susceptibility to cancer. There is an asso-
ciation between increased iNOS expression and G:C to A:T transi-
tion mutations in p53 in stomach, brain and breast cancers. NO• 
and its derivatives are therefore capable of causing mutations in 
cancer-related genes and therefore act as both an endogenous ini-
tiator and a promoter in human carcinogenesis (188,189).

Sodium-selenite increases p53 promoter methylation 
and also exhibits many additional global methylation effects 
(190,191). A reduction in the levels of p53 contributes to immor-
talization at the expense of compensatory effects in other genes.

Resveratrol increases the catalytic activity of Sirt1, promot-
ing the deacetylation of p53 (192). Resveratrol is a phytochemi-
cal that partially prevents mitochondrial senescence induced in 
the lung by benzopyrene (193) but shows potential in preventing 
cancer and other diseases resulting from oxidative stress (194–
197). Therefore, it seems plausible that the long-term benefits 
may outweigh the possible damage.

Although p53 is the central player in a network that senses 
cellular stress and generates an adequate response to the 
insult, other players exist both upstream and downstream of 
p53, the alterations of which may affect the final output of the 
network (Figure 1). For example, Ser20 phosphorylation is a key 
phosphor-acceptor site in the p53 transactivation domain that 
has been shown to be induced in an ATM-dependent manner 
upon exposure to X-rays, a CK1-dependent manner upon virus 
infection, and an AMPK-dependent manner upon perturbation 
of adenosine monophosphate/adenosine triphosphate ratios 
(198). Environmental compounds that inhibit these kinases 
could potentially inhibit the activation of p53 under stress con-
ditions and facilitate the onset of the transformation process. 
Caffeine is an alkaloid present in many plants that inhibits the 
checkpoint kinases ATM (ataxia-telangiectasia mutated gene) 
and ATR (ataxia-telangiectasia and rad3-related gene) (199) and 
attenuates the activation of p53 via ser20 phosphorylation (200).

mTOR

Although maintaining its activity seems essential to ‘finalize’ 
the output of the senescent phenotype, acute mTOR inactiva-
tion has been used as antitumor therapy and promising results 
in a few specific tumor types (201–204). Therefore, although 
mTOR inhibitors (or mTOR activation by inhibiting PI3K or AKT), 
such as rapamycin, AKT inhibitors or PI3K inhibitors, could the-
oretically contribute to immortalization, this pro-tumorigenic 
effect can be counteracted by the effects of inhibiting an impor-
tant proliferation pathway. However, the effect of a chronic, 
low dose exposure of mTOR inhibitors may be unexpected if 
cellular circumstances are appropriate to facilitate immortali-
zation, particularly in cells that are not terminally arrested or 
in an increasing proportion of cells transitioning to senescence 
upon aging. Limited data have shown that lead can inhibit 
mTOR (205), gold nanoparticles can inhibit mTOR and Akt acti-
vation (206,207) and silver nanoparticles can inhibit Akt activa-
tion (208–211), making these chemicals possible candidates for 
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immortalization agent classification via the regulation of mTOR 
signaling. Lead is currently ubiquitous in the environment and 
gold and silver nanoparticles are probably already widespread 
in the environment or soon will be due to the large increase in 
their use over the past few years.

As with many other compounds (212), global methylation 
may alter genes involved in immortalization but these effects 
will probably be compensated for. For example, Genistein 
reduces the levels of p16 but also reduces hTERT mRNA expres-
sion through an increase in E2F1 (213). However, no chronic low 
dose exposure studies have been performed.

Oxidative stress and senescence
Since the proposal of the radical theory of aging by Harman 
(214), recent studies have suggested that the accumulation of 
ROS and oxidative damage are closely involved in senescence 
(5,215–219). ROS, such as the superoxide anion and hydroxyl 
radical, are produced during cellular metabolism, mainly in the 
mitochondria. ROS are also produced in response to different 
environmental stimuli, such as UV, IR, chemicals, hyperoxia or 
hydrogen peroxide treatment. Abnormal ROS accumulation and 
its effects on intracellular macromolecules (oxidation of lipid, 
protein and DNA) provoke cumulative damage at the cellular, 
tissue and organismal level. Mild oxidative stress (e.g. treat-
ment with low concentrations of hydrogen peroxide) is enough 
to induce senescence in primary cells. Interestingly, premature 
senescence induced by culture-stress or oncogene-induced 
stress is associated with oxidative damage in cells (220).

Notably, increased ROS accumulation is also observed during 
replicative senescence. The replicative potential of both murine 
and human fibroblasts are significantly extended under low 
oxygen and are associated with less oxidative damage than that 
observed under normoxia (O2 20%) (221). Immortalized cells suf-
fer from less oxidative damage than primary fibroblasts when 
cultured at 20% O2. Moreover, immortalized cells are more resist-
ant to the deleterious effects of hydrogen peroxide than primary 
cells. Thus, the ability to resist oxidative stress could be a clue to 
explaining the immortality of cancer cells.

Several radical scavengers can protect cells against oxidative 
stress. The SOD enzyme converts superoxide anions into hydro-
gen peroxide, while hydrogen peroxide can be detoxified by cata-
lase. Consequently, these antioxidant enzymes can impact both 
the proliferation of primary and immortal cells because they 
should counteract the effects of ROS. The ability of SOD to bypass 
senescence has been well studied and established in various cells 
and/or organisms. Increased expression of SOD can extend the 
life span of primary fibroblasts (222). Conversely, knockdown of 
SOD using siRNA induces premature senescence accompanied 
by p53 activation. Transgenic flies overexpressing SOD (223) or 
the detoxifying enzyme catalase (224) present with an extended 
organism life span. Although it is clearly established that these 
antioxidant scavengers are essential for the proliferation of 
immortal cells, to date, little is known about the specific chemi-
cals affecting senescence via oxidative stress modulation.

First, N-acetyl-cysteine (NAC) is a well-known radical scav-
enger that also interferes in the ras signaling pathway. Ras-
induced senescence in MEF was bypassed upon NAC treatment 
(225), whereas another group has shown that neoplastic trans-
formation by Ras was perturbed upon NAC treatment (226). It is 
possible that NAC might be carcinogenic in a cellular context 
that remains to be clarified.

Coenzyme Q10 (coQ10) is another candidate. CoQ10 is an 
essential component of the mitochondrial respiration complex 

I. It is well known that the level of coQ10 in various tissues, espe-
cially in the heart, declines during organismal aging, including 
humans. This observation partially explains why some people 
favor the daily oral intake of coQ10 as a supplement. However, 
no clear scientific evidence has defined its effect on human 
longevity. There are several opposing reports on its effects on 
longevity in some model systems. While a coQ10 deficient diet 
significantly extends the life span of Caenorhabditis elegans (227), 
a lack of coQ10 shortened the longevity of Drosophila (228). It is 
noteworthy that mice under oral coQ10 treatment apparently 
displayed shorter survival rates than those maintaining a stand-
ard diet (7%). Histological analysis revealed that the major cause 
of death of these mice was an increased incidence of cancer, 
including hepatocellular carcinoma and malignant lymphoma.

Iron is an essential metal in mammals for the transport of 
oxygen by hemoglobin and for the function of many enzymes 
including catalase and cytochromes. However, the ‘free’ or ‘cata-
lytic’ form of iron mediates the production of ROS via the Fenton 
reaction and induces oxidative stress. ‘Free’ iron is quite cyto-
toxic as well as mutagenic and carcinogenic. Ferric nitrilotriace-
tate induces oxidative damage in renal proximal tubules, which 
is a consequence of a Fenton-like reaction that ultimately leads 
to a high incidence of renal cell carcinoma in rats (229,230). It 
may be partially explained by a loss of heterozygosity in the 
INK4 locus with a modulated methylation status (231).

Finally, oncometabolites could affect oxidative damage 
and may be a hot topic for study. Kondoh et al. (232) previously 
reported that the glycolytic enzyme PGAM immortalized pri-
mary MEFs and reduced oxidative damage. It is reasonable to 
speculate that the modulation of PGAM activity would have a 
great impact on the process of tumorigenesis. Recent reports 
have suggested the detailed molecular mechanisms regarding 
how enhanced PGAM activity could attenuate oxidative dam-
age. Thus, the ectopic expression of PGAM downregulated mito-
chondrial respiration activity by ~30% (233). Hitosugi et al. (234) 
reported that 3-phosphoglycerate, a substrate of PGAM, binds to 
and inhibits 6-phosphogluconate dehydrogenase in the oxidative 
pentose phosphate pathway. In contrast, 2-phosphoglycerate, 
a product of the PGAM reaction, activates 3-phosphoglycerate 
dehydrogenase to provide feedback control of 3-phosphoglyc-
erate levels. Pentose phosphate pathway is essential for the 
generation of reduced nicotinamide adenine dinucleotide phos-
phate as an antioxidant. Moreover, another metabolite of gly-
colytic pathway, phosphoenolpyruvate, could bind to PGAM to 
increase its catalytic activity by over 100-fold. Thus, some glyco-
lytic metabolites, such as 2-phosphoglycerate and PEP, may be 
candidate carcinogens because they act as a booster for glyco-
lysis. Other metabolic enzymes have also been related to senes-
cence. The mitochondrial gatekeeper pyruvate dehydrogenase is 
a critical mediator of B-Raf-induced senescence, which is also 
dependent of the induction of pyruvate dehydrogenase activat-
ing enzyme pyruvate dehydrogenase phosphatase (PDP2) and 
suppression of pyruvate dehydrogenase inhibitory kinase PDK1 
(235). On the other hand therapy-iduced senescent cells seem 
to have enhanced Warburg effect, the non-oxidative breakdown 
of glucose, which seems to be related to pyruvate kinase 1 (236). 
Therefore, chemicals interfering with this signaling are also 
candidates to interfere senescence.

Many antioxidant molecules (vitamin C, flavonoids, carot-
enoids, selenium, etc.) are used as ‘friends’ against cancer: how 
it is possible that they can contribute to tumorigenesis? We do 
not know how it is possible that while the cells are not geneti-
cally modified, antioxidants may help to prevent the cells from 
entering into senescence and thus increasing the fitness of the 
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cell and the organism. However, with time, the age of the organ-
ism along with many cells that carry mutations under these 
conditions may allow antioxidants to open a back door to tumo-
rigenesis. This is essentially a derivation of the hypothesis of 
pleiotropic antagonism. However, in any case, this hypothesis 
remains to be experimentally tested.

Inflammation may contribute to 
immortalization
In the 19th century, Virchow (237,238) postulated that cancer 
was linked to inflammation. Epidemiological studies have noted 
that chronic inflammation predisposes humans to different 
forms of cancer, and currently, this is an accepted paradigm 
(239,240). In the last few years, two different molecular path-
ways that link cancer and inflammation have been identified: 
the intrinsic and extrinsic pathways. In the extrinsic pathway, 
inflammatory conditions, such as infections, autoimmune dis-
eases and those of unclear origin, induce chronic inflammation 
and increase cancer risk. In the intrinsic pathway, genetic events 
that cause neoplasia simultaneously initiate the expression of 
proinflammatory circuits. In both cases the key orchestrators 
of the inflammation and tumor progression are infiltrating leu-
kocytes, transcription factors, cytokines and chemokines that 
share many factors with senescence-associated secretory phe-
notype (SASP). Moreover, especially in colon cancer, treatment 
with non-steroidal anti-inflammatory drugs protects against 
cancer development (241–243). In addition, NFkB pathway acti-
vation is a frequent event in carcinogenesis and a requirement 
for inflammation and tumor promotion (244). Inflammation can 
contribute to immortalization via two different ways: one, by 
abolishing the CDK inhibitor expression during senescence and 
allowing tumor progression, or two, by inducing the immuno-
surveillance of senescent cells.

Different groups have demonstrated that inflammation is 
necessary for tumorigenesis to occur in models where tumo-
rigenesis is activated by different oncogenes. In the case of 
mouse models of pancreatic cancer, an inflammatory event is 
required at the same time as a KRas mutation is induced to 
allow the development of pancreatic ductal adenocarcinoma 
(245). Pancreatitis induced by caerulein contributes to tumor 
progression by abrogating the senescence barrier of low grade 
murine pancreatic intraepithelial neoplasia and the appearance 
of proliferating markers, such as Ki67, inversely correlate with 
the expression of senescence markers (SA-β-gal and p16INK4a). 
The authors show that OIS can be inhibited by limited episodes 
of pancreatitis but can reappear after the pancreatitis-induced 
damage has partially subsided (242). Moreover, the treatment 
of those mice with sulindac, a non-steroidal anti-inflammatory 
drug, dramatically reduced the number and size of high grade 
lesions, suggesting that inflammation is a key contributor to 
mPanIN promotion, formation and progression to murine pan-
creatic ductal adenocarcinoma. Similar results are shown in 
PanIN in human patients suffering from chronic pancreatitis 
that were treated with anti-inflammatory drugs. A second model 
of accelerated tumor formation with concomitant KRAs activa-
tion and a loss of pRb tumorigenesis is associated with an induc-
tion of acute pancreatic inflammation. Again, coexpression of 
senescence ( SA-β-gal and p16INK4a, p19ARF, IGGBP7, caveolin-1 
and p15INK4b) and proliferative markers (ki67) suggests that OIS 
is bypassed, allowing the progression to high grade PanIN and 
PDAC (246).

In a model of prostate cancer, the overexpression of the PIM1 
oncogene alone or together with the loss of one PTEN allele 
induces senescence in high grade lesions with visible markers 

of senescence (p16, p21CIP1, p19ARF) only in the absence of 
inflammation. In contrast, upon hormone treatment, overex-
pression of PIM1 increases inflammation, and the high grade 
mPIN1 lesions do not exhibit senescence markers (247).

Inflammation can also trigger the immunosurveillance of 
senescent cells. In vivo temporal restoration of endogenous p53 
function in mouse tumor cells trigger their entry into senes-
cence (with the expression of SA-β-gal, p15INK4b, p16INK4a 
and DcR2), followed by efficient clearance by the immune sys-
tem (248). This implies that the temporal sequence of events 
between inflammation and senescence is essential for the out-
put of the physiological process unchained and also suggests a 
novel mechanism of tumor suppression involving cooperative 
interactions between a tumor cell senescence program and the 
innate immune system.

How does inflammation influence senescence? The effect 
can be dependent on the cellular and molecular context. One of 
the mechanisms is thought to be through the biological effects 
of some cytokines, such as macrophage migration inhibitory fac-
tor (MIF). In cases of injury, surrounding inflammation releases 
many factors that will de-repress the arrest of somatic cells 
and allow local proliferation to close the wound. One of these 
cytokines is MIF, which is able to bypass p53-induced arrest 
by inhibiting p21CIP1 transcription and increases the ratio of 
immortalization in MEFs (249). If the effect is temporal, there is 
not much damage accumulation; however, in the case of chronic 
inflammation, MIF is present and a sustained downregulation of 
p53 increases the chances of tumorigenesis. Therefore, environ-
mental chemicals that chronically maintain local inflammation 
can contribute to cancer by over-riding senescence.

The other way around; how senescence 
may contribute to tumorigenesis
It is almost always assumed that senescence is the opposite of 
immortalization and that to immortalize a cell it is necessary 
to bypass senescence. However, paracrine effects are induced 
by senescent cells toward their neighbors that can contribute 
to tumorigenesis, including the immortalization of cells that 
are genetically competent for senescence. This potential prob-
lem may be caused by certain cytokines that are known to be 
released by senescent cells.

Recent evidence in fibroblast and epithelial cells has shown 
that cellular senescence is accompanied by an increase in the 
secretion of multiple factors that participate in cell signaling 
(250). This phenotype has been designated the ‘SASP’ (215,251). 
Among these factors are interleukins (IL-1, L-1β, IL-6, IL-7, IL-8, 
IL-11, IL-13 and IL-15), metalloproteinases (MMP-1, MMP-2, 
MMP-3, MMP-10, MMP-12 and MMP14), monocyte chemotactic 
proteins (MCP-1, MCP-2 and MIP-1α), insulin growth factor bind-
ing proteins, VEGF, angiotensin, oncostatin, among others. Thus, 
senescent cells can alter their microenvironment for as long as 
they persist. The SASP has beneficial and deleterious effects if 
left unchecked because cytokines are mainly pro-inflammatory 
molecules (252). As stated previously, inflammation is a good 
response by the immune system when an emergency situation 
appears and needs an urgent solution. The problem arises when 
inflammation persists as a chronic process. It has been shown 
that senescent cells promote the proliferation of premalignant 
epithelial cells in vitro and in vivo (253,254).

Multiple SASP components have been identified that medi-
ate paracrine senescence, including TGB-β family ligands, VEGF, 
CCL2 and CCL20 (255). On the other hand, as senescent cells may 
accumulate according to the age of the individual, a low basal 
level of senescent cells might be constantly present in every 
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organism. As the organism loses the ability to provide an effi-
cient immune response, senescence then becomes a handicap. 
Among SASP regulators are DNA-damage response proteins, 
p38MAPK activation, IL-1α and microRNAs that act epigeneti-
cally (i.e. miR-146a/b). For example miR-146a/b plays a key role 
in modulating the innate immune response, which involves the 
NKkB pathway (256), and the increased expression of miR-146a 
in endothelial cells that occurs during replicative senescence 
(257).

Furthermore, compounds inducing cellular senescence 
could contribute to tumorigenesis in other neighboring cells 
depending on the cellular context. However, the extent of this 
hypothesis needs to be proven experimentally.

Many chemical agents or types of radiation can induce cel-
lular senescence (258). Oxidative agents are among the more 
potent senescence inducers. Moderate doses of doxorubicin 
induced a senescent phenotype in 11 out of 14 tumor cell lines 
that were analysed independent of p53 status (259). A  similar 
effect has been observed in lines from human tumors treated 
with cisplatin (260), hydroxyurea (261) and bromodeoxyuridine 
(262,263). Under equitoxic doses, the strongest induction of a 
senescent phenotype was observed with DNA-interacting agents 
and the weakest effects were observed with microtubule-tar-
geting drugs. A  medium response was observed with ionizing 
radiation. Induction of senescence by the chemicals was dose 
dependent and correlated with growth arrest observed in the 
cultures (258,261–263). The compound-induced senescent phe-
notype in tumor cells was not associated with telomere shorten-
ing and was not prevented by the expression of telomerase (264).

Cross-talk between replicative immortality 
and the other hallmarks of cancer
Given that the carcinogenicity of low dose exposures to chemi-
cal mixtures in any given tissue will probably depend upon 
simultaneous instigation of several important tumor promotion 
mechanisms and the disruption of several important defense 
mechanisms, it was felt that a better way of visualizing the poten-
tial synergies of combinations of chemicals will ultimately involve 
a thorough review of disruptive actions across the full range of 
mechanisms that are known to be relevant in cancer biology. 
Accordingly, we undertook a thorough cross validation activity to 
illustrate the importance of the prioritized target sites for disrup-
tion that this team has identified (i.e. across multiple aspects of 
cancer’s biology) and to illustrate the extent to which the proto-
typical chemical disruptors that we identified (i.e. also disruptive 
to other mechanisms that are also relevant to carcinogenesis).

There is a strict relationship between pathways and chemical 
agents involved in the acquisition of replicative immortality and 
the achievement of the other cellular capabilities that, according 
to Hanahan et al. (165), distinguish neoplastic cells. Telomerase is 
a multifaceted complex that plays a role in several biological pro-
cesses (265). A large body of evidence indicates that the induc-
tion of hTERT expression not only leads to telomerase activation, 
and thus telomere maintenance and replicative immortality, but 
also has a positive role in the achievement of cellular capabilities 
as different as angiogenesis or immune system evasion (Table 2), 
hence promoting tumorigenesis through many different routes 
(266). Similarly, p53 and pRB are essential for a proper cellular 
functionality and their inactivation causes the acquisition of a 
wide spectrum of cancer-related features (Table 2). A more com-
plex relationship is present between mTOR inactivation and the 
acquisition of other cancer hallmarks. In fact, if mTOR inacti-
vation is viewed as a possible therapeutic strategy contrasting Ta
b
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several cellular processes sustaining tumorigenesis (Table  2), 
evidence has been reported that it can play a role in promot-
ing metabolism alterations, evasion of antigrowth signaling and 
genetic instability, which favor neoplastic transformation (261–
263). Moreover, mTOR can have both a pro- or anti-tumor activity 
regulating autophagy in cancer and tumor stroma cells (278).

Among the compounds promoting replicative immortal-
ity, nitric oxide, a physiological cellular metabolite, can medi-
ate tumor formation by stimulating angiogenesis through the 
modulation of VEGF (296,297), sensing the inflammatory media-
tors present in tumor microenvironment (298). Moreover, nitric 
oxide can influence the cell’s decision to survive or die in opposite 
ways, depending on the cellular context (299) and, similarly, it can 
have conflicting effects on metastasis formation (300). Cotinine, 
a nicotine metabolite found in tobacco, promotes tumorigenesis 
mediating the acquisition of different cancer hallmarks (Table 3); 
however, it seems to be effective in preventing inflammation (337). 
The environmental compounds lead and nickel have a potent 
effect on the different processes leading to cancer development; 
both are capable to generate oxidative stress and damage DNA 
leading to genetic instability (326,333) and tumor promoting 
inflammation (326,337). The reported stimulatory activity of the 
widely used drug acetaminophen (also known as paracetamol) 
toward telomerase (143) stimulated the investigation of its pos-
sible pro-tumoral effect; however, this compound was found to 
exert overall a protective effect on tumors (Table 3). Analogously, 
the inorganic Na selenite is generally regarded as a protective 
agent (338), despite its stimulation of cellular proliferation (339).

Conclusions
Senescence is a mechanism imposed to limit the number of divi-
sions that somatic cells can perform thus becoming permanently 
arrested. The mechanism possesses a high degree of redun-
dancy. Furthermore, attempts to induce the system to bypass 
senescence are usually recognized as unwanted signals and trig-
ger a senescence response. However, these conclusions are based 
on the interpretations of experimental designs in which acute 
molecular or cellular alterations are produced. There are very 
few, if any, experiments regarding the effects of chronic, low dose 
alterations. There are even less studies considering the different 
cellular and molecular contexts that can arise over the course of 
a lifetime. It is necessary to design cellular and organism model 
systems that allow for this type of test to explore the effects of 
environmental chemical carcinogens at low doses in mixtures.
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