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Abstract. The West Antarctic Ice Sheet Divide (WAIS Di-

vide, WD) ice core is a newly drilled, high-accumulation

deep ice core that provides Antarctic climate records of

the past ∼ 68 ka at unprecedented temporal resolution. The

upper 2850 m (back to 31.2 ka BP) have been dated using

annual-layer counting. Here we present a chronology for

the deep part of the core (67.8–31.2 ka BP), which is based

on stratigraphic matching to annual-layer-counted Greenland

ice cores using globally well-mixed atmospheric methane.

We calculate the WD gas age–ice age difference (1age) us-

ing a combination of firn densification modeling, ice-flow

modeling, and a data set of δ15N-N2, a proxy for past firn

column thickness. The largest1age at WD occurs during the

Last Glacial Maximum, and is 525± 120 years. Internally

consistent solutions can be found only when assuming lit-

tle to no influence of impurity content on densification rates,

contrary to a recently proposed hypothesis. We synchro-

nize the WD chronology to a linearly scaled version of the

layer-counted Greenland Ice Core Chronology (GICC05),

which brings the age of Dansgaard–Oeschger (DO) events

into agreement with the U /Th absolutely dated Hulu Cave

speleothem record. The small1age at WD provides valuable

opportunities to investigate the timing of atmospheric green-

house gas variations relative to Antarctic climate, as well as

the interhemispheric phasing of the “bipolar seesaw”.

1 Introduction

Deep ice cores from the polar regions provide high-

resolution climate records of past atmospheric composition,

aerosol loading and polar temperatures (e.g., NGRIP com-

munity members, 2004; EPICA Community Members, 2006;

Wolff et al., 2006; Ahn and Brook, 2008). Furthermore, the

coring itself gives access to the ice sheet interior and bed,

allowing investigation of glaciologically important processes

such as ice deformation (Gundestrup et al., 1993), folding

(NEEM community members, 2013), crystal fabric evolution
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(Gow et al., 1997), and geothermal heat flow (Dahl-Jensen

et al., 1998). Having a reliable ice core chronology (i.e., an

age–depth relationship) is paramount for the interpretation of

the climate records and comparison to marine and terrestrial

paleoclimate archives.

The West Antarctic Ice Sheet Divide (WAIS Divide, WD)

ice core (79.48◦ S, 112.11◦W; 1766 m above sea level;

−30 ◦C present-day mean annual temperature) was drilled

and recovered to 3404 m depth (WAIS Divide Project Mem-

bers, 2013). Drilling was stopped 50 m above the estimated

bedrock depth to prevent contamination of the basal hy-

drology. Due to high accumulation rates of 22 cmicea−1 at

present and ∼ 10 cmicea−1 during the Last Glacial Maxi-

mum (LGM), the WD core delivers climate records of un-

precedented temporal resolution (Steig et al., 2013; Sigl

et al., 2013) as well as gas records that are only minimally

affected by diffusive smoothing in the firn column (Mischler

et al., 2009; Mitchell et al., 2011, 2013; Marcott et al., 2014).

The combination of high accumulation rates and basal melt-

ing at the WD site results in ice near the bed that is rela-

tively young (∼ 68 ka) compared to cores drilled in central

East Antarctica.

In WD, annual layers can be identified reliably for the

upper 2850 m of the core, reaching back to 31.2 kaBP

(thousands of years before present, with present defined as

1950 CE). Below 2850 m depth an alternative dating strat-

egy is needed. Several methods have been employed previ-

ously at other deep ice core sites. First, orbital tuning via

δO2 /N2 has been applied successfully to several Antarctic

cores (Bender, 2002; Kawamura et al., 2007). However, an

age span of only ∼ 3 precessional cycles in WD, in combi-

nation with the low signal-to-noise ratio of δO2 /N2 data,

makes this technique unsuitable for WD. The uncertainty in

the orbital tuning is about one-fourth of a precessional cycle

(∼ 5 ka), making it a relatively low-resolution dating tool.

Second, in Greenland, ice-flow modeling has been used to

extend layer-counted chronologies (e.g., Johnsen et al., 2001;

Wolff et al., 2010). This method requires assumptions about

past accumulation rates, ice flow, and ice sheet elevation.

Particularly for the oldest WD ice, the resulting uncertainty

would be substantial. Third, several radiometric techniques

have been proposed to date ancient ice. Radiocarbon (14C)

dating of atmospheric CO2 trapped in the ice is unsuitable as

it suffers from in situ cosmogenic production in the firn (Lal

et al., 1990), and the oldest WD ice dates beyond the reach of
14C dating. Other absolute (radiometric) dating techniques,

such as recoil 234U dating (Aciego et al., 2011), 81Kr dating

(Buizert et al., 2014a), or atmospheric 40Ar buildup (Bender

et al., 2008), currently suffer from uncertainties that are too

large (≥ 20 ka) to make them applicable at WD.

Instead, at WD we use stratigraphic matching to well-

dated Greenland ice cores using globally well-mixed atmo-

spheric methane (CH4) mixing ratios (Blunier et al., 1998;

Blunier and Brook, 2001; Blunier et al., 2007; Petrenko

et al., 2006; EPICA Community Members, 2006; Capron

et al., 2010). This method is particularly suited to WD be-

cause of the small gas age–ice age difference (1age, Sect. 3)

and the high-resolution, high-precision CH4 record available

(Sect. 2.1). The method has three main sources of uncer-

tainty: (i) the age uncertainty in the records one synchro-

nizes to, (ii) 1age of the ice core being dated, and (iii) the

interpolation scheme used in between the CH4 tie points. We

present several improvements over previous work that reduce

and quantify these uncertainties: (i) we combine the layer-

counted Greenland Ice Core Chronology (GICC05) and a re-

cently refined version of the U /Th-dated Hulu speleothem

record (Edwards et al., 2015; Reimer et al., 2013; Southon

et al., 2012) to obtain a more accurate estimate of the (ab-

solute) ages of abrupt Dansgaard–Oeschger (DO) events

(Sect. 4.4); (ii) we combine firn densification modeling, ice-

flow modeling, a new WD δ15N-N2 data set that spans the

entire core, and a Monte Carlo sensitivity study to obtain a re-

liable1age estimate (Sect. 3); and (iii) we compare four dif-

ferent interpolation schemes to obtain an objective estimate

of the interpolation uncertainty (Sect. 4.5).

This work is the first part in a series of two papers de-

scribing the WD2014 chronology for the WD core in de-

tail. The second part describes the development of the annual

layer count from both multi-parameter chemistry and elec-

trical conductivity measurements. The WD2014 chronology

is currently the recommended gas and ice timescale for the

WD deep core, and as such it supersedes the previously pub-

lished WDC06A-7 chronology (WAIS Divide Project Mem-

bers, 2013).

2 Methods

2.1 Data description

Measurements of water stable isotopes. Water isotopic com-

position (δ18O and δD= δ2H) was measured at IsoLab, Uni-

versity of Washington. Procedures for the deep section of the

core are identical to those used for the upper part of the core

reported in WAIS Divide Project Members (2013) and Steig

et al. (2013). Measurements were made at 0.25 to 0.5 m depth

resolution using laser spectroscopy (Picarro L2120-i water

isotope analyzer), and normalized to VSMOW-SLAP (Vi-

enna Standard Mean Ocean Water – Standard Light Antarctic

Precipitation). The precision of the measurements is better

than 0.1 and 0.8 ‰ for δ18O and δD, respectively.

Measurements of CH4. Two CH4 data sets were used for

WD. The first is from discrete ice samples, and was mea-

sured jointly at Pennsylvania State University (0–68 ka, 0.5–

2 m resolution) and Oregon State University (11.4–24.8 ka,

1–2 m resolution). Air was extracted from∼ 50 g ice samples

using a melt–refreeze technique, and analyzed on a standard

gas chromatograph equipped with a flame-ionization detec-

tor. Corrections for solubility, blank size and gravitational

enrichment are applied (Mitchell et al., 2011; WAIS Divide

Clim. Past, 11, 153–173, 2015 www.clim-past.net/11/153/2015/
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Project Members, 2013). The second data set is a contin-

uous CH4 record measured by coupling a laser spectrom-

eter to a continuous flow analysis setup (Stowasser et al.,

2012; Rhodes et al., 2013; Chappellaz et al., 2013), and

was measured jointly by Oregon State University and the

Desert Research Institute (Rhodes et al., 2015). The continu-

ous data set is used to identify the abrupt DO transitions, as it

provides better temporal resolution and analytical precision.

Both records are reported on the NOAA04 scale (Dlugo-

kencky et al., 2005). Analytical precision in the CH4 data (2σ

pooled standard deviation) is around 3.2 and 14 ppb for the

discrete data from Oregon State University and Pennsylvania

State University, respectively, and 3 to 8 ppb for the continu-

ous CH4 data, depending on the analyzer used (Rhodes et al.,

2015); the 14 ppb stated for the PSU discrete data may be an

overestimation, as depth-adjacent (rather than true replicate)

samples were used in the analysis.

Measurements of δ15N. Atmospheric N2 isotopic composi-

tion (δ15N) was measured at Scripps Institution of Oceanog-

raphy, University of California. Air was extracted from ∼

12 gram ice samples using a melt–refreeze technique, and

collected in stainless steel tubes at liquid-He temperature.

δ15N was analyzed using conventional dual-inlet isotope ra-

tio mass spectrometry (IRMS) on a Thermo Finnigan Delta V

mass spectrometer. Results are normalized to La Jolla (Cal-

ifornia, USA) air, and routine analytical corrections are ap-

plied (Sowers et al., 1989; Petrenko et al., 2006; Severing-

haus et al., 2009). Duplicates were not run for most δ15N data

in this study, but the pooled standard deviations of Holocene

WD δ15N data sets with duplicate analyses are 0.003 ‰

(Orsi, 2013). We conservatively adopt an analytical uncer-

tainty of 0.005 ‰ for this data set to allow for other sources

of error.

Measurements of [Ca]. Ca concentrations in the ice were

measured at the Ultra Trace Chemistry Laboratory at the

Desert Research Institute via continuous flow analysis. Lon-

gitudinal samples of ice (approximately 100cm× 3.3cm×

3.3 cm) were melted continuously on a melter head that di-

vides the meltwater into three parallel streams. Elemental

measurements were made on meltwater from the innermost

part of the core with ultra-pure nitric acid added to the melt

stream immediately after the melter head; potentially con-

taminated water from the outer part of the ice is discarded.

Elemental analysis of the innermost meltwater stream is per-

formed in parallel on two inductively coupled plasma mass

spectrometers (ICPMS), each measuring a different set of

elements; some elements were analyzed on both. The dual

ICPMS setup allows for measurement of a broad range of

30 elements and data quality control (McConnell et al., 2002,

2007). Precision of the Ca measurements in WD glacial ice

is estimated to be ±3 %, with a lower detection limit of

0.15 ngg−1. Continuous Ca and CH4 measurements are done

on the same ice, and are exactly co-registered in depth.

2.2 Firn densification model description

Air exchange with the overlying atmosphere keeps the inter-

stitial air in the porous firn layer younger than the surround-

ing ice matrix, resulting in an age difference between po-

lar ice and the gas bubbles it contains, commonly referred

to as 1age (Schwander and Stauffer, 1984). Here we use

a coupled firn–densification–heat–diffusion model to calcu-

late 1age back in time (Barnola et al., 1991; Goujon et al.,

2003; Schwander et al., 1997; Rasmussen et al., 2013), con-

strained by measurements of δ15N of N2, a proxy for past firn

column thickness (Sowers et al., 1992). The model is based

on a dynamical description of the Herron–Langway model

formulated in terms of overburden load (Herron and Lang-

way, 1980), which is solved in a Lagrangian reference frame.

This model has been applied previously to the Greenland

NEEM, NGRIP, and GISP2 cores (Rasmussen et al., 2013;

Seierstad et al., 2015; Buizert et al., 2014b), where it gives

a good agreement to the Goujon densification model (Ras-

mussen et al., 2013; Goujon et al., 2003). The model allows

for the inclusion of softening of firn in response to impurity

loading (Horhold et al., 2012), following the mathematical

description of Freitag et al. (2013a). The equations govern-

ing the model densification rates are given in Appendix A.

The model uses a 2-year time step and 0.5 m depth reso-

lution down to 1000 m, the lower model boundary. A thick

model domain is needed because of the long thermal mem-

ory of the ice sheet. At WD, downward advection of cold

surface ice is strong due to the relatively high accumulation

rates, and the geothermal gradient does not penetrate the firn

column (Cuffey and Paterson, 2010). We further use a lock-

in density that equals the mean close-off density (Martinerie

et al., 1994) minus 17.5 kgm−3 (as in Blunier and Schwan-

der, 2000) and an empirical parameterization of lock-in gas

age based on firn air measurements from 10 sites (Buizert

et al., 2012, 2013).

We furthermore use the steady-state version of the

Herron–Langway model (Herron and Langway, 1980) in per-

forming sensitivity studies (Sect. 3.2) and the dynamical Ar-

naud model (Arnaud et al., 2000; Goujon et al., 2003) to val-

idate our 1age solution.

2.3 Temperature reconstruction and ice-flow model

Our temperature reconstruction (Fig. 1a) is based on water

δD, a proxy for local vapor condensation temperature, cal-

ibrated using a measured borehole temperature profile (fol-

lowing Cuffey et al., 1995; Cuffey and Clow, 1997) and, for

the last 31.2 ka, adjusted iteratively to satisfy constraints on

firn thickness provided by δ15N and by the observed layer

thickness λ(z). Using δ18O rather than δD in the temper-

ature reconstruction leads to differences that are negligibly

small. This borehole temperature calibration approach is pos-

sible at WD because the large ice thickness and relatively

high accumulation rates help to preserve a memory of past

www.clim-past.net/11/153/2015/ Clim. Past, 11, 153–173, 2015
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Figure 1. Modeling 1age for WAIS Divide. (a) Past temperatures reconstructed from water δD, calibrated to the borehole temperature

profile. (b) Past accumulation rates as reconstructed by the firn densification inverse model (red), and from the annual-layer count (black).

(c) δ15N data (black dots) with densification model output (green). (d) 1age calculated using the densification model (orange) and using

the Parrenin 1depth method (black) with constant 4 m thick convective zone and no correction for thermal δ15N fractionation. (e) Modeled

thinning function from ice-flow model (solid), and a simple Nye strain model for comparison (dashed); the Nye thinning function, which has

a uniform strain rate as a function of depth, is given as fλ(z)= (H − z)/H with H the ice sheet thickness (Cuffey and Paterson, 2010, p.

616).

temperatures in the ice sheet. A coupled 1-D ice-flow–heat-

diffusion model converts surface T (t) into a depth profile

for comparison to measured borehole temperatures. The 1-

D ice-flow model calculates the vertical ice motion, taking

into account the surface snow accumulation, the variation in

density with depth, and a prescribed history of ice thickness.

Vertical motion is calculated by integrating a depth profile of

strain rate and adding a rate of basal melt. As in the model

of Dansgaard and Johnsen (1969), the strain rate maintains a

uniform value between the surface and a depth equal to 80 %

of the ice thickness, and then varies linearly to some value at

the base of the ice. This basal value is defined by the “basal

stretching parameter” fb, the ratio of strain rate at the base

to strain rate in the upper 80 % of the ice column. The basal

ice is melting, so part of the ice motion likely occurs as slid-

ing. The along-flow gradient in such sliding is unknown and

thus so too is the parameter fb. We overcome this problem

by making both the current ice thickness and the basal melt

rate free parameters when optimizing models with respect

to measured borehole temperatures. Because the basal melt

rate and fb affect the vertical velocities in similar fashion,

the optimization constrains a combination of melt rate and

fb that is tightly constrained by the measured temperatures.

Thus we find that varying fb through a large range, from

0.1 to 1.5, changes the reconstructed LGM temperature by

less than 0.2 ◦C. Effects of the prescribed ice-thickness his-

tory are likewise minor; assuming a 150 m thickness increase

from the LGM to 15 ka changes the reconstructed LGM tem-

perature by less than 0.2 ◦C compared to a constant thick-

ness. Note that the 1-D flow model used here is simpler than

the one used by Cuffey and Clow (1997) in that it does not at-

tempt to calculate changes in the shape of the strain rate pro-

file; the unknown basal sliding motion at the WD site negates

the usefulness of such an exercise.

One output of the 1-D flow model is the strain history of

ice layers as a function of depth and time. The cumulative

Clim. Past, 11, 153–173, 2015 www.clim-past.net/11/153/2015/



C. Buizert et al.: The WAIS Divide chronology – Part 1 157

010203040506070
WD2014 age (ka BP)

010203040506070

0.1

0.2

0.3

A
in

it (
m

 ic
e 

a−
1 )

0.1

0.2

0.3

A
fin

al
 (

m
 ic

e 
a−

1 )

200

300

400

500

Δa
ge

 (
ye

ar
)

(a)

(b)

(c)

Figure 2. Reconstructing A(t) and 1age from δ15N: the choice of

accumulation template. (a) Ainit(t) based on λ(z) from the annual-

layer count (0–31.2 kaBP) and Clausius–Clapeyron scaling of wa-

ter stable isotope data (34.2–68 ka) in orange; Ainit = 0.22 ma−1

in blue; and for comparison the final A(t) solution (Fig. 1b) in

grey. For the orange curve we have used the Nye thinning func-

tion (Fig. 1e); the final ice-flow model optimizes the agreement be-

tween A(t) obtained from λ(z) and from the inverse firn modeling

approach. The WD2014 chronology uses the orange Ainit(t) sce-

nario. (b) A(t) found in the inverse firn modeling approach using

both Ainit(t) scenarios; color coding as in panel (a). The function

ξ(t) is found as follows. We use control points at 1500-year inter-

vals (blue dots); the algorithm has the freedom to change the value

of ξ(t) at each of these points. In between the control points, ξ(t) is

found via linear interpolation. (c) Modeled1age using bothAinit(t)

scenarios; color coding as in panel (a).

strain is represented by the thinning function fλ(z) (Cuf-

fey and Paterson, 2010), the ratio of annual-layer thickness

at depth in the ice sheet to its original ice-equivalent thick-

ness at the surface when deposited. The modeled thinning

function is shown in Fig. 1e (solid line). In the deep part of

the ice sheet, fλ(z) becomes increasingly uncertain as the

unknown basal melt rate and fb become the dominant con-

trols. Here we optimize the model by comparing accumu-

lation rates derived from fλ(z) with those implied by a firn

densification model and the measured δ15N of N2 (Sect. 3.1).

While this has little effect on the temperature history recon-

struction, it provides an important constraint on calculated

basal melt rate, an interesting quantity for ice dynamics stud-

ies. Our analysis of basal melt rates and further details of

the temperature optimization process and 1-D flow modeling

will be presented elsewhere.

3 The gas age–ice age difference (1age)

3.1 The WD2014 1age reconstruction

The firn densification forward model uses past surface tem-

perature T (t) and accumulation A(t) as model forcings, and

provides 1age(t) and δ15N(t) as model output.

For the past 31.2 ka, WD has an annual-layer-counted

chronology; for this period the annual-layer thickness λ(z)

provides a constraint on past accumulation rates via λ(z)=

A(z)× fλ(z). WD accumulation reconstructed from λ(z) is

plotted in black in Fig. 1b.

Prior to 31.2 ka we have no such constraint on A(t), and

an alternative approach is needed. We use the densification

model as an inverse model, where we ask the model to

find the A(t) history that minimizes the root-mean-square

(rms) deviation between measured and modeled δ15N, given

the T (t) forcing. The δ15N data and model fit are shown

in Fig. 1c, the A(t) history that optimizes the δ15N fit is

shown in Fig. 1b (red), and the modeled 1age is shown

in Fig. 1c (orange). The optimal A(t) history is estimated

in two steps. First, we make an initial estimate Ainit(t) for

the past accumulation history. Second, we adjust the A(t)

forcing by applying a smooth perturbation ξ(t) such that

A(t)= [1+ ξ(t)]×Ainit(t); an automated algorithm is used

to find the curve ξ(t) that optimizes the model fit to the δ15N

data. For the last 31.2 ka we obtain a good agreement be-

tween A obtained from λ(z) and the modeled fλ(z) (Fig. 1b,

black) andA obtained from the inverse method (red). The so-

lution we present here is therefore fully internally consistent,

i.e., the A and T histories used in the firn densification mod-

eling are the same as those used in the ice-flow modeling, and

they provide a good fit to both the δ15N data and borehole

temperature data. WD does not suffer from the δ15N model–

data mismatch that is commonly observed for East Antarctic

cores during the glacial period (Landais et al., 2006; Capron

et al., 2013).

We base our Ainit values on λ(z) for the past 31.2 ka;

prior to that we use the common assumption that A follows

δ18O (i.e., Clausius–Clapeyron scaling); the fit to the δ15N

data is optimized for A= 24.2×exp[0.1263×δ18O]. To test

the validity of the Clausius–Clapeyron assumption, we addi-

tionally run the scenario Ainit(t)= 0.22 ma−1 (i.e., constant

accumulation at present-day level). The A(t) and 1age re-

constructed under both Ainit scenarios are similar at multi-

millennial timescales (Fig. 2). In the layer-counted interval

(< 31.2 kaBP), A obtained from λ(z) and δ18O is signifi-

cantly coherent at all timescales longer than 3000 years, but

not at higher frequencies. This is equivalent to the variability

resolved in theAinit(t)= 0.22 ma−1 scenario above. We con-

clude that the WD δ15N data support the idea that A follows

δ18O on multi-millennial timescales. However, there may not

be a strong relationship at timescales less than a few thousand

years, as is clear from the abrupt A increase around 12 ka

seen in λ(z) that is not reflected in δ18O (Fig. 1a and b). For

www.clim-past.net/11/153/2015/ Clim. Past, 11, 153–173, 2015
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consistency between the upper and deeper part of the core we

use the 1age values obtained with the inverse densification

model for the entire core.

Recently, another δ15N-based approach has been sug-

gested that uses 1depth, rather than 1age, in reconstruct-

ing gas chronologies (Parrenin et al., 2012). This method

removes the dependence on T (t) and replaces this with

a dependence on the thinning function fλ(z). Note that this

method is very successful in the upper part of an ice core,

where fλ(z) is well constrained, but not very reliable near

the base, where fλ(z) is highly uncertain. Therefore, the firn

densification modeling approach should be considered to be

more reliable at WD during marine isotope stages (MIS) 2

through 4. Results from the 1depth method are plotted in

black in Fig. 1c, and generally show good agreement with

the firn modeling approach. A notable exception is the 60–

65 ka interval, where the 1depth method overestimates the

1age due to the fact that we have to compress λ(z) strongly

in order to fit age constraints derived from DO 18 (Sect. 4.5).

Last, we want to point out that the δ15N data support

an early warming at WD, as reported recently (WAIS Di-

vide Project Members, 2013). WD δ15N starts to decrease

around 20.5 kaBP, suggesting a thinning of the firn column.

The λ(z) (as derived from the layer count) shows that ac-

cumulation did not change until 18 kaBP, at which point

it started to increase (which would act to increase the firn

thickness). The most plausible explanation for the δ15N de-

crease around 20.5 kaBP is therefore an early onset of West

Antarctic deglacial warming, in agreement with increasing

δ18O around that time. The warming enhances the densifica-

tion rate of polar firn, thereby decreasing its thickness (e.g.,

Herron and Langway, 1980).

3.2 1age sensitivity study

BesidesA and T there are several model parameters that have

the potential to influence the model outcome; these are the

convective zone (CZ) thickness (Sowers et al., 1992; Kawa-

mura et al., 2006), surface density (ρ0), and sensitivity to ice

impurity content. In this section we evaluate the sensitivity

of the model output to all of these parameters. We performed

1000 model runs in which the model parameters were ran-

domly perturbed. The spread in 1age model results is used

to calculate the WD2014 age uncertainty.

Convective zone thickness. In the WD2014 model run

(Sect. 3.1) we use a constant 3.5 m CZ, corresponding to the

present-day situation (Battle et al., 2011). In the sensitivity

study we vary the CZ by one of two methods: (1) we let the

CZ be constant in time; its thickness is set by drawing from

a Gaussian distribution with 3.5 m mean and 3.5 m 2σ width

(i.e., 95 % probability of drawing a value in the 0–7 m range).

(2) We let the CZ be a function of accumulation rate (Drey-

fus et al., 2010), CZ= 3.5+ k× (A–0.22); we draw k from

a Gaussian distribution with mean of −10 and a 2σ width

of 40 (at an LGM A of 10 cma−1 this gives a CZ of 0–10 m

thickness). In both methods, whenever CZ values are selected

that are smaller than 0 m, the CZ thickness is set to 0 m in-

stead. For each of the 1000 model runs in the sensitivity study

we randomly selected either of the two methods.

Surface density. In the WD2014 model run we use past

surface densities (ρ0) as given by the parameterization of

Kaspers et al. (2004). In the sensitivity study we add a con-

stant offset to the Kaspers values, the magnitude of which is

drawn from a Gaussian distribution of zero mean and a 2σ

width of 60 kgm−3. This range corresponds to the full range

of observed ρ0 variability in Kaspers et al. (2004).

Past temperatures. Model temperature forcing is con-

strained by δD and measured borehole temperatures. There

is, however, a range to the solutions allowed by the bore-

hole temperature and ice-flow model; here we use the up-

per and lower extremes of this range, determined by Monte

Carlo analysis using uncertainties of input variables. The sce-

narios were chosen to provide the maximum T range for

the glacial period rather than for the Holocene, because we

are interested in the uncertainty in the methane synchroniza-

tion (68–31.2 kaBP). In the sensitivity study we use T (t)=

Toptimal(t)+ κ ×1T (t), where Toptimal is the forcing used in

the WD2014 model run (Fig. 1a),1T (t) is half the difference

between the maximum-T and minimum-T scenarios, and κ

is drawn from a Gaussian distribution of zero mean and unit

2σ width (giving 95 % probability that T (t) is within the ex-

treme range identified from the borehole, Fig. 3a).

δ15N uncertainty. We conservatively adopt an analytical

uncertainty of 0.005 ‰ for this data set; in addition, the inter-

pretation of δ15N in terms of firn thickness is subject to fur-

ther uncertainty due to irregular firn layering and the stochas-

tic nature of bubble trapping, as was observed for other atmo-

spheric gases such as CH4 (Etheridge et al., 1992; Rhodes

et al., 2013). For each run of the sensitivity study, we there-

fore perturb each of the individual δ15N data points by adding

an offset that is drawn from a Gaussian distribution of zero

mean and a 2σ width of 0.015 ‰.

Impurity-enhanced densification. Following recent

work we include the possibility that increased glacial

impurity loading could have enhanced densification rates

(Horhold et al., 2012; Freitag et al., 2013a). We use the

mathematical formulation of Freitag et al. (2013a), in which

the activation energy of the sintering process is a function

of the Ca concentration in the firn. The value of β, the

sensitivity to Ca, is drawn from a Gaussian distribution

with 0.0015 mean and a 2σ width of 0.0015. The topic of

impurity-enhanced densification is discussed in detail in

Sect. 3.3.

The A and 1age scenarios found in the sensitivity study

are shown in Fig. 3b and c, respectively. The shaded areas in

Fig. 3b and c give the total range of solutions, as well as the

±2σ and ±1σ confidence intervals. Note that the total range

of solutions will depend on the number of model runs (here

1000) but that the position of the ±2σ and ±1σ envelopes

will not. To investigate the distribution of values, we include
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Figure 3. 1age sensitivity study. Shades of blue give the confidence intervals as marked; the black curves represent the values used in the

WD2014 chronology; the red curve gives an alternative 1age solution using the Arnaud densification model. (a) Temperature forcing of the

densification model. (b) Reconstructed accumulation rates. (c) Reconstructed1age; note the reversed scale. Histograms of1age distribution

are shown for (d) 60 kaBP, (e) 40 kaBP, and (f) 20 kaBP. Distribution mean and 2σ uncertainty bound is stated in each panel.

histograms of 1age at 20 kyr intervals (Fig. 3d–f). Based

on the sensitivity study, we estimate the WD 1age to be

521± 120 years (2σ uncertainty) at the LGM (∼ 20 kaBP).

The 1age value of 351± 73 years at 40 kaBP gives a rep-

resentative 1age for MIS 3; 1age at 60 kaBP is 262± 50

years.

Additionally, we have repeated our 1age reconstruction

using the firn densification physics described by Arnaud et al.

(2000) rather than the Herron–Langway description used so

far; the Arnaud model provides the physical basis for the

commonly used firn densification model of Goujon et al.

(2003). More details on the implementation of the Arnaud

model are given in Appendix A. 1age found using the Ar-

naud model is plotted in red in Fig. 3c. Averaged over the

entire core, 1age found with the Arnaud model is 19 years

(about 7 %) smaller than 1age from the Herron–Langway

model. The root-mean-square (rms) difference between both

solutions is 35 years, corresponding to 0.63 times the 2σ un-

certainty found in the sensitivity study. Both solutions are

thus found to be in good agreement. The Herron–Langway

approach is preferred because the internally consistent solu-

tion of temperature, accumulation, and ice flow associated

with it is in better agreement with borehole temperature data

than the solutions associated with the Arnaud model. Fur-

thermore, the Herron–Langway model is more successful in

simulating the magnitude of the δ15N response to the accu-

mulation anomaly at 12 ka (not shown), suggesting it has a

more realistic sensitivity to accumulation variability.
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Figure 4. Impurity enhancement of densification rates at WD. Den-

sification modeling results for (a) accumulation rates and (b)1age.

We use Ca sensitivities β = 0 (red) through β = 1×10−2 (blue), in

steps of 2.5× 10−3 (shades of deep purple). Black curves give A

and 1age from ice-flow modeling and λ(z).

3.3 Impurity softening of firn?

Recent work suggests a link between densification rates and

impurity content (for which [Ca2+] is used as a proxy) in po-

lar firn (Horhold et al., 2012; Freitag et al., 2013a). Here we

measured total [Ca] by ICP-MS, but at WD nearly all Ca is

in the form of Ca2+. The influence of the impurity sensitivity

β (see Eq. A6 in the Appendix) on 1age at WD is shown in

Fig. 4. The sensitivity recommended by Freitag et al. (2013a)

from investigating present-day firn packs is β = 1×10−2. We

reconstructed A and 1age with the firn densification inverse

model using five values of β ranging from β = 0 (red) to

β = 1× 10−2 (blue) in steps of 2.5× 10−3. Average [Ca] is

around 0.8 ngg−1 in the early Holocene and around 9 ngg−1

in the LGM; a change to about an order of magnitude. Fol-

lowing Freitag et al. (2013a) we use the total [Ca] rather than

non-sea-salt Ca. If densification rates are sensitive to impu-

rity loading (large β, blue curves), this results in increased

firn compaction during the LGM. The densification model,

which is trying to match the δ15N data, will compensate by

increasing the A forcing, which in turn results in a decreas-

ing 1age. Hence the model simulations with large β (blue)

give a higher A and smaller 1age.

For the past 31.2 ka we have an independent A estimate

from λ(z) that we can compare to the solutions from the

firn model (Fig. 4, black curve). We also plotted 1age re-

constructed via the 1depth method of Parrenin et al. (2012).

Remarkably, we find consistent solutions only when using

a Ca sensitivity β ≤ 2.5×10−3, i.e., less than one-quarter of

the sensitivity suggested by Freitag et al. (2013a). The best

fit to the independent LGM (25–20 kaBP) A and 1age esti-

mates is obtained for β = 0. We conclude that WD does not

provide any evidence for impurity (or, more specifically, Ca)

enhancement of densification rates.

An important caveat is that our model uses 10-year-

average [Ca] values, and therefore cannot resolve effects of

interannual layering within the firn. Explicitly modeling the

layering would require centimeter-scale resolution in the dy-

namical firn model, which is prohibitive from a computa-

tional point of view. Furthermore, [Ca] data at the required

sub-annual resolution are difficult, if not impossible, to mea-

sure for the deepest part of the core, where λ(z) is below

1 cma−1. Increased firn layering and enhanced bulk densifi-

cation affect the firn thickness in a similar manner; both lead

to a shallower lock-in depth, and thereby a reduced δ15N.

Therefore, in order to reconcile our WD results with the im-

purity hypothesis of Horhold et al. (2012), one would need to

invoke a strong reduction in LGM firn layering relative to the

present day to compensate for the impurity-driven increase

in bulk densification rates. Recent work on the EDML core

suggests that firn density layering may have been more pro-

nounced during glacial times (Bendel et al., 2013); including

firn layering is therefore likely to only exacerbate the prob-

lem.

Work on present-day firn has provided support for firn

softening by impurity loading (Horhold et al., 2012; Freitag

et al., 2013a, b). More work is needed to understand how

densification rates are linked to impurity content in a mecha-

nistic, rather than purely empirical, way. Perhaps such a mi-

croscopic description could provide an explanation why firn

densification rates at WD, to first order, do not appear to be

affected by order-of-magnitude variations in [Ca] loading.

One possible explanation could be that densification rates

are controlled by some parameter that co-varies with Ca in

modern day firn yet does not change appreciably over glacial

cycles (Fujita et al., 2014).

4 Constructing the WAIS Divide WD2014 chronology

4.1 Annual layer count (0–31.2 ka)

A first layer-counted chronology for the upper 2800 m of

the WD core based on electrical conductivity measurements

(ECM), named WDC06A-7, was presented by WAIS Divide

Project Members (2013). The WAIS chronology presented
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Figure 5. Records of abrupt DO climate variability, (a) revised Hulu Cave speleothem δ18O record on Hulu chronology with U /Th ages

above the time series (red dots), (b) NGRIP ice core δ18O on 1.0063×GICC05 chronology, and (c) WD CH4 on WD2014 (discrete data). DO

numbering is given in the bottom of the figure following Rasmussen et al. (2014). White dots denote the midpoints of the stadial–interstadial

transitions; the orange vertical lines show the timing of the NGRIP tie points (on 1.0063×GICC05). For DO 3, 4, and 5.1 the WD2014

chronology is based on annual-layer counting, and minor timing differences exist between WD and NGRIP.

in this work, WD2014, uses an updated layer count for the

upper 2850 m, based on new data and analyses that have be-

come available since publication of WDC06A-7. These up-

dates are as follows:

1. a reassessment of the dating in the upper 577 m (2.4 ka)

using high-resolution multi-parameter chemistry data in

combination with automated layer detection algorithms

(Winstrup et al., 2012);

2. a reassessment of the dating between 577 and 2300 m

(2.4–15.3 ka) using high-resolution multi-parameter

chemistry data in combination with ECM;

3. a reassessment of the dating between 2300 and 2800 m

(15.3–29.5 ka) using ECM and dust particle measure-

ments, with the ECM having increasing importance

with depth;

4. an extension of the annual-layer dating between 2800

and 2850 m (29.5–31.2 ka) using ECM.

Details on the updated WD layer count and the layer counting

methodology are presented in part 2 of the WD2014 papers.

4.2 Methane synchronization (31.2–68 ka)

For the deep part of the core where an annual-layer count

is not available, we date WD by synchronization to well-

dated Northern Hemisphere (NH) climate records of abrupt

DO variability using the WD record of globally well-mixed

CH4 (Fig. 5). This process consists of several steps:

1. Determine the midpoint of the abrupt DO transitions in

WD CH4, NGRIP δ18O, and Hulu speleothem δ18O.

2. Assign a gas age to the WD CH4 tie points (i.e., the DO

transitions).

3. Apply the WD 1age (Sect. 3) to find the corresponding

ice age at the depth of the CH4 tie points.

4. Interpolate between the ice age constraints to find the

WD depth–age relationship.

5. Redo the 1age calculations on the new ice age scale.

6. Repeat steps 3–5 iteratively until the depth–age relation-

ship is stable within 1 year. At WD this happened after

three iterations.

These steps are described in more detail in the following sec-

tions.

4.3 Establishing the midpoint in abrupt DO transitions

The procedure for determining the midpoint of the abrupt

DO warming transitions is depicted in Fig. 6. For each of
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Figure 6. Determining the midpoint for the abrupt warming phases

of (from oldest to youngest) DO 17.2, 17.1, 16.2, and 16.1 in (a)

NGRIP δ18O (on 1.0063×GICC05), (b) WD CH4 (continuous data,

on WD2014), and (c) Hulu δ18O with U /Th ages beneath the time

series (red dots with error bars). Red dots give the midpoint (50 %)

of the DO transition; the blue dots give the 25 and 75 % marks in

the DO transitions. The DO transition at 58.35 ka was not used in

Hulu, where it is much more gradual than in the other records (pos-

sibly because calcite sampling was not perfectly perpendicular to

the stalagmite isochrones, or because growth rates were variable in

between the U /Th ages).

the transitions we manually determine pre-event and post-

event averages, as indicated by the orange lines. The averag-

ing time is set to 150 and 50 years for stadial and interstadial

periods, respectively; this difference in duration is used be-

cause (i) several of the interstadials are of short duration and

(ii) Greenland δ18O is more variable during stadial climates,

requiring longer averaging. For DO 16.1, the duration of the

pre-event stadial baseline climate was shorter than 150 years,

and the averaging time was reduced to 100 years (Fig. 6).

After determining the pre- and post-event averages, we use

linear interpolation of the time series to find the time at which

the variable of interest had completed 25, 50, and 75 % of the

total transition (Fig. 6). We use the 50 % marker (red) as the

midpoint of the transition, which is used in the methane syn-

chronization. The 25 and 75 % markers (blue) are used as

the ±1σ uncertainty estimate. In rare cases the time series

contain inversions within the transitions that lead to ambigu-

ity in the timing of the markers; for these events we find the

markers using a monotonic spline fit to the data.

The midpoints of abrupt interstadial terminations were de-

termined in the same fashion (WD CH4 and NGRIP only).

Tables 1 and 2 give the results for NH warming and NH cool-

ing, respectively.

4.4 Synchronizing WD to a NGRIP–Hulu hybrid

chronology

Abrupt DO variability is expressed clearly in a great num-

ber of NH climate records (Voelker, 2002). For the pur-

pose of methane synchronization, our interest is in high-

resolution records that express the abrupt DO events very

clearly, and are furthermore exceptionally well dated. We

here use a combination of two such NH records (Fig. 5),

namely the Greenland NGRIP δ18O record (NGRIP com-

munity members, 2004), and a refined version of the Hulu

Cave speleothem δ18O record (Edwards et al., 2015; Reimer

et al., 2013; Southon et al., 2012) with improved resolution

and additional dating constraints (see Wang et al., 2001, for

the original, lower resolution Hulu δ18O record). The DO

events are resolved most clearly in the NGRIP δ18O record,

which is available at 20-year resolution. We use the GICC05-

modelext chronology for this core, which is based on annual-

layer counting back to 60 kaBP and ice-flow modeling for

ice older than 60 ka (Rasmussen et al., 2006; Svensson et al.,

2006; Wolff et al., 2010). While annual-layer counting pro-

vides accurate relative ages (e.g., the duration of DO inter-

stadials), it provides relatively inaccurate absolute ages due

to the cumulative nature of counting uncertainty (Table 1).

The refined Hulu δ18O record also shows the abrupt DO

events in high temporal resolution (Fig. 6). The speleothem

chronology is based on U /Th radiometric dating, providing

much smaller uncertainty in the absolute ages than GICC05

(Table 1). The reason for selecting this record over other

speleothem records is the large number of U /Th dates, the

low detrital Th at the site, and the high sampling resolution

of the δ18O record (Wang et al., 2001). In the Hulu data,

as in other records of DO variability, the interstadial onsets

are more pronounced and abrupt than their terminations. We

therefore only use the timing of the former as age constraints,

as they can be established more reliably. The onset of NH

interstadial periods as expressed in Hulu δ18O is given in Ta-

ble 1.

In both the NGRIP and Hulu Cave δ18O records we have

determined the ages of the midpoints of the DO transitions

(Fig. 6; Table 1); a plot of their difference (Hulu age mi-

nus NGRIP age) is shown in Fig. 7, where the error bars

denote the root sum square of the NGRIP and Hulu mid-

point determination uncertainty (Sect. 4.3). The Hulu ages

are systematically older than the NGRIP ages, and the age

difference increases going further back in time. Note that

the Hulu–NGRIP age difference is smaller than the stated

GICC05 counting uncertainty (832 to 2573 years) but larger

than the Hulu age uncertainty (92 to 366 years). A linear fit

through these data, forced to intersect the origin, is given by
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Table 1. Overview of CH4 tie points for NH warming events. WD ages printed in boldface are assigned as part of the CH4 synchronization;

all other ages are on their independent chronologies.

NGRIP Hulu WD

Depth Age Age uncert. Midpoint Hulu age Age uncert. Midpoint Depth Gas age Ice age Midpoint

(m) (years BP) (years) (years) (years BP) (years) (years) (m) (years BP) (years BP) (years)

YD-PB 1490.89 11 619 98 23 1983.02 11 546 11 740 33

OD-BA 1604.05 14 628 185 15 2259.40 14 576 14 804 29

DO 3 1869.00 27 728 832 12 27 922 95 39 2755.74 27 755 28 144 19

DO 4 1891.27 28 838 898 14 29 134 92 21 2797.92 29 011 29 397 22

DO 5.1 1919.48 30 731 1023 11 30 876 255 37 2848.38 30 730 31186 22

DO 5.2 1951.66 32 452 1132 15 32 667 236 21 2885.44 32 631 33 051 17

DO 6 1974.48 33 687 1213 19 34 034 337 36 2913.01 33 874 34 283 18

DO 7 2009.62 35 437 1321 16 35 532 299 20 2958.64 35 636 35 982 20

DO 8 2069.88 38 165 1449 13 38 307 155 19 3021.37 38 381 38 681 33

DO 9 2099.50 40 104 1580 13 40 264 241 42 3066.52 40 332 40 690 19

DO 10 2123.98 41 408 1633 14 41 664 310 27 3094.17 41 643 41 980 18

DO 11 2157.58 43 297 1736 17 43 634 144 26 3130.44 43 544 43 866 15

DO 12 2221.96 46 794 1912 21 47 264 153 20 3195.25 47 064 47 335 16

DO 13 2256.73 49 221 2031 17 49 562 251 52 3237.65 49 506 49 836 19

DO 14 2345.39 54 164 2301 11 3311.09 54 480 54 747 13

DO 15.1 2355.17 54 940 2349 16 3322.24 55 261 55 564 11

DO 15.2 2366.15 55 737 2392 26 3329.72 56 063 56 381 14

DO 16.1 2398.71 57 988 2498 11 3350.44 58 328 58 610 9

DO 16.2 2402.25 58 210 2510 12 58 545 226 22 3352.59 58 552 58 848 14

DO 17.1 2414.82 59 018 2557 15 59 364 366 18 3360.02 59 364 59 627 17

DO 17.2 2420.35 59 386 2573 15 59 772 254 23 3363.42 59 735 59 997 25

DO 18 2465.84 64 049 2611 30 3388.73 64 428 64 773 15
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Figure 7. Hulu–NGRIP age offset at the midpoint of the DO δ18O

transitions. The error bars denote the root sum square of the mid-

point determination uncertainty in NGRIP and Hulu δ18O (Table 1).

The GICC05 ages are placed on the BP 1950 scale rather than the

b2k scale (years prior to 2000 CE).

0.0063×GICC05 age, suggesting that the GICC05 annual-

layer count on average misses 6.3 out of every 1000 layers.

Because of this observation we use a linearly scaled version

of the GICC05 chronology (GICC05× 1.0063) as the target

chronology for methane synchronization. This approach has

several advantages. First, it respects both the superior rela-

tive ages (i.e., interval durations) of GICC05, as well as the

superior absolute ages of the Hulu chronology. Second, it is

very simple to convert between the WD2014 and GICC05

chronologies (CH4-synchronized section of the chronology

only); one simply needs to divide WD2014 ages by 1.0063

(and add 50 years to convert to the b2k reference date).

Third, it still allows for direct synchronization of WD CH4

to the NGRIP δ18O record, providing more tie points than di-

rect synchronization to the Hulu record would. Note that the

GICC05× 1.0063 target chronology respects the Hulu age

constraints in an average sense only; the age of individual

events differs between Hulu and our target chronology by up

to 180 years. Our approach therefore represents only a first-

order correction of a growing offset between GICC05 and

Hulu; nonlinear temporal changes in the counted dating er-

ror may exist from one tie point to the next (Fleitmann et al.,

2009).

The exercise of finding the transition midpoints and deter-

mining the GICC05–Hulu scaling factor was performed by

two of the authors (J. P. Severinghaus and C. Buizert), inde-

pendently of each other. The scaling factors obtained were

1.0063 and 1.0064, respectively, showing that, to first order,

this result is insensitive to (subjective) judgment in identi-

fying the transitions. The difference between the Hulu ages

and 1.0063×GICC05 ages are all within the stated Hulu 2σ

dating error (Table 1). Consequently, our chronology is not

in violation of any Hulu constraint as it respects the Hulu 2σ

error at all of the tie points. In deriving the scaling we have

assumed that the abrupt DO transitions observed in NGRIP

and Hulu are simultaneous, which is not necessarily true. The
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variations in monsoon intensity represented by Hulu δ18O

are commonly explained by meridional movement of the In-

tertropical Convergence Zone (ITCZ) and tropical rainfall

belts (Wang et al., 2001, 2006; Kanner et al., 2012); model-

ing work suggests such atmospheric readjustments occur on

decadal timescales in response to NH high-latitude forcing

(Chiang and Bitz, 2005; Broccoli et al., 2006; Cvijanovic and

Chiang, 2013). Moreover, CH4 emission changes are near-

synchronous with Greenland δ18O variations, which they lag

by only a few decades on average (Huber et al., 2006; Baum-

gartner et al., 2014; Rosen et al., 2014). Since both CH4

emissions and Hulu δ18O are closely linked to tropical hy-

drology, timing lags between NGRIP and Hulu are also ex-

pected to be on decadal timescales. The uncertainty in the

NGRIP–Hulu phasing is therefore probably small (decadal)

relative to the correction we apply (up to 400 years).

Rather than synchronizing WD CH4 to Greenland CH4

records, we have chosen to synchronize directly to NGRIP

δ18O, which varies in phase with CH4 (but with a nearly

constant time lag). We let the midpoint in the CH4 transi-

tions lag the midpoint in the NGRIP δ18O transition by 25

years, as suggested by studies of Greenland δ15N-CH4 phas-

ing (Huber et al., 2006; Baumgartner et al., 2014; Rasmussen

et al., 2013; Kindler et al., 2014; Rosen et al., 2014). The

rationale behind this approach is threefold. First, through-

out MIS 3 the NGRIP δ18O record has both better precision

and higher temporal resolution than any available Greenland

CH4 record (Baumgartner et al., 2014; Brook et al., 1996;

Blunier et al., 2007). Second, the dating of Greenland gas

records depends on the highly variable1age function, which

is not equally well constrained for all DO events (Schwander

et al., 1997; Rasmussen et al., 2013). This reliance on Green-

land 1age would introduce an additional source of uncer-

tainty. The NGRIP δ18O record, on the other hand, is accu-

rately dated through the GICC05 layer count. Third, Green-

land CH4 records are more strongly impacted by firn smooth-

ing than the WD CH4 record, because glacial accumulation

is lower in Greenland (Greenland glacial 1age is about 2–3

times as high as WD 1age during that time). In summary,

our approach circumvents the uncertainties associated with

using Greenland CH4 as an intermediary, or, to state this an-

other way, the uncertainty in the phasing between CH4 and

Greenland δ18O is smaller than the uncertainty in the Green-

land 1age.

4.5 Interpolation between age constraints

We can assign a gas age to each of the depths where an abrupt

WD CH4 transitions occurs; we do this for DO 4.1 through

DO 18, i.e., the events prior to 31.2 kaBP (the onset of the

WD layer count). The gas age we assign is equal to 1.0063

times the GICC05 age for the same event, with 25 years sub-

tracted to account for the slight CH4 lag behind Greenland

δ18O. By adding 1age (Sect. 3) to this gas age we assign an

ice age. These assigned ages are printed in boldface in Ta-

bles 1 and 2.

To obtain a continuous depth–age relationship between

these ice age constraints, we have to apply an interpolation

strategy. This task amounts to estimating the annual-layer

thickness λ(z) along the deep part of the core. The simplest

approach is to assume a constant accumulation rate in be-

tween the age constraints; this is shown in Fig. 8b for the case

where we use the age constraints from NH warming events

only (black) or the age constraints from both NH warming

and cooling events (red). The disadvantage of this approach

is that it results in discontinuities in λ(z) (the first derivative

of the depth–age relationship), which we consider highly un-

realistic. A more realistic approach is therefore to assume

that λ(z) is continuous and smooth (Fudge et al., 2014);

Fig. 8b shows two scenarios in which we use a spline func-

tion to estimate λ(z), where again we have applied age con-

straints from NH warming events only (orange) or age con-

straints from both NH warming and cooling events (blue).

For comparison, past A obtained from the firn densifica-

tion model (Sect. 3) is plotted in green (Fig. 8b). While the

δ15N-basedA follows the synchronization-basedA estimates

broadly, the millennial-scale details do not agree. We want to

point out that this is not unexpected, since both methods have

their imperfections. In particular, any errors in the (stretched)

GICC05 age model or in our modeled thinning function

fλ(z) will strongly impact the synchronization-based A es-

timates in Fig. 8b. The discrepancy is pronounced between

60 and 65 ka, where we have to strongly reduce λ(z) in order

to fit the age constraint(s) from DO 18, while δ15N provides

no evidence for low A during this interval.

For the WD2014 chronology we have applied the smooth

λ(z) interpolation scheme using all age constraints (i.e., both

NH warming and cooling events). The midpoint detection

uncertainty is comparable for all events and systematically

smaller at the start of interstadial periods than at the termi-

nations (Tables 1 and 2). For short interstadials (e.g., DO 9)

this leads to a large relative uncertainty in the event dura-

tion, and thereby a large uncertainty in the implied accumu-

lation rates (Fig. 8b). We force the interpolation to fit all NH

warming constraints perfectly, yet relax this requirement for

NH cooling constraints to prevent large swings in λ(z) for

the short-duration events. The WD2014 chronology fits the

NH warming and NH cooling age constraints with a 0- and

16-year rms offset, respectively. Because the duration of (in-

ter)stadial periods is well constrained in the layer-counted

GICC05 chronology, using both the NH warming and NH

cooling tie points results in a more robust chronology. The

duration of (inter)stadial periods is 0.63 % longer in WD2014

than in GICC05, which is well within the stated GICC05

counting error of 5.4 % (31.2–60 ka interval).
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Figure 8. Interpolating between the CH4 age constraints. (a) WD discrete CH4 record with the abrupt stadial–interstadial transitions marked.

DO numbering given at the top of the panel. (b) Different annual-layer thickness scenarios, converted to an accumulation rate for comparison

to the δ15N-based firn model reconstructions. The interpolation strategy is to use either constant accumulation rates between tie points

(“constant”) or a smoothly varying λ(z) (“smooth”); the age constraints used are either only the NH warming events (“warming”), or both

the NH warming and cooling events (“all”). (c) Estimated 2σ uncertainties in the WD2014 chronology due to 1age, choice of interpolation

scheme, midpoint detection, and the absolute age constraints used in the synchronization. Total absolute ice age uncertainty plotted in solid

black; relative age uncertainty (i.e., with absolute age uncertainty in the Hulu–GICC05 master chronology withheld) plotted in dashed black.

4.6 Age uncertainty

The age uncertainty we assign to the deep part (> 2850 m) of

the WD2014 chronology has four components.

The first source of uncertainty is the 1age calculation; we

use the 2σ uncertainty obtained in the1age sensitivity study

(Sect. 3.2). The second source of uncertainty is the choice of

interpolation scheme used to obtain a continuous chronol-

ogy; here we use the standard deviation between the four

different interpolation schemes of Fig. 8b as an uncertainty

estimate. The third source of uncertainty is the difficulty in

determining the timing of the abrupt events in the time se-

ries; we use the uncertainty in the midpoint evaluation (root

sum square of WD CH4 and NGRIP δ18O estimates). The

last source of uncertainty is the age uncertainty in the hy-

brid NGRIP–Hulu chronology that we synchronize to. We

use the stated Hulu age uncertainty plus 50 years to account

for possible leads or lags in the NGRIP–Hulu δ18O phasing,

plus the absolute value of the offset between the Hulu ages

and the 1.0063×GICC05 ages. For DO events where we do

not have reliable Hulu age estimates (Table 1), we set the

uncertainty to the Hulu age uncertainty of the nearest event,

plus the uncertainty in the interval duration specified by the

GICC05 layer count. For example, for DO 14 we do not have

a reliable Hulu age estimate, and we use the Hulu age un-

certainty of DO 16.2 (226 years) plus the uncertainty in the

DO 14 to DO 16.2 interval duration on GICC05 (209 years),

giving a total of 226+ 209= 435 years.
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Table 2. Overview of CH4 tie points for NH cooling events. WD ages printed in boldface are assigned as part of the CH4 synchronization;

all other ages are on their independent chronologies

NGRIP WD

Depth Age Age uncert. Midpoint Depth Gas age Ice age Midpoint

(m) (years BP) (years) (years) (m) (years BP) (years BP) (years)

BA-YD 1524.21 12 775 136 81 2096.61 12 769 12 987 52

DO 3 1861.91 27 498 822 52 2747.25 27 520 27 905 38

DO 4 1882.59 28 548 887 17 2787.99 28 696 29 090 61

DO 5.1 1916.45 30 571 1010 70 2845.37 30 618 31 067 50

DO 5.2 1939.71 31 992 1108 13 2875.86 32 168 32 607 70

DO 6 1964.52 33 323 1192 37 2905.55 33 508 33 905 60

DO 7 1990.58 34 703 1286 13 2939.09 34 897 35 292 50

DO 8 2027.43 36 571 1401 21 2986.58 36 776 37 172 32

DO 9 2095.51 39 905 1572 42 3063.79 40 132 40 492 25

DO 10 2112.53 40 917 1621 44 3083.89 41 150 41 508 44

DO 11 2135.66 42 231 1685 27 3110.76 42 472 42 823 69

DO 12 2171.17 44 308 1783 41 3149.89 44 562 44 904 47

DO 13 2242.85 48 440 1996 27 3226.93 48 720 49 054 20

DO 14 2261.49 49 552 2052 20 3243.03 49 839 50 165 65

DO 15.1 2353.66 54 850 2339 18 3321.15 55 170 55 469 14

DO 15.2 2359.92 55 369 2370 55 3326.47 55 693 55 983 45

DO 16.1 2375.88 56 555 2435 49 3337.98 56 887 57 219 76

DO 16.2 2400.56 58 123 2508 15 3351.80 58 465 58 756 9

DO 17.1 2406.52 58 544 2530 35 3355.54 58 888 59 151 61

DO 17.2 2417.77 59 257 2570 18 3362.26 59 606 59 862 24

DO 18 2462.07 63 810 2611 14 3387.28 64 187 64 547 32

The uncertainties (2σ values) are plotted in Fig. 8c (log

scale). We assume these four uncertainties to be independent,

and use their root sum square as the total uncertainty estimate

on the WD2014 ice age scale (Fig. 8c, black curve). Note that

the fourth source of uncertainty is only relevant when con-

sidering absolute ages; when evaluating relative ages (e.g.,

between WD ice and WD gas phase, or between WD and

NGRIP), this last contribution does not need to be consid-

ered. For the deepest WD ice (3404 m depth) we thus find an

age of 67.7± 0.9 ka BP.

5 Discussion

While the WAIS Divide ice core does not extend as far back

in time as deep cores from the East Antarctic Plateau, its

relatively high temporal resolution (due to the high snow

accumulation rate) makes it an ice core of great scientific

value. WD accumulation rate during the LGM (∼ 10 cma−1

ice equivalent) is still higher than the present-day accumu-

lation rate at the EPICA (European Project for Ice Coring

in Antarctica) Dronning Maud Land core (7 cma−1), which

is generally considered a high-accumulation core (EPICA

Community Members, 2006). With 68 ka in 3404 m of core,

the core average λ is 5 cma−1, at the onset of the last

deglaciation (18 ka BP) λ is around 4 cma−1, and near the

bed λ is around 0.4 cma−1. This high temporal resolution

provides the opportunity for obtaining very detailed climatic

records.

High accumulation rates also result in a small 1age. Fig-

ure 9 compares 1age between several Antarctic cores (note

the logarithmic scale). 1age at WD is approximately one-

third of the 1age at EPICA DML (EDML) and Talos Dome

(TALDICE), and one-tenth of the 1age at EPICA Dome C

(EDC), Vostok, and Dome Fuji. Because the uncertainty in

the 1age (or 1depth) calculation is typically on the order of

20 %, a smaller 1age allows for a more precise interhemi-

spheric synchronization with Greenland ice core records us-

ing CH4. The small WD 1age uncertainty during MIS 3

allows for investigation of the phasing of the bipolar see-

saw (Stocker and Johnsen, 2003) at sub-centennial precision

(WAIS Divide Project Members, 2015).

In comparing the shape of the 1age profiles, there are

some interesting differences (Fig. 9). It is important to re-

alize that not all the 1age histories shown were derived in

the same way; WD and Dome Fuji 1age were derived using

densification models, and the other four were derived using

the 1depth approach (Parrenin et al., 2012) and a Bayesian

inverse method that includes a wide range of age markers

(Veres et al., 2013). We will therefore focus on comparing

the WD and Dome Fuji results. 1age at WD shows more

pronounced variability than at Dome Fuji, particularly dur-

ing MIS 3. The reason is that the glacial firn pack at Dome
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Fuji is about 4000 years old, and consequently the firn col-

umn integrates over 4000 years of climate variability, thereby

dampening the 1age response to millennial-scale climatic

variability. At WD the glacial firn layer is only about 350

years old, and therefore the firn is in near equilibrium with

the millennial-scale climate variations. This difference in re-

sponse time is also obvious during the deglaciation, where

WD 1age transitions from glacial to interglacial values be-

tween 18 and 14.5 kaBP, while Dome Fuji takes more time

(18–10 kaBP). Surprisingly, EDML 1age does not show

a strong deglacial 1age response, unlike all the other cores.

The relatively small 1age at WAIS Divide also allows for

precise investigation of the relative timing of atmospheric

greenhouse gas variations and Antarctic climate (Barnola

et al., 1991; Pedro et al., 2012; Caillon et al., 2003; Par-

renin et al., 2013; Ahn et al., 2012). Recent works suggest

that during the last deglaciation the rise in atmospheric CO2

lagged the onset of pan-Antarctic warming by approximately

0 to 400 years (Pedro et al., 2012; Parrenin et al., 2013). This

Antarctic warming around 18 kaBP is presumably driven by

the bipolar seesaw, as it coincides with a reduction in At-

lantic overturning circulation strength as seen in North At-

lantic sediment records (McManus et al., 2004). The WD

1age at 18 ka (gas age) is 515±91 years (2σ ), much smaller

than at central East Antarctic sites such as EPICA Dome

C, where 1age is approximately 3850± 900 years (Veres

et al., 2013, with the 1age uncertainty taken to be the dif-

ference between the gas age and ice age uncertainties). The

precision with which one can determine the relative phasing

of climatic (i.e., δ18O of ice) and atmospheric signals is set

by the uncertainty in 1age (or equivalently, the uncertainty

in 1depth). High-resolution WD records of CO2 and CH4

(Marcott et al., 2014) place the onset of the deglacial rise in

the atmospheric mixing ratio of these greenhouse gases on

the WD2014 chronology at 18 010 and 17 820 years BP, re-

spectively. However, evaluating the relative phasing of CO2

and Antarctic climate is complicated by the observation of

asynchronous deglacial warming across the Antarctic con-

tinent (WAIS Divide Project Members, 2013). Attempts to

capture the climate–CO2 relationship in a single lead-lag

value may be an oversimplification of deglacial climate dy-

namics.

An important next step will be to synchronize the WD

chronology with other Antarctic cores via volcanic match-

ing and other age markers (e.g., Severi et al., 2007; Sigl

et al., 2014). Because of the annual-layer count and possi-

bility of tight synchronization to Greenland ice cores, WD

could contribute to an improved absolute dating of Antarctic

cores, as well as improved cross-dating between cores. Such

cross-dating could help inform the WD chronology as well,

particularly in the deepest part of the core, where the ice is

potentially highly strained, as suggested by the interpolation

difficulties in the 60–65 ka interval (Fig. 8b). With a synchro-

nized chronology, WD could improve the representation of

West Antarctic climate in Antarctic ice core stacks (Pedro
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Figure 9. Comparison of1age for different Antarctic cores, plotted

on the gas age scale. Dome Fuji1age from Kawamura et al. (2007);

WD from Sect. 3; all others from Bazin et al. (2013); Veres et al.

(2013).

et al., 2011; Parrenin et al., 2013), and provide a more re-

fined pan-Antarctic picture of the climate–CO2 relationship.

6 Summary and conclusions

We have presented a first chronology for the deep (> 2850 m)

section of the WAIS Divide ice core, which is based on

stratigraphic matching to Greenland ice cores using glob-

ally well-mixed methane. We use a dynamical firn densi-

fication model constrained by δ15N data to calculate past

1age, and find that 1age was smaller than 525± 120 years

for all of the core. Using high-resolution WD records of at-

mospheric CH4, we synchronize WD directly to Greenland

NGRIP δ18O for the abrupt onset and termination of each

of the DO interstadials. To each event we assign an age cor-

responding to 1.0063 times its GICC05 age, which brings

the ages in agreement with the high-resolution U /Th-dated

Hulu speleothem record. The uncertainty in the final chronol-

ogy is based on the uncertainties in (i) the1age calculations,

as evaluated with a sensitivity study; (ii) the interpolation

strategy, as evaluated by comparing four different interpo-

lation methods; (iii) determining the timing of events in the
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different time series; and (iv) the ages of the hybrid NGRIP–

Hulu chronology we are synchronizing to.

Due to the combination of a small 1age and a high-

resolution methane record, the WAIS Divide ice core can be

synchronized more precisely to Greenland records than any

other Antarctic core to date. This is important when inves-

tigating interhemispheric climate relationships such as the

bipolar seesaw. The small WD 1age furthermore provides

valuable opportunities for precise investigation of the rela-

tive phasing of atmospheric greenhouse gas variations and

Antarctic climate.

Appendix A: Densification physics

The densification rates used in this work are based on the

empirical steady-state model by Herron and Langway (1980)

(the H-L model). We use the H-L model with minor modifi-

cations that allow it to be run dynamically (i.e., with time-

variable T and A) and to include the softening effect of im-

purities following Freitag et al. (2013a). The H-L model di-

vides the firn column in two stages, separated at the critical

density ρc = 550 kg m−3, occurring at the critical depth zc.

For the upper firn (ρ ≤ ρc, stage 1), the densification rates

are given by

dρ

dt
= k1A(ρice− ρ), (A1)

with

k1 = 11exp

(
−
E1

RT

)
, (A2)

whereE1 = 10.16 kJ mol−1 is the activation energy for stage

1 and R is the universal gas constant. Because both the sink-

ing velocity of deposited layers (w = dz/dt) and the densifi-

cation rate scale linearly with A, the resulting density–depth

profile ρ(z) in stage 1 becomes independent of A, and sensi-

tive to T variations only.

For the deeper firn (ρ > ρc, stage 2), we use Eq. (4c)

from Herron and Langway (1980), which was first derived

by Sigfús J. Johnsen. This equation gives the densification

rate in terms of overburden load, which allows the model to

be run dynamically. The stage 2 densification rates are given

by

dρ

dt
= k2

2

(σz− σzc)(ρice− ρ)

ln
[
(ρice− ρc)/(ρice− ρ)

] , (A3)

with

k2 = 575exp

(
−
E2

RT

)
, (A4)

where E2 = 21.4 kJmol−1 is the activation energy for

stage 2 and σz denotes the firn overburden load at

a given depth in Mgm−2:

σz =

z∫
0

ρ(z′)dz′/1000. (A5)

Note that we divide by 1000 to convert from kgm−3 to

Mgm−3, the units used by Herron and Langway (1980).

We use the mathematical description by Freitag et al.

(2013a) to include the hypothesized firn softening effect of

impurities. In this approach an increasing Ca concentration,

as a proxy for mineral dust content, lowers the activation en-

ergy of firn, thereby enhancing densification rates. This is

tantamount to stating that dusty firn behaves as if it were

“warmer” than its climatological temperature. The H-L ac-

tivation energies of Eqs. (A2) and (A4) are modified by [Ca]

in the following way:

ECa
= EHL

×α

[
1−β ln

(
[Ca]

[Ca]crit

)]
, (A6)

where ECa and EHL are the Ca-modified and original H-L

activation energies, respectively, [Ca]crit = 0.5 ngg−1 is the

minimum concentration at which impurities affect densifi-

cation, and α and β are calibration parameters. Whenever

[Ca](z) < [Ca]crit, we set [Ca](z)= [Ca]crit.

The parameter β sets the sensitivity to dust loading, and

α is a normalization parameter that is included to account

for the fact that the original H-L model was calibrated with-

out the impurity effect. Consequently, if β > 0, one needs

to compensate by setting α > 1 to preserve the original H-

L calibration. The work by Freitag et al. (2013a) recom-

mends β = 0.01 and α = 1.025 (which yields ECa
= EHL at

[Ca]= 5.73 ngg−1).

Using the recommended value of α = 1.025 at WD pro-

vides a poor fit to observations of present-day firn density

and close-off depth. The optimal fit to present-day WD ob-

servations is obtained using an activation energy equal to

1.007×EHL; this is in between the values suggested by Her-

ron and Langway (1980) and Freitag et al. (2013a). In the ex-

periment presented in Fig. 4 we changed the dust sensitivity

β; it is clear that we need to simultaneously change α to keep

the model well-calibrated to present-day conditions. Due to

the fact that the mean late Holocene WD [Ca] is around

0.8 ngg−1, we let α = 1.007/(1−β ln[0.8/0.5]) in the exper-

iment of Fig. 4. This approach ensures that the present-day

ECa is invariant with β, and equals ECa
= 1.007×EHL. This

means that whatever value we choose for β, we will obtain

a good fit to the present-day 1age, δ15N, and A values that

are well known from direct observations (Battle et al., 2011).

To validate the H-L model 1age simulations, we repeated

the firn modeling using the densification physics of Arnaud

et al. (2000), which is also the basis of the model by Gou-

jon et al. (2003). Our implementation of the Arnaud model is

based on the description in the latter paper, with one modifi-

cation at the critical density that we outline here.
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In the Arnaud model, densification in the stage 1 follows

the work of Alley (1987), and is given by

dD

dt
= γ

(
P

D2

)(
1−

5

3
D

)
, (A7)

with D the relative density D = ρ/ρice, P the overburden

pressure, and γ a scaling factor used to make the densifica-

tion rates continuous across the critical density Dc. Stage 2

densification is given by

dD

dt
= kA

(
D2Dc

) 1
3
( a
π

) 1
2

(
4πP

3aZD

)3

, (A8)

with

kA = 4.182× 104 exp

(
−
EA

RT

)
, (A9)

where a is the average contact area between the grains, Z

is the coordination number, and EA is the activation en-

ergy (60 kJmol−1). Arnaud densification rates for stage 3

(D ≥ 0.9) are describe elsewhere (Goujon et al., 2003; Ar-

naud et al., 2000).

The difficulty in implementing this model is the following.

The densification rates of Eqs. (A7–A8) exhibit a discontinu-

ity at the critical density D =Dc = 0.6 that cannot be reme-

died with the scaling factor γ . On approaching Dc, densifi-

cation rates given by Eq. (A7) go to zero (due to the inclu-

sion of the term (1− 5
3
D), while densification rates given by

Eq. (A8) go to infinity because the contact area a equals zero

at D =Dc. Clearly neither equation gives a realistic result

at D =Dc. Therefore, in our implementation of the Arnaud

model we use the H-L densification rates of Eq. (A1) instead

of Eq. (A7) in stage 1. We take the onset of stage 2 to be the

density at which Eqs. (A1) and (A8) intercept, thus avoiding

the singularity in Eq. A8. This approach has the additional

advantages of removing dependence on ad hoc scaling factor

γ and introducing realistic temperature dependence for stage

1 densification. Because stage 1 spans just the top 10–20 %

of the firn column, the modification has only a minor influ-

ence on the overall behavior of the Arnaud model. The Gou-

jon model code avoids the singularity in Eq. (A8) by extend-

ing stage 1 to Dc+ ε (Anaïs Orsi, personal communication,

2014), a procedure not described in Goujon et al. (2003).

The Supplement related to this article is available online

at doi:10.5194/cp-11-153-2015-supplement.
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