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Abstract
A promising new drug target for the development of novel broad-spectrum antibiotics is the

highly conserved small GTPase Obg (YhbZ, CgtA), a protein essential for the survival of all

bacteria including Neisseria gonorrhoeae (GC). GC is the agent of gonorrhea, a prevalent

sexually transmitted disease resulting in serious consequences on reproductive and neona-

tal health. A preventive anti-gonorrhea vaccine does not exist, and options for effective anti-

biotic treatments are increasingly limited. To address the dire need for alternative

antimicrobial strategies, we have designed and optimized a 384-well GTPase assay to iden-

tify inhibitors of Obg using as a model Obg protein from GC, ObgGC. The assay was vali-

dated with a pilot screen of 40,000 compounds and achieved an average Z’ value of 0.58 ±

0.02, which suggests a robust assay amenable to high-throughput screening. We devel-

oped secondary assessments for identified lead compounds that utilize the interaction

between ObgGC and fluorescent guanine nucleotide analogs, mant-GTP and mant-GDP,

and an ObgGC variant with multiple alterations in the G-domains that prevent nucleotide

binding. To evaluate the broad-spectrum potential of ObgGC inhibitors, Obg proteins of

Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus were assessed

using the colorimetric and fluorescence-based activity assays. These approaches can be

useful in identifying broad-spectrum Obg inhibitors and advancing the therapeutic battle

against multidrug resistant bacteria.

Introduction
Antibiotic resistance is a natural phenomenon made more precipitous by the misuse of antimi-
crobial drugs, which has accelerated the appearance of drug-resistant bacteria (reviewed in:
[1]). It is estimated that over two million people are diagnosed with antibiotic resistant illnesses
in the United States alone each year, and that greater than 300 million cumulative premature
deaths will result worldwide by 2050 [2]. Antibiotic resistant infections, such as those caused
by Clostridium difficile, carbapenem-resistant Enterobacteriaceae, particularly Klebsiella spe-
cies, and methicillin-resistant Staphylococcus aureus (MRSA), result in prolonged illness, with
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potentially greater mortality and morbidity, and added healthcare expenditure [3, 4]. Contrib-
uting to the complications of increased multi-drug resistance is the relative lack of novel antibi-
otics introduced to market [1, 4, 5]. The drought of new discoveries in the field is due in large
part to the absence of many Big Pharma research and development programs in this area [6,
7]. Drug discovery remains an expensive and time-consuming endeavor, costing pharmaceuti-
cal companies millions of dollars to bring a compound from bench to market, and often these
chemicals fail before entering clinical trials [7–9]. In addition, an effective antibiotic ideally
cures an infection in a few doses, which makes the financial investment into the drug discovery
process not as profitable as medication for chronic illnesses. Nevertheless, there is a pressing
need to address the global antibiotic resistance health crisis, and the task of developing screen-
ing programs for novel drug targets now primarily rests on the shoulders of academia and
small pharmaceutical companies [2, 4].

Investigating target molecules for the development of broad-spectrum antibiotics against
drug-resistant bacterial infections is often more cost effective than developing a compound
with activity against a single pathogen because of the wider clinical applications. As a result,
biological targets that are essential to the physiology of the microorganism and conserved
across various species are traditionally preferential drug candidates [6]. For example, inhibiting
DNA replication, the ribosome function, or cell-wall biosynthesis has proven to be viable strat-
egies [9, 10].

We have recently proposed the Obg protein (YhbZ, CgtA) as a molecular target for develop-
ment of new therapeutic interventions against drug-resistant bacteria [11]. Obg and Obg-like
proteins are highly conserved GTPases, present in bacteria, archaea, and eukaryota [12–15].
The bacterial Obg proteins have a unique structure (S1 Fig) containing highly conserved gly-
cine-rich N-terminal domain, conserved GTP-binding domain, and a variable C-terminal
domain [11, 12, 16, 17]. Few Obg proteins have been crystalized to date [16, 18], however, the
N-terminus has thus far demonstrated the most favorable potential for protein-protein interac-
tions [19–21].

G proteins typically display high affinities for nucleotides, low dissociation rates in the
absence of exogenous exchange factors, and low intrinsic hydrolysis activity. In many eukary-
otic Ras-like GTPases these properties are regulated by guanine exchange factors (GEFs),
GTPase activating proteins (GAPs), and guanidine dissociation inhibitors (GDIs) [22].
Detailed biochemical analysis demonstrated, however, that Obg GTPases are clearly distinct.
They display slow rate of GTP hydrolysis, micromolar binding constants for GTP and GDP,
and rapid dissociation constants for either GTP or GDP, which are 103–105 faster than that of
Ras-like GTPases. These biochemical features of Obg, if considered in the absence of potential
GEFs, GAPs, and GDIs, suggest that Obg proteins act as intracellular sensors and their nucleo-
tide-bound state is controlled by relative GTP/GDP concentration [12].

Obg homologs are essential for the survival of both Gram-positive and Gram-negative bac-
teria, including Bacillus subtilis, Streptomyces coelicolor, Staphylococcus pneumoniae, S. aureus,
Haemophilus influenzae, Caulobacter crescentus, Escherichia coli, Vibrio harveyi, V. cholerae,
and Neisseria gonorrhoeae, with depletion of the protein resulting in species-specific pleiotro-
phy [11, 23–29]. Bacterial Obg proteins have been associated with a variety of cellular func-
tions, including ribosome biogenesis and maturation, DNA synthesis and replication,
chromosomal segregation, regulation of the cell stress response, and recently, persistence in
response to nutrient starvation [12, 13, 30]. Obg proteins bind not only GTP and GDP, but
also the alarmone nucleotide, (p)ppGpp, which implies a role for this protein in the stringent
response [11, 28, 31, 32]. Specifically, Obg-mediated persistence in E. coli and Pseudomonas
aeruginosa requires (p)ppGpp, suggesting Obg may have a critical function in the failure of
some antibiotic treatments [30].
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Both the association between Obg and ribosome assembly and its proposed role in inducing
bacterial multidrug tolerance make Obg a promising drug target [10, 11, 33]. To that end, our
laboratory has targeted N. gonorrhoeae (gonococcus, GC) Obg, ObgGC, as a model protein for
screening and identifying potential broad-spectrum inhibitors of Obg GTPase activity. GC, a
Gram-negative bacterium, human-specific pathogen, and the etiological agent of gonorrhea, is
listed among top three urgent antibiotic resistant threats according to the Centers for Disease
Control and Prevention [34]. The sexually transmitted infection (STI) is a global health burden
with 78 million of the estimated 498 million new cases of curable STIs that occur worldwide
every year [35]. The disease causes cervicitis, urethritis, proctitis, conjunctivitis, or pharyngitis,
and left untreated, leads to long-term health consequences including endometriosis, pelvic
inflammatory disease, and infertility [36, 37]. At the turn of the 20th century, GC infections
were treated with penicillin, but over time, GC has acquired resistance to nearly all antimicro-
bials used in the clinic (reviewed in: [38, 39]). Currently, a vaccine for gonorrhea does not exist,
and options for effective antibiotics are increasingly limited. Third-generation cephalosporin
antibiotic regimens remain the final line of defense as multi-drug resistant GC isolates continue
to be identified across the globe, threatening future treatment options [36, 38–41].

To address the dire need for alternative antimicrobial strategies against drug-resistant infec-
tions including gonorrhea, we developed an end-point ObgGC-GTP hydrolysis assay using the
malachite green-based detection of the free phosphate as a read out. The assay was optimized
and conducted in 384-well plates with a pilot screen of 40,000 small molecules. The Z’ values
calculated from our initial screen of small molecules averaged 0.58 ± 0.02 over the course of
five weeks, suggesting a robust, sensitive assay amenable to high-throughput screening (HTS).
In addition, to eliminate nonspecific inhibitors and elucidate potential mechanism(s) of inhibi-
tion for lead compounds, we propose secondary Obg activity assessment methods based on the
binding of fluorescent N-methyl-3’-O-anthranoyl-(mant)-guanine nucleotide analogs, mant-
GTP and mant-GDP. A variant of ObgGC with multiple alterations in the G-domains that is
unable to bind both mant-GTP and mant-GDP was designed to serve as a positive control in
the secondary assays. Finally, to test the broad-spectrum potential of ObgGC inhibitors, the
recombinant versions of Obg proteins from Klebsiella pneumoniae (ObgKP) and MRSA
(ObgMRSA) were cloned, purified, and assessed using colorimetric and fluorescence-based
activity experiments.

In summary, we report a strategy for targeting a pivotal GTPase Obg that can be used to
identify and optimize broad-spectrum chemical inhibitors for the treatment of gonorrhea and
other diseases caused by multidrug resistant bacteria.

Materials and Methods

Bacterial strains, plasmids, and growth conditions
The E. coli strains NEB5α and BL21(DE3) were used for genetic manipulations and protein
overproduction, respectively. Bacteria were streaked from glycerol stocks stored at -80°C on
Luria-Bertani (LB) agar supplemented with kanamycin (50 μg/mL) when needed. E. coli strains
were cultured in LB medium at 37°C. Culture media utilized in this study were purchased from
Difco.

Construction of recombinant wild type and mutated version of ObgGC

Genomic DNA was isolated from GC FA1090, a clinical isolate (1–007) of K. pneumoniae and
MRSA (ATCC 25923) using Wizard Genomic DNA Purification Kit (Promega, Madison, WI).
Construction of recombinant wild type ObgGC containing C-terminally attached 6×His-tag,
His-ObgGC, was described previously [11]. To generate �ObgGC, a DNA fragment containing
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obg gene from GC FA1090 (NGO1990) with designed mutated sites within G domains T192S,
T193S, A212L, D213E, P215H, N284Q, K285R, S329V and 6×His-tag was synthesized as
gBlock Gene Fragment by Integrated DNA Technologies (IDT DNA, Coralville, IA). The
gBlock fragment was cut with XbaI and HindIII and cloned into similarly digested pET-ObgGC
[11] to yield pET-�ObgGC. The presence of the desired mutations was confirmed by DNA
sequencing at Center for Genome Research and Biocomputing at Oregon State University.

To create C-terminal 6×His fusion of obg fromMRSA, the obg gene was amplified using
primers obg (MRSA)-f (GATCCCATGGTTGTCGATCAAGTCAAAATATC) and obg
(MRSA)-r (GACTAAGCTTCGCTCCTATTCAACGAATT). The resulting PCR product was
digested with NcoI and HindIII and cloned into similarly treated pET-28a to create
pET-ObgMRSA.

To create plasmid pKV1414 bearing ObgKP, the DNA fragment corresponding to residues
1–392 was PCR-amplified from K. pneumoniae genomic DNA using primers Obg_kpn_F1Nde
(GAGACATATGAAGTTTGTAGATGAAGCAAC) and Obg_kpn_R392Hind (CTCAAGC
TTAGCGTTTGTAGATGAATTCG), digested with NdeI and HindIII, and cloned into a mod-
ified pCDF-Duet1 vector (Novagen/Merck KGaA, Darmstadt, Germany), to append an N-ter-
minal 6×His tag and a tobacco etch virus (TEV) protease cleavage sequence.

Purification of *ObgGC, ObgKP and ObgMRSA

All recombinant proteins were expressed using the E. coli BL21(DE3) as a host and purified as
follows. Bacteria harboring pET-OBGGC, pET-�ObgGC, pKV1414, or pET-ObgMRSA were cul-
tured in LB supplemented with kanamycin at 37°C until the cultures reached OD600 of ~ 0.5,
and the gene expression was induced by the addition of isopropyl-β-D-thiogalactoside (IPTG)
to a final concentration of 1 mM. Cells were pelleted 3 h after induction and resuspended in
lysis buffer (20 mM Tris-HCl pH 8.0, 10 mM imidazole, 500 mM NaCl). The cells were lysed
by passing the suspension four times through a French pressure cell press at 12,000 psi. Bacte-
rial debris was removed by centrifugation and filtered through 0.45 μm filter (VWR, Radnor,
PA). Cell lysates were applied on 5 mL Bio-Scale™Mini Profinity™ IMAC Cartridges (Bio-Rad,
Hercules, CA) connected to NGC Chromatography System (Bio-Rad, Hercules, CA) equili-
brated with 5 column volumes of lysis buffer. Column was washed with 8 column volumes of
lysis buffer and bound protein was eluted with buffer containing 20 mM Tris-HCl pH 8.0, 250
mM imidazole, and 500 mMNaCl. Fractions containing Obg were pooled and concentrated
using Vivaspin 20 (MWCO 10,000) spin concentrators (GE Healthcare Bio-Sciences, Pitts-
burgh, PA). Concentrated fractions were applied on HiLoad 16/600 Superdex 75 column (GE
Healthcare Bio-Sciences, Pittsburgh, PA) and resolved using buffer containing 20 mM Tris pH
8 and 100 mMNaCl. Subsequently, samples containing the respective Obg variants were
pooled and concentrated using Vivaspin 6 (MWCO 10,000) spin concentrators (GE Healthcare
Bio-Sciences, Pittsburgh, PA).

Protein concentrations were determined using the Bradford method with a Protein Assay
Kit (Bio-Rad, Hercules, CA). Glycerol was added to purified proteins to a final concentration
of 10% and proteins were stored at -80°C.

Assay optimization
A colorimetric GTPase assay was developed to screen for Obg inhibitors. The assay was based
on the molybdate/malachite green detection method [42] and measures free phosphate in the
solution following the addition of the BIOMOL1 Green reagent (Enzo Life Sciences, Farming-
dale, NY). The reaction was optimized for ObgGC and GTP concentration in buffer A
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containing 50 mM Tris pH 8.0, 2 mM dithiothreitol, 1 mM ethylenediaminetetraacetic acid
(EDTA), 50 mM KCl, 10% (wt/vol) glycerol and 10 mMMgCl2.

First, the optimal protein concentration for the assay was evaluated using 1, 2, 5, or 10 μM
ObgGC and 125 μMGTP with incubation time of 6 h at 37°C. Next, 5 μMObgGC was incubated
with 125, 250, 500, 750 or 1000 μMGTP. At the end of each incubation period, BIOMOL Green
was added at twice the volume of the reaction to quench it, and samples were allowed to incubate
for 30 min at room temperature. The colorimetric measurements were performed at 620 nm
using the BioTek Synergy HTMulti-Detection Microplate Reader (BioTek, Shoreline, WA).
Absorbance values were related to the amount of phosphate released during Obg-mediated GTP
hydrolysis. Ultimately, 5 μMObgGC and 250 μMGTP were selected, and a time-course was
performed to measure phosphate release over time. The Km for ObgGC was determined using 10,
25, 50, 100, 250, 500, 1000 μMGTP during a 6 h period.

To determine the optimal incubation length and temperature to be used for the primary screen
of compound libraries, nine identically loaded 384-well plates with 25 μl reactions were incubated
under three conditions: 6 h at 37°C, 18 h at 37°C, and 18 h at room temperature (3 plates each).
In addition to the wells with complete reaction mixture (RM) containing 5 μMObgGC, 250 μM
GTP in buffer A (columns 2–22), each plate accommodated a background control comprising of
RM lacking ObgGC, (column 1) and a positive control (RM without MgCl2; columns 23–24). The
amount of free phosphate present under each condition was measured using BIOMOL Green as
described above, and the difference between high-activity wells and low-activity wells was evalu-
ated. Incubation for 18 h at 37°C was ultimately selected for future studies.

ObgGC activity was tested for solvent tolerance and sensitivity to chelators. ObgGC was incu-
bated with various concentrations of dimethyl sulfoxide (DMSO), 0, 0.5, 1, 2, 3, 4, and 5%, in
RM on 384 well plates as outlined above to determine if DMSO interferes with Obg-mediated
GTP hydrolysis. The assay was incubated and the amount of free phosphate was measured as
described above. The effect of compounds that may act as Mg2+ chelators and disrupt or inhibit
the ObgGC GTPase activity was tested using common chelators including EDTA (Amresco,
Solon, OH), ethylene glycol tetra acetic acid (EGTA; Alfa Aesar, Ward Hill, MA), Nitrilotriace-
tic acid (NTA; TCI, Portland, OR), and citric acid (CA; Sigma Aldrich, St. Louis, MO) at the
test-compound concentration used in HTS (40 μM). The protein was pre-incubated with each
chelator for 1 h prior to the addition of GTP, and the assay was completed as described above.

Primary screen
For the HTS, reagents were added to 384-well microplates using a BioTek MultiFlo Dispenser
(BioTek, Shoreline, WA), and plates were delivered to the Oregon Translational Research and
Drug Development Institute (OTRADI) satellite lab at Oregon State University for compound
loading. Daughter plates were made from stock mother plates from the SIGA chemical library
[7] in 10% DMSO, such that the final concentrations of the compounds and DMSO in the
screening reaction were 40 μM and 0.8% (v/v), respectively. Each plate contained RM without
ObgGC (column 1), negative control comprising of RM and no compounds (column 2), and
two columns of a positive control (RM without MgCl2, column 23–24).

Following compound addition (columns 3–22), 5 μMObg was loaded into the wells, and
the protein was allowed to incubate with compounds for 1 h at room temperature, prior to the
addition of GTP (250 μM). The amount of released phosphate was measured following incuba-
tion as described above. The percent activity of each compound was calculated from the absor-
bance data using the following equation:

% Activity ¼ ð C�Pc
Nc�Pc

Þ�100 Eq ð1Þ
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where C is the absorbance recorded for each reaction containing individual compounds and
ObgGC, Pc is the average of all positive controls, and Nc is the average of all negative controls.

To confirm the inhibitory effect on GTPase activity of Obg, compounds resulting in 15% or
more reduction in activity were selected for repeat screening with the BIOMOL Green assay in
triplicate. Subsequently, compounds demonstrating 50% ObgGC inhibition were selected for
follow-up dose-dependence studies.

Three compounds selected for further testing included: Compound A: 2-chloro-4-nitro-6-
{[(E)-2-nitroethenyl]amino}phenol (ChemBridge, San Diego, CA), Compound B: 9-(4-nitro-
phenyl)-5,13-disulfanyl-2-oxa-4,6,12,14-tetraazatricyclo[8.4.0.0³,⁸]tetradeca-1
(10),3,5,7,11,13-hexaene-7,11-diol (Vitas-M Lab Ltd, Moscow, Russia), and bacterial GTPase
EngA inhibitor, Garcinol (Enzo Life Sciences, Farmingdale, NY), identified in a previous HTS
[43]. ObgGC was incubated with 40 or 100 μM of the chemical for 1 h in RM prior to addition
of GTP, followed by measurement of free phosphate amounts as described above.

Secondary screen
N-methyl-3’-O-anthranoyl-(mant)-guanine nucleotide analogs of GTP and GDP (mant-GTP
and mant-GDP, respectively) were purchased from Thermo Fisher Scientific (Waltham, MA).
Protein (ObgGC or �ObgGC, 2 μM) was incubated with either mant-GTP or mant-GDP nucleo-
tide (0.3 μM) in buffer containing 50 mM Tris, 2 mMDTT, 1 mM EDTA, 50 mM KCl, 10%
(wt/vol) glycerol, and for reactions with mant-GTP, 5 mMMgCl2 was included [11]. All fluo-
rescence measurements were performed at 37°C using a Synergy HT plate reader (BioTek,
Shoreline, WA). These studies were carried out at least eight times over multiple days. The
means for the biological replicates with corresponding standard error of the mean (SEM) are
reported.

Assessment of the potential broad-spectrum activity of lead compounds
The activity of ObgKP and ObgMRSA was determined in the colorimetric and fluorescent assays
as described for ObgGC. In addition, the GTP hydrolysis rate of both proteins (16 μM) was
determined by recording the decrease in fluorescence of mant-GTP (0.3 μM) at 1 min intervals
for 3 h [11]. Data were fitted to a single exponential decay equation, and the single turnover
rate constant and the half-life of hydrolysis were calculated.

Statistical analyses
Statistical analyses were conducted using GraphPad Prism 6.0 (GraphPad Software, La Jolla,
CA). Unpaired t-test or One-way Analysis of Variance (ANOVA) with post hoc tests were
used to determine differences in free phosphate detection or changes in fluorescence where
appropriate (P� 0.01). The primary screen was evaluated using statistical parameters of signal
to noise (S:N), signal to background (S:B), signal window (SW), Z’ factor, and inter/intraplate
variability (%CV), which were calculated as previously described [44, 45].

Results and Discussion
Targeting ribosome function and biogenesis has led to some of the most clinically effective
antibiotics currently in use, including tetracyclines and aminoglycosides [10, 33]. The associa-
tion between Obg and the bacterial ribosome, specifically with the 50S subunit, has been well
documented (reviewed in: [12]). In addition to its role in ribosomal maturation, alterations of
many other critical cellular processes have also been attributed to the loss of Obg function,
including DNA synthesis and replication, chromosomal segregation, regulation of the cell

Assays to Identify Inhibitors of Essential GTPase Obg

PLOSONE | DOI:10.1371/journal.pone.0148222 February 5, 2016 6 / 18



stress response, and bacterial persistence [11, 23–30]. The pivotal function(s) of Obg in key
physiological processes make Obg a promising target for the development of novel antibiotics.
Here we optimized conditions for HTS of small molecule inhibitors using as a model system
ObgGC from N. gonorrhoeae, a clinically important bacterium rapidly acquiring antibiotic resis-
tance and causing multi-drug resistant infections that call for alternative antimicrobial
interventions.

Rationale and assay optimization
To develop an assay for screening of Obg inhibitors, we targeted the GTPase Obg activity
because it is critical for Obg function in vivo and bacterial viability [46]. Measuring released
phosphate as a result of Obg GTP hydrolysis also provides a technically feasible endpoint. The
BIOMOL1 Green assay is a commercial version of a common phosphate detection assay origi-
nally established based on the principle that malachite green complexed with phosphomolyb-
date leads to a shift in λmax [42]. A similar methodology was recently used in a HTS designed
for a ribosome-associated bacterial GTPase, EngA, resulting in four prospective inhibitors [43].
One of the four, Garcinol, was available for purchase and tested for its ability to inhibit ObgGC
GTP hydrolysis. Up to 100 μMGarcinol, significantly higher than the IC50 reported for EngA
(14.3 μM), was unable to inhibit the ObgGC activity (S2A Fig), emphasizing the need to estab-
lish a new screening campaign to target the GTPase Obg.

An alternative means of measuring Obg activity is via fluorescent N-methyl-3’-O-anthra-
noyl guanine nucleotide analogs of GTP and GDP. Mant-GTP and mant-GDP have been
widely utilized for examining the nucleotide binding and GTP hydrolysis of various G-pro-
teins, including Obg homologs from C. crescentus [31], E. coli [47], V. harveyi [48], and recently
N. gonorrhoeae [11]. When bound to proteins, fluorescence increases by ~2- and 1.3-fold for
mant-GTP and mant-GDP, respectively. However, despite the sensitivity of the fluorescent
assay, the minimal fold induction does not provide a substantial window for HTS [44, 45].
Therefore, we proceeded with optimizing the BIOMOL Green assay for efficiency and high-
throughput competency.

The initial conditions used to optimize the assay, the protein and GTP concentrations as
well as incubation time, were chosen with the knowledge that ObgGC hydrolyzes GTP approxi-
mately twenty times slower than the V. harveyiObg and two-fold slower than that of C. cres-
centusObg, and slightly slower than E. coli Obg protein, with a half-life of GTP of
approximately 50 min [11]. Preliminary studies using the BIOMOL Green assay revealed that
at least 6 h of incubation were required to provide a significant fold change above background
(data not shown). We therefore began optimization studies with a 6 h incubation length to
accommodate for the slow GTP hydrolysis time. In contrast, incubation time for the EngA
GTPase HTS was only 25 min [43]. When ObgGC was incubated with 125 μMGTP for 6 h at
37°C, the amount of phosphate detected in the presence of 5 and 10 μMObgGC showed a mar-
ginal difference, 72 versus 75 μM, and therefore 5 μMwas selected to obtain a more favorable
protein to compound ratio in the screen (Fig 1A). Incubation of 5 μMObgGC with 125–
1000 μMGTP, showed a linear dependence on substrate concentration up to 250 μM, and it
was therefore selected as the GTP concentration for the screen (Fig 1B).

While the 6 h incubation provided a reliable signal window enabling detection of potential
inhibitors, the feasibility of the HTS necessitated an overnight incubation. For instance prepara-
tion of thirty 384-well plates, our desired goal per day, required approximately 6–7 h of handling
prior to the addition of GTP and assay incubation. In addition, BIOMOL Green reagent required
a 30 min incubation and each assay plate took approximately 3 min to read on the spectropho-
tometer (S1 Table). Further, we wanted to avoid preparation of assay plates ahead of time and
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subsequent freeze thawing of compound libraries. To mitigate the impractical timeline, we per-
formed a time course, measuring phosphate release following 1, 6, 18, 24, and 36 h of incubation
(Fig 1C). We observed that the reaction continued to increase between 6 and 18 hrs. To further
compare the two time points, the amounts of released phosphate were tested under multiple
incubation conditions: for 6 h at 37°C, 18 h at 37°C, and 18 h at room temperature for compari-
son, in triplicate 384-well plates which would allow us to obtain preliminary HTS statistical anal-
yses (Fig 1D). Ultimately, 18 h at 37°C was selected because the greatest amplitude of signals
between the positive and negative controls was achieved, as demonstrated by the signal window
of 4.25, compared to 2.33 and 2.76 for 6 h at 37°C and 18 h at room temperature, respectively.

Our positive control for the assay was reaction mixture lacking Mg2+, because inhibitors of
Obg are currently not known. The negative control was the complete reaction in buffer A (as
described in Materials and Methods) containing ObgGC, GTP and 10 mMMgCl2. For all tested
incubation times, there was a statistically significant difference between the amounts of free
phosphate detected in reactions where Mg2+ was present as compared to reactions without
Mg2+ (Fig 1C and 1D; blue bars versus red bars).

Fig 1. Assay optimization. The concentrations of ObgGC and GTP were selected to achieve an optimal
signal window for the HTS assay using as a read-out colorimetric free phosphate quantitation with
BIOMOLGreen. (A) Various concentrations of ObgGC (1–10 μM) were incubated with 125 μMGTP for 6 h at
37°C, followed by measurement of free phosphate amounts. (B)ObgGC (5 μM) was incubated with increasing
concentrations of GTP (125–1000 μM) for 6 h at 37°C and the free phosphate present in each reaction was
quantitated. (C) Time course with 5 μMObgGC and 250 μMGTP assayed at 0, 1, 6, 18, 24 and 36 h
demonstrated that the Obg-dependent GTP hydrolysis continued to increase until approximately 18 h. (D)
ObgGC (5 μM) was incubated with GTP (250 μM) in the presence or absence of Mg2+ for 6 or 18 h at either
37°C or room temperature (RT). The signal windows for the three incubation conditions were 2.33, 4.25, and
2.76, respectively, indicating that 18 h incubation time at 37°C was the most optimal. There was no significant
difference between free phosphate amounts detected in reactions lacking Mg2+ (red bars) and that of buffer
alone (background, white bars). Asterisk denotes significant difference between complete reaction (blue
bars) and reaction mixture lacking Mg2+ (ANOVA, P < 0.0001).

doi:10.1371/journal.pone.0148222.g001
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The dependence of Obg proteins on Mg2+ to bind GTP has been previously demonstrated,
and in GC, the maximal formation of Obg-GTP complexes occurs between 5 and 10 mMMg2+

[11, 31, 47, 48]. In contrast, binding of GDP by Obg does not require Mg2+, and in fact was
inhibited for ObgGC at concentrations above 1 mM [11], suggesting that our assay reaction
conditions were conducive to multiple turnover, and our positive control represented an opti-
mally inhibited reaction. In contrast, for GTPases like Ras GAPs, Gαi1, and GDP/GTP
exchange are rate limiting and the enzyme turnover rate is slow. Therefore utilizing a steady-
state assay like BIOMOL Green with such proteins becomes a challenge [12, 49, 50].

The kinetic characterization of ObgGC demonstrated a Michaelis-Menten constant (Km) of
78 μM (S3 Fig). Using a concentration of substrate at or less than the Km of the enzyme has
been suggested to create conditions sensitive to competitive inhibitors in HTS [43, 45, 51].
However, given the proposed Obg’s intracellular action as a GTP sensor [12], and it’s GTP/
GDP binding affinity under different Mg+2 concentrations [11], using a higher concentrations
of GTP provided a wider signal window to identify potential inhibitors. The capacity of a HTS
to detect an inhibitor depends not only on the biochemical mechanism of action between the
enzyme and the substrate, but also the concentration of the inhibitor and the mechanism of
action of an inhibitor [52]. Therefore, the concentration of library compounds used in our
screen was 40 μM to increase the chance of detecting an inhibitor, regardless of the mechanism
(s) of action.

Assessment of ObgGC solvent tolerance and chelator challenge
The inherent range of solubility of chemicals in any screening library necessitates the use of a
solvent in biochemical assays. To assess the ObgGC tolerance to the compound solvent, the
Obg-GTPase activity was examined using 0, 1, 2, 3, 4, and 5% DMSO during optimized condi-
tions for 18 h at 37°C as described above (Fig 1C). The amount of released phosphate remained
similar (~180 μM) under all tested conditions, providing evidence that the GTPase activity of
ObgGC was not affected by the presence of solvent to be used in our screen (Fig 2A).

Chelators are often used in biochemistry to sequester metals in reactions, rendering the met-
als biologically unavailable. Common chelators including EDTA, EGTA, and NTA exhibit
varying capacities to bind transition metals such as Ca2+, Mg2+, Fe2+, and Fe3+. The potential
for other molecules to exhibit some ability to bind biologically relevant metals, including Mg2+,
a critical component of our assay because of its requirement for Obg-GTP interaction, may
pose a challenge to our study design, despite that the concentration of Mg2+ in the buffer (10
mM) is in excess of the 40 μM compounds. Therefore, the ability for common chelators to
inhibit ObgGC activity under the experimental conditions of the primary screen was assessed.
ObgGC was pre-incubated for 1 h with 40 μM of different chelators including EDTA, EGTA,
NTA and CA. Only the presence of CA caused a significant decrease in the amount of free
phosphate detected, equivalent to less than 20% inhibition (Fig 2B). However, the background
phosphate levels for CA (chelator + buffer A + GTP) was 50% lower than that of the other
three chelators (data not shown), suggesting that the reduction in signal was due to an interac-
tion with a component of the reagents used, not a bona fide inhibition of protein activity.

Together, these studies demonstrated the compatibility of our assay with a high DMSO con-
centration as well as with a potential chelating agent.

Primary screen for inhibitors of ObgGC

Our assay development efforts afforded primary screening conditions that were both sensitive
and practical for HTS. Therefore, ObgGC was screened against 40,000 diverse compounds
using the SIGA chemical libraries through OTRADI. These libraries contain an assortment of
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both synthetic molecules and natural products, and have been previously used in other HTS [7,
53, 54].

An initial screen of 3,200 compounds (10 plates) was performed, and the calculated Z’ value
was 0.55 and a signal window of 4.47, similar to that of our optimization studies (Fig 1C), indi-
cating an excellent assay design [44, 45]. The entire pilot screen took place over five weeks, and
the performance of our assay was assessed with standard HTS statistical parameters [44, 45] on
each day of the screen (Table 1). The averaged Z’ factor for the entire screen was 0.58 ± 0.02.
The intra- and inter-plate (%CV) variability was also determined for both positive and negative
controls. Inter-plate variability was higher for both negative (9.32 ± 0.6%) and positive
(13.13 ± 2.9%) controls than the respective intra-plate variabilities (3.58 ± 1.4% and
5.13 ± 1.6%). Variability among the positive controls was on average higher than that of nega-
tive controls for both statistical parameters (%C), which may be at least partially due to the fact
that there were twice as many positive controls as there were negative controls. Overall, the sta-
tistical evaluation of our screen showed a robust assay suitable for HTS of small molecules
libraries for identification of potential Obg inhibitors.

Fig 2. Assessments of solvent tolerance and chelator challenge. Potential complications of screening
conditions were addressed by challenging ObgGC with various concentrations of DMSO (A) or multiple known
chelators (B) followed by measurement of GTPase ObgGC activity using free phosphate quantitation with
BIOMOLGreen. Protein activity was similar in the presence of 0–5%DMSO and in the presence of three
common chelators EDTA, EGTA, and NTA tested 40 μM final concentration. CA significantly decreased the
amount of phosphate detected, but it also decreased the background phosphate in the reaction lacking
ObgGC (not shown), and was therefore altering the absorbance of the reagent, not acting as a chelator.
Asterisk denotes significant difference (ANOVA, P < 0.0001).

doi:10.1371/journal.pone.0148222.g002
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Our pilot screening campaign revealed 69 compounds exhibiting greater than 15% inhibi-
tion of Obg, or less than 85% residual activity, as calculated using Eq 1 explained in the Materi-
als and Methods section. Screening 40,000 compound multiple times to improve assay
sensitivity [52] was cost prohibitive. Therefore, for cherry-picking confirmation, molecules
with 15% and greater inhibition in the primary screen were retested at 40 μM in triplicate. Ulti-
mately, a hit was defined as a chemical resulting in 50% or less of residual Obg activity com-
pared to the negative control calculated using Eq 1. Two chemicals, named Compound A and
Compound B (defined in Materials and Methods), which inhibited ObgGC activity approxi-
mately 50% on three replicate plates, were selected for further analysis. Both compounds were
ordered from outside vendors, and their ability to inhibit ObgGC was tested at 40 and 100 μM,
alongside the EngA inhibitor, Garcinol, identified in [43]. To eliminate the possibility that
these compounds were false positives, the signal produced by 40 μM phosphate in the presence
of 40 and 100 μM compound was also measured. Neither of the lead compounds demonstrated
any significant inhibition of the protein, despite having a 50% inhibition in three replicate
plates of the follow-up screen (S2B and S2C Fig).

The low hit rate following our primary screen, and lack of confirmed lead compound, is not
uncommon for a pilot screen of only 40,000. In other HTS studies,> 85% of the initial hits
were found to be non-specific for the target molecule [43, 53, 54]. Screening a greater number
of small molecules will increase the chance of identifying candidates for further development.
Ultimately, two inhibitors were identified through our screen, which demonstrates that the
assay is working. The failure of confirmation testing of the initial hits using purchased chemi-
cals is not a reflection on the assay, but may suggest that their anti-Obg activity originated
from a degradation product(s) and/or impurities of the parent compound sample in the library.
There is a wide range of rearrangements and chemical reactions (e.g. oxidation, hydrolysis,
isomerization) that may occur in a structurally diversified collection of compounds upon stor-
age in DMSO solution [55]. Other factors such as compound concentration, intrinsic stability,
presence of reactive contaminants, and storage related factors (e.g. type of containers, storage
conditions, time of storage) could affect compound stability [56].

Secondary screen for elucidating mechanism of ObgGC inhibition
A secondary assay was developed as a follow up study for lead compounds in order to not only
confirm their ability to inhibit Obg hydrolysis, but also to elucidate a possible mechanism of

Table 1. Statistical analysis of assay performance.

# compounds screened S:Na S:Bb SWc Z’d % nCVinter
e % nCVintra

f % pCVinter
g % pCVintra

h

3,200 34.67 4.98 4.47 0.55 9.78 5.46 ± 2.3 11.49 6.30 ± 1.2

12,800 27.94 5.81 5.55 0.58 8.65 2.51 ± 1.1 17.21 4.51 ± 4.6

12,800 44.08 5.7 4.67 0.57 10.02 2.06 ± 0.8 10.67 2.70 ± 1.5

3,520 29.59 5.51 5.48 0.58 8.67 3.28 ± 2.0 15.24 5.49 ± 2.6

7,680 46.51 6.13 5.27 0.6 9.47 4.61 ± 0.7 11.04 6.64 ± 3.1

Average ± SD 36.56 ± 8.4 5.63 ± 0.4 5.09 ± 0.5 0.58 ± 0.02 9.32 ± 0.6 3.58 ± 1.4 13.13 ± 2.9 5.13 ± 1.6

aSignal to noise ratio is a measure of signal strength
bSignal to background ratio
cSignal Window is a measure in the difference in signal between negative and positive controls
dZ-factor is a measurement of the performance of the assay under the defined conditions
e,f Inter- and Intra-plate, respectively, variability for negative control.
g,h Inter- and Intra-plate variability, respectively, for positive control.

doi:10.1371/journal.pone.0148222.t001
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compound action. When fluorescent guanine nucleotide analogs, mant-GTP and mant-GDP,
are bound to ObgGC, there is 1.9- and 1.3-fold increase in fluorescence, respectively [11], which
is similar to values reported for other bacterial Obg proteins [31, 47, 48]. Overall, this assay is
useful because it delivers a different read-out method with the sensitivity inherent to a fluores-
cence assay (compared with the colorimetric reaction used in the primary screening) and pro-
vides a means to dissect the interaction(s) that may occur between a compound, Obg, and
mant-nucleotides.

In addition to the positive control of reaction mixture lacking Mg2+, used in the primary
screen assay, an alternative positive control was developed for the secondary assay. An Obg
variant, �ObgGC, was designed with multiple mutations within the G domain, at T192S, T193S,
A212L, D213E, P215H, N284Q, K285R, and S329V (Fig 3A and S1 Fig), rendering a protein
that was no longer capable of binding GTP or GDP (Fig 3B). An additional ObgGC mutant,
ObgGC-T192AT193A, has a double alanine substitution for the two conserved tyrosine residues
in the G2 motifs, 192 and 193, that are required for binding Mg2+ [11]. These mutations gener-
ate a protein that is unable to bind GTP, while retaining its ability to bind GDP. Utilizing this
mutant in the secondary assay could provide additional insight into the potential mechanism
of ObgGC inhibition by a lead compound.

Assessment of broad-spectrum potential of Obg inhibitors
The ability of potential lead compounds to act on other clinically relevant bacteria by targeting
Obg could be further assessed by utilizing Obg homologs from bacterial species associated with

Fig 3. Secondary assay design. (A) The domain architecture of Obg with switch 1 and switch 2 are shown.
Five conserved G motifs (G1-G5) are indicated in colored boxes. The mutated variant of ObgGC, *ObgGC,
unable to interact with Mg2+, GTP, and GDP, was designed using as a template the obg gene from N.
gonorrhoeae FA1090. The altered amino acids residues include T192S, T193S, A212L, D213E, P215H,
N284Q, K285R, S329V within G domains (outlined in detail in S1 Fig). (B) Assessment of mant-nucleotides
binding by wild type (ObgGC) and mutated (*ObgGC). An increase in Relative Fluorescence Units (RFU) of
mant-GTP (orange bars) and mant-GDP (yellow bars) upon addition of different ObgGC variants was
measured in at least eight experiments performed on separate occasions and averages with corresponding
SEM are presented. *ObgGC activity in the mant-GTP assay was not significantly different from that of ObgGC

in the absence of Mg2+. Asterisk denotes significant difference (ANOVA, P < 0.0001).

doi:10.1371/journal.pone.0148222.g003
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serious antibiotic resistant infections for instance K. pneumoniae and MRSA [57–59]. K. pneu-
moniae is a Gram-negative bacterium and an opportunistic pathogen, which causes, in addi-
tion to pneumonia, infections in the urinary tract, wound or surgical sites, blood stream, and
meningitis. It is one of the top organisms causing infections in hospitalized patients [57, 59].
Particularly vulnerable to K. pneumoniae infections are immunocompromised individuals, in
which the disease can result in death. K. pneumoniae is one of the two most common carbape-
nem-resistant Enterobacteriaceae, and is listed by the CDC as an urgent threat as a result of its
prevalence and resistance to antibiotics [2]. MRSA is a Gram-positive bacterium, which causes
a range of illnesses, from skin and wound infections to sepsis, and it constitutes approximately
28% of hospital-acquired bacterial pneumonia [58, 59]. The number of MRSA infections is
among the highest of all antibiotic-resistant diagnoses, and it is therefore listed as a serious
threat by the CDC [2]. Presently, there are effective antibiotics capable of treating MRSA-
derived infections. However, the prevalence and persistence of such infections may facilitate
the resilience of more resistant strains of MRSA, generating a greater need for novel treatments
[2]. Together with N. gonorrhoeae, they represent a diverse set of clinically important bacteria
that are all in need of novel and aggressive antibiotic development.

The Obg proteins of K. pneumoniae, ObgKP, and MRSA, ObgMRSA, were cloned, expressed
in E. coli and purified, followed by characterization of their biochemical activities in colori-
metric and fluorescent assays under the same conditions described for ObgGC (Fig 4). All
three proteins exhibited similar GTPase activity in the BIOMOL Green assay, producing
~120, 140, and 130 μM phosphate for ObgGC, ObgKP, and ObgMRSA, respectively, with 5 μM
protein and 250 μMGTP in each reaction at the end of the 18 h incubation (Fig 4A). Like
ObgGC, ObgKP and ObgMRSA, hydrolyzed GTP only in the presence of Mg2+. ObgKP also
behaved similar to other Obg homologs [11, 31, 47, 48] in the fluorescence-based assay, as
binding of mant-GTP and mant-GDP resulted in ~1.8- and 1.3-fold increase in fluorescence,
respectively (Fig 4B). In contrast, complexes of ObgMRSA-mant-GTP and ObgMRSA-mant-
GDP showed ~1.4- and 1.1-fold elevation in relative fluorescence, respectively (Fig 4B).
There was, however, no significant difference in the amount of free phosphate detected using
the BIOMOL Green assay at the end of 18 h incubation with ObgKP and ObgMRSA (ANOVA,
P = 0.3109), suggesting that the ObgMRSA may not bind mant-nucleotides as readily as other
Obg homologs.

Another useful parameter to further characterize the mechanism of action of a lead com-
pound molecule is the assessment of the GTP hydrolysis rate of Obg proteins. Therefore, we
next examined the GTPase activity of the ObgKP and ObgMRSA by monitoring the decrease in
fluorescence that is associated with the single-turnover conversion of bound mant-GTP to
bound mant-GDP. The reduction in fluorescence was fitted with a single exponential decay
equation, and first-order rate constants, kh, 4.64 × 10−4s−1 and 6.36 × 10−4s−1, as well as half-
lives (T1/2) of 24.88 min and 18.17 min, were determined for ObgKP and ObgMRSA, respectively.
The hydrolysis rate of both proteins were similar to Obg from C. crescentus, approximately
2-fold faster than N. gonorrhoeae and E. coli, and 11 and 8-fold slower than V. harveyi, respec-
tively [11, 31, 47, 48]. The slight variations in the binding and hydrolysis activities of the Obg
homologues may reflect species-specific subtle differences in Obg functions. Nevertheless,
combining both the colorimetric and fluorescent assays provide powerful tools for elucidating
Obg inhibitors.

Conclusions
Obg protein appears to be an excellent target for the development of novel antimicrobials
because of its essential nature to both Gram-positive and Gram-negative bacteria. Accordingly,
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we have optimized an inexpensive, statistically sound, high-throughput assay to screen for
inhibitors of ObgGC. Further, we have developed a secondary method to evaluate the ability of
potential lead compounds to interfere with Obg-nucleotide binding and dissect a potential
mechanism of action. Finally, we propose to employ Obg homologs from other clinically
important and very different bacterial species, K. pneumoniae and MRSA, to test the potential
for broad-spectrum antibiotic development in targeting Obg.

The screening approach described here will be useful in identifying inhibitors of a ribo-
some-associated protein with a proposed role in bacterial multidrug tolerance that will further
the advancement of broad-spectrum therapeutics, thus meeting the needs raised by CDC and
WHO.

Fig 4. Biochemical analysis of Obg isolated fromK. pneumoniae and MRSA. To evaluate the potential
of broad-spectrum activity of lead compounds identified using ObgGC as a target, ObgKP and ObgMRSA were
purified and GTP hydrolysis as well as GTP and GDP binding were examined using the colorimetric (A) and
fluorescence-based activity assays using mant-nucleotides (B, C and D). (A) The free phosphate detection
assay was conducted with 5 μM protein and 250 μMGTP and the reactions were incubated for 18 h at 37°C
followed by the addition of BIOMOL Green reagents and absorbance measurements. Similar concentrations
of phosphate were detected with both ObgKP and ObgMRSA (not significantly different, t-test, P = 0.3109).
Both proteins required the presence of Mg2+ to hydrolyze GTP (significantly different, respectively, T-TEST
P< 0.0001). The data shows averages, with corresponding SEM, of six biological replicates. (B) Binding of
mant-GTP (orange bars) and mant-GDP (yellow bars) to ObgKP and ObgMRSA was examined in the presence
and absence of Mg2+, as indicated below the graph. ObgKP binding of mant-GTP and mant-GDP increased
the RFU ~1.8- and 1.3-fold, respectively. Whereas ~1.4- and 1.1-fold increase in RFU was observed for the
corresponding mant-nucleotides upon binding by ObgMRSA. There was a significant difference in ability of
ObgKP and ObgMRSA to bind mant-GTP (t-test, P <0.001). The reliance on Mg2+ for both proteins was
demonstrated by the absence of an increase in RFU in reaction buffer deficient in Mg2+ (Significantly
different, respectively, t-test, P< 0.0001). The data shows averages with corresponding SEM of five
experiments performed on separate occasions. Hydrolysis of mant-GTP by ObgKP (C) and ObgMRSA (D) was
monitored by recording the decrease in fluorescence that is coupled to the conversion of mant-GTP-Obg to
mant-GDP-Obg complexes over 3 h. The fluorescence intensity of the mant-GTP in the absence of protein
served as a control and is shown in black. The first-order rate constant, kh, of 4.64 × 10−4s−1 and 6.36 ×
10−4s−1, and half-life (T1/2) of 24.88 min and 18.17 min, were calculated for ObgKP and ObgMRSA,
respectively.

doi:10.1371/journal.pone.0148222.g004
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Supporting Information
S1 Fig. Schematic outline of ObgGC architecture with introduced mutations. The individual
domains of ObgGC are labeled in dark blue. The central, GTP-binding domain includes switch
I and switch II and five conserved G motifs (G1-G5; indicated in blue boxes). The introduced
substitutions within the G motifs are designated in red.
(DOCX)

S2 Fig. Evaluation of inhibitory potential of GTPase EngA inhibitor, Garcinol, and poten-
tial lead compounds identified in a pilot ObgGC screen, A & B, using the Biomol1 Green
assay. ObgGC (5 μM) was pre-incubated with tested compounds (40 and 100 μM) followed by
the addition of GTP (250 μM), incubation 18 h at 37°C and free phosphate measurement.
(DOCX)

S3 Fig. Kinetic characterization of ObgGC. The Km of ObgGC was determined using 5 μM
ObgGC and a range of GTP from 10–1000 μM over 6 h. The Km for ObgGC was determined to
be 78.76 μM.
(DOCX)

S1 Table. Timeline of the ObgGC HTS procedures.
(DOCX)
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