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A model is developed to describe the reversible nature of gecko dry adhesion. The central aspect of

this model is that the seta can be easily peeled away from the contacting surface by a small moment

at the contact tip. It is shown that this contact condition is very sensitive, but can result in robust

adhesion if individual setae are canted and highly flexible. In analogy to the “cone of friction,” we

consider the “adhesion region”—the domain of normal and tangential forces that maintain adhesion.

Results demonstrate that this adhesion region is highly asymmetric enabling the gecko to adhere

under a variety of loading conditions associated with scuttling horizontally, vertically, and inverted.

Moreover, under each of these conditions, there is a low energy path to de-adhesion. In this model,

obliquely canted seta (as possessed by geckos) rather than vertically aligned fibers (common in syn-

thetic dry adhesive) provides the most robust adhesion. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4892628]

I. INTRODUCTION

Geckos are one of the most specialized climbers in nature

having evolved a dry-adhesive that enables them to stick to

almost all materials. Their ability to adhere comes from the

van der Waals force from millions of branching hairs (setae)

on the geckos’ feet conforming to the contours of the sur-

face.1–3 These setae are just one part of a hierarchical adhesion

system that maximizes surface contact area, even on fractally

rough surfaces, and enables robust load sharing.4–6,18 More

importantly from the gecko’s point of view, this is a smart ad-

hesion system that provides highly reversible traction under a

wide range of loading conditions—permitting geckos not just

to stick but to also unstick rapidly, and enabling them to run at

speeds of up to twenty body-lengths per second. Since the ori-

gin of the gecko’s adhesion was unequivocally resolved in

2002 (Ref. 2) numerous groups have sought to create synthetic

dry-adhesive tapes patterned with arrays of compliant micro-

fibers or pillars that can replicate the phenomenon.7–12

Development of these synthetic gecko adhesives has revealed

a lot of the subtlety employed by real geckos. Recent studies

have identified anisotropy of setae as a key feature necessary

for smart or reversible adhesion.11,13 Motivated by this, the

latest generations of synthetic adhesives have explored a vari-

ety of strategies to create systematic anisotropy. These include

presetting a seta at a canted angle,9–11 using hybrid materials,

and modifying the tip shape,7,9 or vertical symmetrical micro-

fibers.8,12 These synthetic dry-adhesives have shown remark-

able performance in certain desirable aspects; however, they

still have a long way to go to match the performance of geckos

themselves.

There are two major differences between synthetic dry-

adhesives and gecko adhesion. First, many synthetic adhe-

sives possess only one level of hierarchy (due to the

complexity in the fabrication), while the gecko possesses an

adhesion system with multiple levels of hierarchy spanning

from its four feet, through toes, lamellae, to setae that branch

three times at their tips. Second, many synthetic adhesives

have fibers oriented vertically, while the gecko’s setae are

canted at an oblique angle. Computational models have been

powerful for understanding the effect of these differences.

Among these models, a discrete linear springs model by

Bhushan explains the adhesion enhancements afforded by

hierarchically branched setae.14,15 Other models have repre-

sented individual seta as elastic beams in order to determine

the optimal geometry for synthetic setae.10–12,16 Both types of

model have treated the seta tip as a point contact, and neither

has provided a full explanation of smart de-adhesion. One

mechanism for easy de-adhesion has been proposed by

Takahashi who noted that setae have a finite width and would

impart a moment at the contact surface17 as shown in Fig.

1(a). This could be used by the gecko to pry rather than pull

apart the contact between seta tips and an adhering surface.

This is a compelling idea; however, no detailed model was

built or analyzed until now.

In this work, we elucidate the central role that the combi-

nation of canted and flexible setae play both for adhesion and

in Takahashi’s mechanism for easy de-adhesion. We present

two models of an adhering seta—the feature that distinguishes

these from previous models is that the seta’s contacting tip is

able to support a moment. The first model is heuristic and

demonstrates that flexibility of the seta is crucial for providing

robustness of adhesion under dynamic loads while the

moment enables easy de-adhesion. The second model is repre-

sentative of a gecko seta and we use it to determine geometric

parameters that would be optimal for the gecko.

II. HEURISTIC MODEL

A. Moment-supporting contact

The oblique seta angle has been proposed as the key fac-

tor for geckos’ ability to easily unstick when they are
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walking or climbing. In order to explore the interplay of this

canting angle with the soft compliance of a seta, a basic sin-

gle seta model is constructed as is shown in Fig. 1(b). As is

seen in Fig. 1(a), real setae have branched tips ending in an

array of small contacts. In our model, we ignore the details

of the branching and represent the array of contacts with a

single planer contact pad that feels a non-uniform adhesive

stress. The result is that the contact can support a small

moment and that the contact moment can greatly affect the

peak stress in the contact. We assume there to be a limiting

stress, rad for adhesion, and if any part of the contacting area

exceeds this limiting stress the seta de-bonds from the

surface. Thus, as is shown in Fig. 1(c), the strength of the

seta’s adhesion is dependent not just on the normal load, but

is also sensitive to the moment at the contact. This setup was

first proposed by Takahashi17—it provides a mechanism to

easily peel or pry off the contact when unsticking. The con-

dition for adhesion is very sensitive to the moment Mc at the

contact requiring the horizontal and vertical loads on the seta

to be carefully balanced during adhesion. In this work, we do

not impose any limit to the tangential forces. There will

clearly be a critical shear stress that causes the seta to slide;

however this can be added without altering the mechanics of

de-adhesion and so we omit it from the present calculations

and consider its effect at the end.

The seta is taken to have a canting angle h, that is, the

angle from the base of the seta to the contact ignoring the

seta’s curvature. The distal contact feels adhesion forces tan-

gential, Ft (positive towards the gecko), and normal, Fn, to

the surface. As stated in Ref. 17, when Fn=Ft ¼ tanðhÞ, the

moment imparted on the tip becomes zero and the normal

stress is flat, distributed as show in the leftmost figure in Fig.

1(c). However, if the seta contact can support a small

moment, then these two forces become decoupled and the

moment at the contact, Mc, is given by

Mc ¼ LFt sin ðhÞ � LFn cos ðhÞ; (1)

where L is the distance from the contacting tip to the seta’s

root (indicated in Fig. 1(b)). The moment at the contact

depends only on the forces at the seta’s root and the position

of the root. In this heuristic model, we assume the seta’s root

to be free to move and also to rotate. As can be seen in Fig.

1(c), the combination of a flat stress distribution generated

by the normal force (left) with symmetric triangular stress

distribution generated by the moment (middle) results in a

non-uniform asymmetric stress distribution with the maxi-

mum normal stress on the edge given by

rmaxb ¼ 6jMcj
w2
þ Fn

w
; (2)

where w is the contacting width of the contact pad shown in

Fig. 1(b), and b is the thickness of the pad into the page. In

this article, we will consider dimensionless versions of the

forces f and moment m that we define as fractions of the pull

of force: f ¼ F
radwb and m ¼ M

Loradwb, where Lo is the unde-

formed length of the seta (in this model, we impose that

L¼ Lo; but in the later model, this condition is relaxed).

Using Eq. (2) with the adhesion criterion rad > rmax gives

an upper and lower value for the dimensionless moment at

the seta contact at detachment

1 ¼ fn 6 6kmc; (3)

where k¼ Lo/w is the seta aspect ratio. These equations

bound the set of loading conditions, fn and ft, for which the

seta will remain stuck to the surface. If the seta remains

rigid, then the dimensionless “adhesion region” is a slender

oblique triangular wedge with width dictated by the aspect

ratio k. From Fig. 1(a), we estimate this aspect ratio to be in

the range of 8–12 (we used 10 for the calculations reported

FIG. 1. (a) Scanning electron micrograph of a Tokay gecko (Gekko gecko)

seta overlaid with a depiction of the model seta geometry considered in this

work. The micrograph was taken by Kellar Autumn and originally published

in Ref. 1 and is reproduced with the kind permission of the author. (b)

Schematic of a seta contacting a surface. The red lines show the undeformed

seta with the black lines showing a seta supporting normal and tangential

forces Fn, and Ft. (c) Shows the normal stress distribution in the contacting

pad due to a combination of the normal force Fn and the moment Mc at the

contact. In this model, de-adhesion occurs when any portion of the stress dis-

tribution exceeds the tensile adhesion limit rad.
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here), which results in an very narrow adhesion region

demarked by dashed lines in Fig. 2(a). Importantly, the adhe-

sion region is asymmetric. To resist a large normal load, the

gecko must supply a moment balancing tangential force

inward (in a proximal direction). This asymmetry means that

to easily de-adhere the gecko need only remove the tangen-

tial force. Clearly, the loads fn and ft on a seta will be very

different depending on whether the gecko is running on a

horizontal surface, climbing vertically or hanging inverted.

Moreover, the fn/ft ratio will differ dramatically as the gecko

loads and unloads the seta, and will also differ between

neighboring setae. Most surfaces are rough and so the con-

tacts conditions vary from seta to seta. Performing dynamic

motion while maintaining the majority of setae adhered to

the surface will require a very broad set of adhesion condi-

tions. The key to this is the ability of the seta to bend.

B. Flexible seta

Under unbalanced loads, the seta will bend in the direc-

tion that reduces the lever arm of the dominant load (and

increases the lever arm of the weaker force) and will thus

buffer the effects of unbalanced moments from fn and ft. We

model the flexural behavior of the seta as a torsional spring

with dimensionless stiffness, k, such that kDh¼mc. The net

dimensionless bending moment at the contact, mc, is then a

nonlinear function of the loading and is given by

mc ¼ ft sin ðho þ DhÞ � fn cos ðho þ DhÞ; (4)

where ho is the preset angle, i.e., the canting angle of the

undeformed seta. The adhesion condition in Eq. (3) still

holds. We compute the adhesion regions by solving Eqs. (3)

and (4) numerically to find the ft and Dh at the adhesion limit

for a given value of fn.

Figure 2(a) shows the adhesion regions for a flexible

seta with preset angles of 45� and 30� (both with the same

dimensionless stiffness k¼ 0.0375). Allowing the seta to

bend greatly expands the adhesion region. While the adhe-

sion region remains narrow for small fn and ft, under large

loads adhesion is robust to a wide range of load ratios fn/ft.
Marrying robustness of seta adhesion (a wide adhesion

region) with easy de-attachment (asymmetric adhesion

region) is essential for the gecko. In the gecko adhesion sys-

tem, each seta does not work in isolation, but experiences a

range of loads depending on the behavior of adjacent setae

and its adhering to rough surfaces.

As a simple first metric of this, we consider the radius of

loading space (i.e., the scatter in) fn and ft that the seta can

tolerate and still remain stuck. This is quantified by finding

the radius of the largest circle that can fit in the adhesion

region (and thus, the radius of this circle is measured in units

of dimensionless force). Figure 2(b) shows the plot of this ra-

dius as a function of canting angle for setae of different stiff-

nesses. While this metric has no rigorous theoretical

foundation, it provides a completely objective metric that we

can use to compare different seta geometries. It can be seen

that orienting the seta with a more oblique angle greatly

increases the width of the adhesion region, as does increasing

seta flexibility.

In this model for dry adhesion, the resistance to tensile

normal force results from an applied tangential force. It is in-

structive to make the comparison between the gecko adhe-

sion and static friction as these are in many ways opposites

(see Fig. 3). Static friction creates resistance to sliding forces

as the result of a compressive normal force. The gecko’s dry

adhesion is able to resist a tensile normal force as a result of

a tangential force. In order to generate adhesion, the gecko

must press and slide its feet towards its body. This process

enables setae to make intimate surface contact, however, we

propose that this dragging also acts to balance moments that

would otherwise peel away the setae contacts.

While our very simple heuristic model demonstrates that

the combination of flexibility and oblique preset angle in

moment supporting setae provides an advantage for adhe-

sion, clearly there must be an optimal limit for each of these

attributes. Setae that are too long or flexible will become

matted and entangled with each other. If setae are too close

to horizontal, the gecko must apply a huge tangential force

to balance a moderate normal force. This will either result in

setae sliding, or as biological motors require energy just to

exert a static force, it will mean the gecko has to exert a lot

of energy to adhere. All of these phenomena are excluded

from our simple model but they allow us to identify the trade

offs in the evolutionary optimization of the geckos’ adhesion

system. Setae must be stiff enough to creating a non-matting

array with large area density. They must be moderately

FIG. 2. (a) Dimensionless adhesion region of flexible and rigid seta com-

puted with preset canting angles of ho¼ 458 (red) and ho¼ 308 (blue). In all

cases, k¼ 10. The flexible seta was computed with k¼ 0.0375. Allowing the

seta to bend massively increases the adhesion region by deforming to reduce

moments at the seta contact. (b) Plots the dimensionless robustness, which is

quantified in units of dimensionless force (see text for details), for seta with

varying dimensionless stiffness as a function of the preset canting angle.
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canted to permit easy de-adhesion while only requiring mod-

erate shear force from the gecko to hold a large normal force.

Moreover, the gecko must be able to climb vertically as well

as hang upside down—so a gecko’s foot must be able to sup-

port a large tangential force with little normal force.

To explore methods to broaden the adhesion region in

the simple model, we consider the effect of nonlinearity in

the seta’s flexibility. Real setae have a curved and branched

structure and undergo large deformations. Thus it is reasona-

ble to expect that the bending stiffness is nonlinear and

asymmetric. To capture this, we replace the dimensionless

linear bending stiffness with a nonlinear stiffness function

knl ¼ k1 þ k2

Dh
ho
þ k3

Dh
ho

� �2

; (5)

where k2 and k3 are the first asymmetric and symmetric non-

linear stiffness terms. Positive k2 stiffens the seta when it is

bent down, and positive k3 stiffens the seta under large

deflections in either direction. The adhesion region of non-

linear setae is shown in Fig. 4. Very flexible setae provide a

large and robust adhesion region with the limiting case of a

perfectly flexible seta being equivalent to a point contact,

with no easy path for de-adhesion. The design rational for

non-linear stiffness is then to obtain a broad range of motion

for the seta with little contact moment, but for the seta to stif-

fen outside of this range resulting in rapid detachment.

Figure 4 demonstrates that only including a positive k3 term

can result in a large expansion of the adhesion region while

still providing a route for easy unsticking.

III. GECKO MODEL

A. Gecko model setup

To further explore the mechanism for detachment, we

consider the energy stored in the seta and the work of de-

adhesion for various loading paths. The heuristic model is

overly simplistic and includes no linear extension of the seta.

This means that it would require no work to detach the seta if

the force is applied along ho. To correct this, we consider a

second model that is more representative of a gecko seta and

that permits us to examine work of de-adhesion. This model

has two significant differences, first it assumes that the seta is

extensible, and second that it supports a moment both at its

tip, and at its root where it joins the gecko’s foot, as shown in

Fig. 5(a). We impose the boundary condition that as the seta

flexes the contact pad must remain horizontal to stay bonded

to the surface. This gives the condition that afþ am¼ 0, where

af, and am are the rotation angle of the seta tip due to bending

force, ðFtL sinðhÞ � FnL cosðhÞÞ, and a moment Mc, respec-

tively. We consider the seta as a curved beam with a varying

moment of inertia and modulus, and we show that this geome-

try can be mapped to a simpler system of two torsional springs

as shown in Fig. 5(b). In elastic beam theory, the bending

angle from the base of a cantilevered beam to its tip (Dh)

scales linearly with the rotation angle at the free end (a) and

can be expressed as
af

Dhf
¼ bf ;

am

Dhm
¼ bm. Geometrically, the

FIG. 3. Schematic contrasting geckos’ dry adhesion with static friction. (a) Friction provides resistance to a shear force as a result of a compressive normal

force. If the total force vector is anywhere inside the cone of friction, the interfaces will remain static. (b) Geckos resist a tensile normal load through the appli-

cation of a shear force. The resulting force must lie inside the adhesion region for the joint to remain stuck. In contrast to friction, the adhesion region must be

asymmetric to provide easy de-attachment.

FIG. 4. Plot of the adhesion region for seta with nonlinear bending stiffness

(red) overlid with the adhesion region for linear seta (blue). Plot (a) is com-

puted with k1¼ 0.0375, k2¼ 1, and k3¼ 1. Plot (b) is computed with k1¼ 0,

k2¼ 0, and k3¼ 1. In both (a) and (b), the blue overlaid curve is computed

with k1¼ 0.0375, k2¼ 0, and k3¼ 0. In all cases, k¼ 10 and ho ¼ p
4
.
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ratios b must satisfy bm > bf > 1. (To provide some physical

context for interpreting these geometric parameters, we note

that bf and bm for a simple cantilever beam are 1.5 and 2,

respectively.) The compatibility condition leads to the expres-

sion for the dimensionless moment at the contacting tip,

mc ¼
kmbf

kf bm

fn cos hð Þ � ft sin hð Þ
� �

; (6)

where kf and km are the dimensionless angular stiffness of

the seta as a whole in response to a moment mg at the seta

root imparted by either a bending force or a moment, respec-

tively, applied at the seta tip. Note also that geometrically kf

must be larger than km. From the balance of moments, this

gives the ratio of contact to root moments

mc

mg
¼

kmbf

kf bm � kmbf

: (7)

For a seta modeled as a curved beam, the values of kf, km, bf,

and bm can be found from elementary mechanics using the

unit load method. However, with the imposed boundary con-

dition of zero net contact rotation, then we can find an equiv-

alent two-torsional-spring system as depicted in Fig. 5(b)

with kc ¼
kmbf

bm�bf
and kg ¼

kf bm�kmbf

bm�bf
that undergoes the same

displacement and possesses the same moment ratio as the

geometry-based model for a given loading condition. In this

simpler system, Dh ¼ mc

kc
¼ mg

kg
and

mc

mg
¼ kc

kg
¼ g: (8)

This means that the system response is described by an effec-

tive root stiffness kg and stiffness ratio g. Thus, rather than

estimating kf, km, bf, and bm for seta shaped beams (which

would contain much uncertainty), we determine the stiffness

scale and ratio g that is optimal for the gecko. We leave the

problem of identifying beam geometries with the desired g
for later research.

Finally, a tensile stiffness kt is included to model elonga-

tion of the seta. The resulting contact moment is given by

mc ¼ ð1þ eÞðft sin ðhÞ � fn cos ðhÞÞ; (9)

with h ¼ ho þ Dh, and the fractional elongation, e, given by

e ¼ 1

kt
ft cos hð Þ þ fn sin hð Þ
� �

: (10)

As before, the limits for adhesion are given by Eq. (3).

B. Gecko model: Results and discussion

The two-torsional-spring model has a qualitatively dif-

ferent adhesion region from the simple model as shown in

Fig. 6. The two-spring model supports a much broader range

of tangential forces under small normal force and thus pro-

vides more robust adhesion particularly during dynamic

loading.

The plot in Fig. 6(c) shows the change in the adhesion

region with an increase in tip stiffness kc (for constant tip/

root stiffness ratio g), and the effect of reducing the tip/root

stiffness ratio (for constant kc). It is clear from these plots

that the adhesion region expands with decreasing g, and

decreasing kc, i.e., setae that are flexible but stiffer at their

root than at their tip. The density plots in Fig. 7 show the

elastic energy stored in two setae as a function of loading

conditions (the elastic energy is indicated by the colored

shading with the thick black line marking the boundary of

the adhesion region). Together these plots show that the ten-

sile stiffness of the seta, kt, plays a negligible role in deter-

mining the boundary of the adhesion region, but is important

for the elastic energy, particularly under large tensile large

loads. The curved shape of the gecko’s setae makes them rel-

atively soft in tension. Setae elongate by straightening under

tensile loads and from the geometry of the seta in Fig. 1(a)

we estimate that kt is 30–100 time larger than kc. (This esti-

mation was obtained by computing the extension and bend-

ing stiffness of a curved beam using the unit load method.)

The energy maps in Fig. 7 show that there is a good rea-

son for having setae that are soft in tension. The elastic

energy stored in the seta when it breaks free is lost and thus

this energy is the work of detachment. The flexibility of a

seta results in a large amount of deflection, and thus a large

stored bending energy. The stored elastic energy is inversely

proportional to the stiffness. If the tensile stiffness is too

FIG. 5. (a) shows the schematic of a real gecko seta. The seta is cantilevered

from its root and bends under the actions of bending forces (Ft and Fn give

rise to bending force FtL sinðhÞ � FnL cosðhÞ) and moments (Mc) applied at

its tip. While adhered to a surface, the contact pad must be rotated to remain

parallel to the surface. (b) shows the beam like model of a seta from (a)

mapped to a system of two torsional springs (kc and kg). In both (a) and (b),

the left hand figure shows the undeformed seta and the right hand side the

seta supporting a load.
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large relative to torsional stiffness (as in Fig. 7(a)), the low-

est energy route for detachment is under a large fn and ft. By

reducing the axial stiffness to balance the torsional energy,

one creates a tougher adhesive. Moreover, there is now an

easy low energy pathway for detachment in which the stored

elastic energy is recovered. This involves removing the tan-

gential load ft (imparted by the gecko) before removing fn.

Plot (c) in Fig. 7 shows the energy map and adhesion region

for a soft seta but with increased root stiffness kg. It can be

seen that stiffening the seta root enlarges the adhesion

FIG. 6. Plots of the adhesion region of the two-torsional-spring model. (a)

Comparison of the two-torsional-spring model (red) with the single-tor-

sional-spring model (blue). (b) Plots of the adhesion region of the two-tor-

sional-spring model of a seta with preset angles ho¼ 608 (orange), ho¼ 458
(blue), and ho¼ 358 (red). (c) The change in adhesion region for varying g
and kc. The dashed black line is computed with parameters were k¼ 10,

g¼ 0.1, kc¼ 0.0375, and kt¼ 5. The reducing kg by a factor of two produces

the adhesion region plotted in red, and increasing kc by a factor of two

results in the adhesion region plotted in blue.
FIG. 7. Density maps of the stored elastic energy in a seta. Purple and pink

indicates no or little stored energy and yellow and blue indicate moderate to

large stored energy. The thick black line marks the boundary of the adhesion

region and the red and blue dashed lines are contours of constant horizontal

and vertical tip displacement, respectively. Plot (a) shows the energy map

for a seta with large extensive stiffness, kt¼ 50, and plot (b) shows the

energy for a soft seta with kt¼ 5. In both (a) and (b), the seta has canting

angle ho¼ 458 aspect ratio k¼ 10, torsional stiffness ratio g¼ 0.1, and

dimensionless tip stiffness kc¼ 0.0375. It can be clearly seen that changing

kt makes very little difference to the shape of the adhesion region, but dra-

matically alters the energy landscape. Plot (c) shows the energy for a seta

that is soft in tension (kt¼ 5) as in (b) but with a stiffer root so that the stiff-

ness ratio g¼ 0.05. It can be seen that this increases the adhesion region but

at the expense of a low energy detachment path. As can be gauged from the

deflection contours on all plots, our choice of a soft root stiffness

kg¼ 0.0375 is sufficient permit the seta to bend a great deal but the angle of

bending does not exceed 308 anywhere in the adhesion region.
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region, but in doing so removes the low energy path for

detachment and thus would not be optimal for the gecko.

From the maps in Fig. 7, we see that there must be an opti-

mal balance of kc, kg, and kt that give the potential for large

stored energy (and thus tough adhesion), but tradeoff a large

adhesion region (and thus robust adhesion) with a low

energy de-adhesion path (and thus efficiency for the gecko).

Going beyond calculating the work of de-adhesion, we

can consider the work done by ft and fn along different path-

ways to de-adhesion. The dashed contour lines on Figs.

7(a)–7(c) indicate lines of constant horizontal (red) vertical

(blue) displacement of the seta root. Thus for loading or

unloading along any of the red contours, ft does no work and

fn performs no work during loading paths that follow the

blue contours. We now consider three loading scenarios and

examine potential unloading paths for each.

Case 1: Large fn and moderate ft. This loading condition

arises when the gecko is walking upside down sticking to

inverted horizontal surfaces. The gecko must supply force ft
to stick but gravity supplies fn. Under these conditions, an

adhered seta has a large quantity of stored energy. This

energy is easily recovered to ft by an unloading path that fol-

lows a blue contour. By recovering the energy to work along

ft, the energy is returned to the gecko.

Case 2: Low fn and ft. This loading condition arises

when the gecko is walking normally on flat surfaces. The

gecko requires a low energy, low force, detachment path.

This is achieved by a small negative (distal) ft and fn. The

minimum force for detachment can be reduced by increasing

the tip/root stiffness ratio (g) to increase the anisotropy in the

adhesion region at fn¼ 0. By having canted setae, the default

stickiness of the gecko’s foot is relatively low. Strong adhe-

sion must be activated by a tangential force.

Case 3: Small or moderate fn and large ft. This loading

condition arises when the gecko is climbing vertical surfaces.

The gecko must be able to resist large ft from gravity with

relatively little moment balancing fn. Under these conditions,

the gecko has an easy path to de-adhesion by first unloading

fn and then following the path in case 2. To be able to stick

while climbing vertically, the adhesive needs to provide a

large static friction force with a small tensile load. This

necessitates an adhesion region that extends along the ft axis

as seen in Figs. 7(a)–7(c).

The energy maps in Fig. 7 provide some insight into

why the gecko’s adhesion system is so successful. When

moving around, the gecko wants to expend as little energy as

possible and so the gecko needs a pathway in which it can

unstick without expending energy. However, when jumping,

catching itself, or changing directions quickly to avoid pre-

dation, the gecko’s adhesion system has to absorb a great

deal of energy. Moreover, the gecko’s adhesion system needs

to be able to provide these different functions across a wide

range of orientations—that is, with gravity pointing in differ-

ent directions. The map in Fig. 7(b) shows that a seta can

perform all of these functions: creating tough adhesion under

certain load directions but with unloading paths for de-

adhesion that can return most of the stored elastic energy to

the gecko. The red and blue contours show that different

unloading paths can be used to return energy as work along

either fn or ft. This is significant as depending on the gecko’s

orientation, either fn or ft could be supplied by the gecko

with the other force component coming from gravity.

The balance of flexibility and extensibility of the seta

enables this energy absorption and return to happen at the

seta level producing a tough joint with a large work of de-

adhesion. Although the returned elastic energy will not

return to chemical energy in the gecko’s muscles, it is

returned to elastic energy in the gecko’s muscular system

and so we consider it “recovered.” It is beyond the scope of

this article to examine the biodynamics and physiology of

gecko locomotion but we note that there are other animals

that are well known to recovered elastic energy in locomo-

tion—most notably the jumping kangaroo. The seta is only

one part in the gecko’s hierarchical system of adhesion that

spans from legs through toes and lamellae to setae and spatu-

lae. Assuming that evolution has created the seta not in isola-

tion but as part of a highly energy efficient system, our work

raises the interesting question about how the compliance of

the setae is matched to that of the lamellae and the rest of the

gecko’s physiology in order to utilize energy return. It is

interesting that the combined area of setae over a gecko’s

four feet is sufficient to support approximately 50 times its

body weight. We speculate that this limiting force is corre-

lated with some other system level behavior such as the num-

ber of Gs other parts of the gecko can sustain, the maximum

power output from the geckos muscles, or the natural reso-

nant frequency of the gecko hanging from its legs.

IV. CONCLUSIONS

We have developed two models that explore the mecha-

nism for easy detachment in gecko adhesion. This mecha-

nism is based on the interplay of two processes: moments at

the seta contact pry off the seta providing low energy de-

adhesion; bending by a flexible seta screens the buildup

moments at the seta contact and so provides a broad range of

loading conditions under which the seta will remain stuck.

Central to the interplay of these two processes is that the seta

is at an oblique angle. The oblique canting angle has the

effect of making the seta in the permanently unsticky config-

uration with adhesion only activated by a moment balancing

tangential force supplied by the gecko. Moreover, we show

with this simple model that robustness of adhesion can be

greatly increased while still possessing easy detachment if

the seta has a nonlinear bending stiffness.

Our second, more realistic model of the gecko seta

shows that low kc and low g can produce a large robust adhe-

sion region with a low energy path for unsticking from a va-

riety of different loading conditions that the gecko might

experience during walking, climbing, and hanging.

Together the findings from these two models have im-

portant ramifications for the development of synthetic dry

adhesives. They show that to optimize adhesion synthetic

seta must be designed holistically in a way that matches the

geometry of the tip with the flexibility and canting angle of

the rest of the fiber. Our models show that curved setae

increase the toughness of the adhesive, and that creating
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synthetic setae with nonlinear flexibility could greatly

increase robustness of the adhesive.
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