Cultural traditions across a migratory network shape the genetic structure of southern right whales around Australia and New Zealand

E. L. Carroll^{1,2*}, C. S. Baker^{3,4}, M. Watson⁵, R. Alderman⁶, J. Bannister⁷, O. E. Gaggiotti¹, D. R. Gröcke⁸, N. Patenaude^{2,9} and R. Harcourt²

- 1 Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland
- 2 Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
- 3 School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- 4 Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA 5 Department of the Environment, Land, Water and Planning, Barwon South West Region, Warrnambool, VIC 3280, Australia
- 6 Department of Primary Industries, Parks, Water and Environment, Hobart, TAS 7000, Australia
- 7 The Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia
- 8 Department of Earth Sciences, Durham University, Durham, DH1 3LE, United Kingdom
- 9 Collégial International Sainte-Anne, Montréal, Québec, QC H8S 2M8, Canada *communicating author: elc6@st-andrews.ac.uk

Supplementary Material 1: Construction of DNA and stable isotope profiles

DNA extraction, sex identification and mtDNA haplotype sequencingTotal genomic DNA was extracted from skin biopsy samples using standard proteinase K digestion and phenol/chloroform methods¹ as modified by Baker et al.² for small tissue samples.

The sex of sampled whales was identified by amplification of a portion of the sexdetermining region on the Y chromosome, multiplexed with an amplification of the ZFY/ZFX region as positive control^{3,4}.

For Australia, we used mtDNA sequences from Carroll et al.⁵ and used the methods in this paper to generated new mitochondrial DNA control region (mtDNA) haplotypes from the samples not previously analysed. For these new sequences, we aligned and edited mtDNA sequences in either Sequencher v4.2TM (Gene Codes Corporation) or Geneious v7⁶. Haplotypes were identified from a 500 bp consensus region and identified following the naming convention of Carroll et al.⁵. For New Zealand, we used 692 mtDNA haplotypes associated with unique DNA profiles generated in Carroll et al⁷.

Microsatellite genotyping

Seventeen microsatellite loci were amplified in individual 10 µL PCR reactions under conditions and reaction mixtures described in Supplementary Table 2.

Amplicons from 4-6 loci were co-loaded for electrophoresis using an ABI3730 or an ABI3130. As a precaution against poor DNA quality, samples had to genotyped at a minimum of 10 loci to be included in subsequent analyses.

Matching genotypes identified by CERVUS v3.0 were assumed to be replicate samples from the same individual and the average probability of identity (PID⁷) was calculated from these matching genotypes. When a replicate was identified, only one copy of the genotype was retained per sampling location for subsequent analyses.

Each 96-well tray included a set of 4-7 internal controls to ensure consistent allele sizing and a negative control to detect contamination. GENEPOP v4.0⁹ was used to test for linkage disequilibrium and CERVUS v3.0 was used to test for deviations from the Hardy-Weinberg equilibrium.

Stable isotope analysis

A subsample of the skin biopsy sample was freeze dried and underwent lipid extraction following Todd et al 10 . Total carbon, total nitrogen content and stable isotope analysis of the approximately 500 micrograms of each sample were performed using a Costech Elemental Analyser (ECS 4010) connected to a ThermoFinnigan Delta V Advantage isotope ratio mass spectrometer. Carbon isotope ratios were corrected for 17O contribution and reported in standard delta (δ) notation in per mil ((δ)) relative to Vienna Pee Dee Belemnite (VPDB). Isotopic accuracy was monitored through routine analyses of in-house standards for each

run, which were stringently calibrated against international standards (e.g., USGS 40, USGS 24, IAEA 600, IAEA N1, IAEA N2): this provided a linear range in δ 13C between -46.7 % and +2.9 % and in δ 15N between -4.5 % and +20.4 %. All isotopic results are corrected against this linear range of standards. Analytical uncertainty in carbon isotope analysis was typically \pm 0.1 % for replicate analyses of the international standards and typically \pm 0.2 % on replicate sample analysis. Analytical uncertainty in nitrogen isotope analysis was typically \pm 0.1 % for replicate analyses of the international standards and typically \pm 0.2 % on replicate sample analysis. Total carbon and nitrogen data was obtained as part of the isotopic analysis using an internal standard (Glutamic Acid, \pm 40.82 % C, \pm 9.52 % N). CN ratios are expressed atomically. Isotope ratios are expressed as \pm 13C or \pm 15N (%) = [(\pm 13C/12C or 15N/14N, for \pm 13C or \pm 15N, respectively.

Supplementary Material 2: Results from comparison of genetic data and $\delta^{15} N$ values

An interaction was indicated by plotting the mean of $\delta^{15}N$ against two-way combinations of factors, so we considered GLMs with interaction terms.

For the $\delta^{15}N$ data, there were four models closely ranked using ΔAIC (Supplementary Table 4). The best model indicated by residual deviance was also mtDNA*sex*state. However, models considering sex and state only, ranked highly using ΔAIC , whereas the model that only considered mtDNA was ranked last, indicating it was a weaker explanatory factor in the $\delta^{15}N$ dataset. Visual inspection of the residuals of the mtDNA*sex*state models for both datasets indicated the data were normally distributed.

The randomisation test of Valenzuela et al.¹¹ indicated no relationship between $\delta^{15}N$ isotopic similarity and matriline (p>0.05). In addition, there was no significant relationship between the relatedness estimates of Ritland¹² (p>0.05) and Lynch and Ritland¹³ (p>0.05) and the Euclidean distances of $\delta^{15}N$ based on the results of the mantel tests.

Supplementary Table 1: Details of samples used in the analysis, including sex, sampling location (State; New South Wales: NSW, Queensland: QLD, South Australia: SA, Victoria: VIC and Western Australia: WA), mitochondrial control region haplotype (mtDNA), and the habitat classification of the sampling area as a migratory (MIG) or calving ground (CAL).

Sample	Sex	Location	State	mtDNA	Hab
Eau08EA01	F	Sydney	NSW	BakHapB+	MIG
Eau10EA03	M	Narooma	NSW	BakHapA	MIG
Eau10EA04	M	Narooma	NSW	BakHapE	MIG
Eau10EA05	F	Narooma	NSW	BakHapC	MIG
Eau10EA06	F	Narooma	NSW	BakHapA	MIG
SRWEA0305	F	Newcastle	NSW	BakHapB+	MIG
SRWEA0306	F	Merimbula	NSW	PatHap17	MIG
MQ38	F	Jervis Bay	NSW	BakHapC	MIG
MQ13	M	Narooma	NSW	BakHapA	MIG
MQ39	F	Jervis Bay	NSW	BakHapA	MIG
MQ37	F	?	NSW	BakHapA	MIG
MQ27	F	Sunshine Coast	QLD	BakHapB+	MIG
Eau0102	F	Encounter Bay	SA	BakHapA	MIG
Eau0103	M	Encounter Bay	SA	BakHapC	MIG
Eau0104	M	Encounter Bay	SA	BakHapA	MIG
Eau0105	F	Cape Jervis	SA	BakHapC	MIG
Eau0107	F	Encounter Bay	SA	BakHapA	MIG
Eau0108	M	Encounter Bay	SA	BakHapC	MIG
Eau0109	M	Encounter Bay	SA	BakHapA	MIG
Eau0110	M	Encounter Bay	SA	BakHapA	MIG
Eau0111	M	Encounter Bay	SA	BakHapC	MIG
Eau0112	F	Encounter Bay	SA	BakHapE	MIG
Eau0116	M	Encounter Bay	SA	BakHapA	MIG
Eau0117	M	Encounter Bay	SA	BakHapA	MIG
Eau0118	F	Encounter Bay	SA	BakHapA	MIG
Eau0201	F	Encounter Bay	SA	BakHapD	MIG
Eau0202	F	Encounter Bay	SA	BakHapD	MIG
Eau0203	F	Encounter Bay	SA	BakHapE	MIG
Eau0204	F	Encounter Bay	SA	SWPJ	MIG
Eau0206	M	Encounter Bay	SA	BakHapC	MIG
Eau0207	M	Encounter Bay	SA	BakHapC	MIG
SRWEA0301	F	Encounter Bay	SA	BakHapB+	MIG

Sample	Sex	Location	State	mtDNA	Hab
SRWEA0302	F	Encounter Bay	SA	BakHapB+	MIG
SRWEA0303	M	Encounter Bay	SA	BakHapC	MIG
Eau07Tas01	M	Goats Beach, Storm Bay	TAS	CarHapJ	MIG
Eau07Tas02	F	Goats Beach, Storm Bay	TAS	PatHap4	MIG
Eau07Tas03	M	Goats Beach, Storm Bay	TAS	BakHapA	MIG
Eau12Tas01	M	Dodges Ferry	TAS	BakHapE	MIG
Eau12Tas02	M	Seven Mile Beach	TAS	BakHapA	MIG
Eau12Tas03	F	Cremorne	TAS	BakHapB+	MIG
Eau12Tas04	M	Adventure Bay	TAS	BakHapA	MIG
Eau12Tas05	F	Adventure Bay	TAS	BakHapA	MIG
Eau12Tas06	M	Adventure Bay	TAS	BakHapA	MIG
Eau12Tas07	F	Adventure Bay	TAS	BakHapC	MIG
Eau0113	F	Warrnambool	VIC	BakHapA	CAL
Eau0115	F	Warrnambool	VIC	BakHapB+	CAL
Eau0208	F	Warrnambool	VIC	BakHapD	CAL
Eau0209	M	Warrnambool	VIC	BakHapB+	CAL
Eau0210	F	Warrnambool	VIC	BakHapE	CAL
Eau09EA01	F	Warrnambool	VIC	BakHapB+	CAL
Eau09EA02	F	Warrnambool	VIC	BakHapB+	CAL
SRWEA0304	F	Warrnambool	VIC	BakHapD	CAL
SRWEA0401	F	Warrnambool	VIC	BakHapA	CAL
SRWEA0402	F	Warrnambool	VIC	BakHapD	CAL
MQ29	M	Warrnambool	VIC	BakHapC	CAL
MQ32	M	Port Fairy	VIC	BakHapE	MIG
MQ35	F	Port Fairy	VIC	PatHap17	MIG
MQ33	F	Port Fairy	VIC	BakHapA	MIG
MQ36	F	Warrnambool	VIC	BakHapA	CAL
MQ34	M	Port Fairy	VIC	BakHapC	MIG
WARW9502	F	Bremer/Doubtful Is. Bay	WA	BakHapA	CAL
WARW9503	M	Bremer/Doubtful Is. Bay	WA	BakHapC	CAL
WARW9511	M	Bremer/Doubtful Is. Bay	WA	BakHapA	CAL
WARW9512	M	Bremer/Doubtful Is. Bay	WA	BakHapC	CAL
Eau94WA01	N/A	Bremer/Doubtful Is. Bay	WA	SWPJ	CAL
WARW9507	F	Bremer/Doubtful Is. Bay	WA	BakHapA	CAL
WARW9508	F	Bremer/Doubtful Is. Bay	WA	BakHapC	CAL
WARW9509	M	Bremer/Doubtful Is. Bay	WA	BakHapE	CAL
WARW9510	M	Bremer/Doubtful Is. Bay	WA	BakHapC	CAL
WARW9516	M	Bremer/Doubtful Is. Bay	WA	BakHapE	CAL
Eau94WA02	M	Bremer/Doubtful Is. Bay	WA	BakHapA	CAL
Eau94WA03	M	Bremer/Doubtful Is. Bay	WA	BakHapA	CAL
Eau94WA05	N/A	Bremer/Doubtful Is. Bay	WA	N/A	CAL
WARW9505	М	Bremer/Doubtful Is. Bay	WA	BakHapF	CAL

Sample	Sex	Location	State	mtDNA	Hab
WARW9514	F	Bremer/Doubtful Is. Bay	WA	BakHapA	CAL
WARW9515	F	Bremer/Doubtful Is. Bay	WA	BakHapA	CAL
WARW9517	M	Bremer/Doubtful Is. Bay	WA	BakHapA	CAL

Supplementary Table 2: Seventeen loci used for microsatellite genotyping of southern right whales. Details include primer sequences, fluorescent label, annealing temperature (TA), magnesium concentration (mM Mg) and reference.

Locus	Primers	Label	TA (°C)†	mM Mg	Reference
CA232	F: CACTCAGATTAAGACTTCAGA	FAM	55	2.5	Bérubé et al.14
	R: GATCACATAATCTTGATCAGA				
EV1 <i>Pm</i>	F: CCCTGCTCCCCATTCTC	NED	60	2.5	Valsecchi & Amos ¹⁵
	R: ATAAACTCTAATACACITCCTCCAAC				
EV37Mn	F: AGCTTGATTTGGAAGTCATGA	NED	54	2.5	Valsecchi & Amos ¹⁵
	R: TAGTAGAGCCGTGATAAAGTGC				
EV14Pm	F: TAAACATCAAAGCAGACCCC	VIC	51	2.5	Valsecchi & Amos15
	R: CCAGAGCCAAGGTCAAGAG				
EV94	F: ATCCTATTGGTCCTTTTCTGC	FAM	55	2.0	Valsecchi & Amos ¹⁵
	R: AATAGATAGTGATGATGARCACACC				
GATA028	F: AAAGACTGAGATCTATAGTTA	NED	50	2.5	Palsbøll et al.16
	R: CGCTGATAGATTAGTCTAGG				
GATA098	F: TGTACCCTGGATGGATAGATT	VIC	50	2.5	Palsbøll et al.16
	R: ATGTCTCTCTCACACCTCACC				
GT23	F: GTTCCCAGGCTCTGCACTCTG	VIC	58	2.0	Bérubé et al.17
	R: CATTTCCTACCCACCTGTCAT				
GT310	F: GAATACTCCCAGTAGTTTCTC	NED	59	2.0	Bérubé et al.17
	R: TAACTTGTGGAAGATGCCAAC				
RW18	F: AGAGGGAAGCAAACTGGA	FAM	60	2.5	Waldick et al.18
	R: GAAGGNTGCCAGACACCC				
RW31	F: TATTCATGGAGTGCTTTGG	FAM	54	2.0	Waldick et al.18
	R: CCTAGAGTCCAGTGTGGTA				
RW48	F: CCAATGACTTTTCCCTGTA	NED	50	2.5	Waldick et al.18
	R: GATACCGCAGTGTGTCCTG				
RW410	F: ATGGCATTACTTCATTCTTT	VIC	50	2.5	Waldick et al.18
	R: GCCAAACTTACCAAATTGTG				
RW26	F: GTCCATCCATATTACTGC	NED	50	2.5	Waldick et al. 18
	R: CAGTTATACCTCAATGAAGC				
TR3F4	F: TGCTCTGCAACAAGAGAAGC	FAM	59	2.0	Frasier et al.19
	R: GCCAAGGTTTTAGAGAGAGTG				
TR3G1	F: CTCCGCAACAAGAGAGGC	FAM	*A	2.5	Frasier et al.19
	R: CTTCCTGGGTACAAGCCC				
TR3G2	F: CTGCGGTGTTGGTTAATAGC	VIC	50	2.5	Frasier et al.19
	R: CCTGACATTTTCTGTGTCCC				

†These reactions have cycling conditions of (i) an initial denaturing step at 94 °C for 3 min; (ii) 35 cycles at 94 °C for 30 sec, TA for 30 sec and 72 °C for 30 sec; and (iii) a final extension step at 72 °C for 10 min. *A indicates this primer pair had a touchdown PCR protocol: for the cycling, each annealing temperature is used for five cycles before stepping down to the next annealing temperature; the final annealing temperature is used for 10 cycles, resulting in a total of 30 cycles. Annealing temperatures are 68 °C, 64 °C, 61 °C, 58 °C and 55 °C.

Supplementary Table 3: DNA profiles for southern right whales recaptured between days or years on the Australian wintering grounds. DNA profiles comprise genetically identified sex (Sex), mitochondrial control region haplotype (mtDNA: haplotype code as described in Carroll *et al.* 2011*b*) and multilocus genotype (EV1 – TR3G2). The sampling location (STATE), probability of identity (P_{ID}), number of matching loci (N_M), and number of loci each sample is amplified at (N_{loci}) are also reported. Missing data at a locus are denoted by 0. Most notable matches are of two females that were sampled in different years in Warrnambool, Victoria. The first female^A was captured in 2001 and recaptured in 2009 (as previously reported in Carroll et al 2011), and the second female^B was captured in 2004 and subsequently recaptured in 2009. In addition, another female^C was sampled in 2007 in two different locations along the NSW coast – Merimbula and Eden.

Sample	Year	N_M/P_{ID}	mtDNA	sex	STATE	CA	232	E۱	/1	EV	14	EV	37	EV	94	GAT	A28	GAT	A98
Eau01EA03	2001	13/	BakHapC	М	SA	136	136	136	144	133	133	195	203	200	200	178	178	112	112
Eau01EA06	2001	1.94E-17	BakHapC	M	SA	0	0	136	144	133	133	195	203	0	0	178	178	112	112
Eau02EA04	2002	11/	SWPJ	F	SA	142	150	122	144	133	141	203	203	196	200	166	166	112	112
Eau02EA05	2002	1.18E-16	SWPJ	F	SA	0	0	122	144	133	141	203	203	0	0	166	166	112	112
MQ26 ^C	2007	11/	CarHapJ	F	NSW	0	0	122	136	120	133	199	205	0	0	174	178	112	116
Eau07EA01	2007	11	CarHapJ	F	NSW	0	0	122	136	120	133	199	205	0	0	174	178	112	116

Sample	Year	N _M /	P _{ID}	mt[NA	sex	S	TATI	E	CA2	32	E,	V1		EV14	ļ	EV	37	E۱	/94	GAT	A28	GAT	A98
Eau10EA02	2010	13	/	BakH	арВ+	F	I	NSW	1	36	136	134	134	12	2 1	33	189	199	0	0	166	166	116	120
Eau10EA05	2010	7.78	E-20	BakH	apB+	F	I	NSW		0	0	134	134	. 12	2 1	33	189	199	0	0	166	166	116	120
Eau01EA14 ^A	2001	13	/	BakH	apB+	F		VIC	1	40	140	142	148	13	3 1	41	193	203	0	0	168	178	112	116
Eau09EA02	2009	2.48E	-18	BakH	apB+	F		VIC		0	0	142	148	13	3 1	41	193	203	0	0	168	178	112	116
Eau04EA01 ^B	2004	9,	/	Bakh	lapA	F		VIC	1	40	140	130	138	13	1 1	41	193	199	196	200	166	170	104	116
MQ28	2009	9.31	-14	Bakh	lapA	F		VIC		0	0	130	138	13	1 1	41	193	199	0	0			104	116
MQ31	2012	11	/	Bak	НарЕ	М		VIC		0	0	126	148	13	3 1	35	189	203	0	0	166	178	116	116
MQ32	2012	1.04	-13	Bakh	HapE	M		VIC		0	0	126	148	13	3 1	35	189	203	0	0	166	178	116	116
Sample	GT	23	GT	12	GT3	10	RW	/18	RV	/31	RW	410	RW	48	TR	3F4	TR	3G1	TR3	G2	N _{loci}			
Eau01EA03	112	120	138	138	0	0	199	199	117	125	122	124	203	203	301	333	238	238	176	184	16			
Eau01EA06	112	120	0	0	0	0	199	199	117	125	122	124	203	203	301	333	238	238	176	184	13			
Eau02EA04	118	120	138	138	0	0	187	193	121	123	108	122	197	205	305	345	214	226	184	188	16			
Eau02EA05	0	0	0	0	0	0	0	0	121	123	108	122	197	205	305	345	214	226	184	188	11			
MQ26	114	116	0	0	0	0	0	0	123	127	118	122	197	205	301	333	206	226	0	0	11			
Eau07EA01	114	116	0	0	0	0	193	199	123	127	118	122	197	205	301	333	206	226	176	180	13			
Eau10EA02	112	116	0	0	98	100	195	225	123	125	118	120	211	211	329	333	210	210	176	176	15			
Eau10EA05	112	116	0	0	0	0	195	225	123	125	118	120	211	211	329	333	210	210	176	176	13			

Sample	GT	23	GT1	22	G1	Γ310	RW	V18	RV	V31	RW	410	RW	/48	TR	3F4	TR	3G1	TR	3G2	N_{loci}
Eau01EA14	114	120	0	0	98	102	187	193	125	125	108	122	197	205	309	317	210	218	172	184	15
Eau09EA02	114	120	0	0	0	0	187	193	125	125	108	122	197	205	309	317	210	218	172	184	13
Eau04EA01	112	114	138	138	0	0	0	0	125	125	124	124	209	211	301	305	238	238	0	0	14
MQ28	112	114	0	0	0	0	195	213	125	125	124	124	209	211	301	305	238	242	176	180	12
MQ31	120	120	0	0	0	0	0	0	121	125	120	124	197	211	301	337	210	238	0	0	11
MQ32	120	120	0	0	0	0	0	0	121	125	120	124	197	211	301	337	210	238	0	0	11

Supplementary Table 4: Estimated levels of genetic diversity of southern right whale sampling locations and stocks. The sample size (Nm), number of mitochondrial DNA (mtDNA) haplotypes (N_H), haplotype (*h*) and nucleotide diversity (π) are estimated based on 500 bp of the mtDNA control region. The microsatellite sample size (2N), average number of alleles (k) and observed (H_{OBS}) and expected heterozygosities (H_{EXP}) are based on 17 microsatellite loci.

			mtDNA			n	nicrosate	llite
Region	Nm	N _H	<i>h</i> ±SD	π±SD	2N	k	Hobs	H _{EXP}
NSW	12	6	0.82±0.96	1.41±0.80	24	6.41	0.77	0.77
TAS	10	6	0.78±0.14	1.16±0.68	20	6.11	0.75	0.77
VIC	16	6	0.86±0.05	1.99±1.08	32	6.65	0.81	0.79
SA	22	6	0.77±0.06	1.67±0.90	44	7.12	0.70	0.74
WA	16	5	0.71±0.09	1.51±0.83	34	6.47	0.78	0.76
Stocks								
SEA	39	8	0.81±0.04	1.59±0.84	78	8.47	0.77	0.77
SWA	38	7	0.74±0.50	1.58±0.83	78	7.94	0.75	0.76
NZ	692	12	0.76±0.01	1.39±0.07	102	8.65	0.71	0.75

Supplementary Table 5: Mitochondrial control region haplotype frequencies across southern right whale calving grounds (New Zealand (NZ), Victoria (VIC) and Western Australia (WA)) and migratory corridors (New South Wales (NSW), Tasmania (TAS), Victoria (VIC-M) and South Australia (SA)).

	NZ-C	NSW-M	VIC-C	VIC-M	TAS	SA	WA
BakHapA	231	5	3	1	5	8	8
BakHapB'	87	0	0	0	0	0	0
BakHapB+	207	2	4	0	1	2	0
BakHapC	58	2	1	1	1	7	4
BakHapD	82	0	3	0	0	2	0
BakHapE	6	1	1	1	1	2	2
BakHapF	0	0	0	0	0	0	1
CarHapJ	1	1	0	0	1	0	0
CarHapK	2	0	0	0	0	0	0
PatHap04.1	1	0	0	0	0	0	0
PatHap04.2	12	0	0	0	1	0	0
PatHap17	1	1	0	1	0	0	0
PatMalHapB	4	0	0	0	0	0	0
SWPJ	0	0	0	0	0	1	1
Total	692	12	12	4	10	22	16

Supplementary Table 6: Pairwise comparisons of southern right whale calving grounds, based on samples collected from New Zealand (NZ), Victoria (VIC) and Western Australia (WA) and migratory corridors, based on samples collected from South Australia (SA), Tasmania (TAS) and New South Wales (NSW). A. mtDNA-based F_{ST} (bottom left quadrant) and Φ_{ST} (top right quadrant) B. microsatellite-based F_{ST} (bottom left quadrant) and Jost's D (top right quadrant)

A.	WA	SA	VIC	TAS	NSW	NZ
WA		0.000	0.057	0.062	0.006	0.164**
SA	0.000		0.010	0.082	0.012	0.144**
VIC	0.098*	0.032		0.048	0.004	0.029
TAS	0.000	0.000	0.032		0.000	0.025
NSW	0.000	0.000	0.002	0.000		0.005
NZ	0.088**	0.055*	0.000	0.029	0.010	
B.	WA	SA	VIC	TAS	NSW	NZ
B. WA	WA	SA 0.026	VIC 0.038*	TAS 0.062**	NSW 0.003	NZ 0.051**
	0.005					
WA			0.038*	0.062**	0.003	0.051**
WA SA	0.005	0.026	0.038*	0.062** 0.036*	0.003 0.028	0.051** 0.016
WA SA VIC	0.005 0.011*	0.026 0.000	0.038* 0.000	0.062** 0.036*	0.003 0.028 0.046	0.051** 0.016 0.000**

^{*}p<0.05; **p<0.01

Supplementary Table 7: Results of generalised linear modelling of δ^{13} C and δ^{15} N values. Mitochondrial control region haplotype (mtDNA), sex or sampling region (state; sampling location from Table 1 and Supplementary Table 3) were fitted as explanatory variables for δ^{13} C or δ^{15} N profiles of 66 southern right whales sampled around Australia. Interaction terms are denoted by two factors with ":" between them. Models are ranked using Δ AIC and model weight is listed.

δ^{13} C model	ΔAIC	Weight
MTDNA + SEX + STATE + STATE:SEX	0.00	0.69
MTDNA + SEX + STATE + SEX:MTDNA + STATE:SEX	2.46	0.20
MTDNA + SEX + STATE + STATE:MTDNA + STATE:SEX	6.27	0.03
MTDNA + STATE	6.85	0.02
MTDNA + STATE + STATE:MTDNA	7.71	0.01
MTDNA + SEX + STATE	8.24	0.01
SEX + STATE + STATE:SEX	8.57	0.01
MTDNA + SEX + STATE + STATE:MTDNA	9.16	0.01
MTDNA + SEX + STATE + SEX:MTDNA + STATE:MTDNA +		
STATE:SEX	9.44	0.01
MTDNA + SEX + STATE + SEX:MTDNA	10.44	0.00
MTDNA	11.33	0.00
MTDNA + SEX	12.57	0.00
SEX + STATE	13.75	0.00
MTDNA + SEX + STATE + SEX:MTDNA + STATE:MTDNA	14.18	0.00
MTDNA + SEX + SEX:MTDNA	14.27	0.00
STATE	14.89	0.00
SEX	19.93	0.00

δ^{15} N model	ΔΑΙC	Weight
MTDNA + SEX + STATE + SEX:MTDNA + STATE:MTDNA	0.00	0.82
MTDNA + SEX + STATE + SEX:MTDNA + STATE:MTDNA +		
STATE:SEX	5.31	0.06
MTDNA + SEX + STATE + STATE:MTDNA + STATE:SEX	6.66	0.03
STATE	6.86	0.03
SEX + STATE	8.49	0.01
SEX	8.57	0.01
SEX + STATE + STATE:SEX	9.39	0.01
MTDNA + SEX + STATE + SEX:MTDNA	10.60	0.00

MTDNA + SEX + STATE + SEX:MTDNA + STATE:SEX	11.77	0.00
MTDNA + SEX + SEX:MTDNA	12.63	0.00
MTDNA + STATE + STATE:MTDNA	14.60	0.00
MTDNA + SEX + STATE + STATE:MTDNA	16.58	0.00
MTDNA	17.06	0.00
MTDNA + STATE	18.01	0.00
MTDNA + SEX	19.06	0.00
MTDNA + SEX + STATE	19.56	0.00
MTDNA + SEX + STATE + STATE:SEX	20.28	0.00

Supplementary Table 8: Pairwise estimates of migration between southern right whale calving grounds derived from the Lamarc analysis of mtDNA control regions. Calving grounds are New Zealand (NZ), Victoria (VIC) and Western Australia (WA).

		Migration to		
		NZ	VIC	WA
Migration	NZ		65.7 (17.6-100)	52.7 (5.9-100)
from	VIC	69.8 (26-100)		65.4 (19.2-100)
	WA	53.9 (6.4-100)	58.0 (8.7-100)	

Supplementary Table 9: Estimates of θ for southern right whale calving grounds in Western Australia (WA), Victoria (VIC) and New Zealand (NZ) and the derived statistics of mean effective female population size ($N_{e(f)}$) and mean census population size (N_C). θ was estimated using mtDNA control region haplotypes (500 bp) and program LAMARC. The difference between results presented here and in Table 3 of the manuscript is that these results are from an analysis that explored a range of mutation rates (2x10-8 to 1x10-7), derived from ancient and contemporary bowhead whale mtDNA control region sequences^{20,21}.

	WA	VIC	NZ
θ	4.72E-3	3.36E-3	5.55E-3
(95% HPD Interval)	(8.31E-5, 0.0115)	(5.41E-5, 9.15E-3)	(3.61E-4, 0.0138)
$N_{e(f)}$	3,989	2,993	4,892
(95% CL)	(471, 13,615)	(248, 11,773)	(574,17,629)
N _C	28,487	21,786	35,442
(95% CL)	(3581, 108,564)	(1823, 91,638)	(4,042, 135,420)

REFERENCES

- 1. Sambrook, J., Fritsch, E. F. & Maniatis, T. *Molecular Cloning: A Laboratory Manual 2nd ed.* (Cold Spring Harbor Laboratory Press, 1989).
- 2. Palumbi, S. & Baker, C. S. Contrasting population structure from nuclear intron and mtDNA of humpback whales. *Mol. Biol. Evol.* **11**, 426–435 (1994).
- 3. Aasen, E. & Medrano, J. Amplification of the ZFX and ZFY genes for sex identification in humans, cattle, sheep and goats. *Nat. Biotechnol.* **8,** 1279–1281 (1990).
- 4. Gilson, A., Syvanen, M., Levine, K. & Banks, J. Deer gender determination by polymerase chain reaction: validation study and application to tissues, bloodstains, and hair forensic samples from California. *Calif. Fish Game* **84**, 159–169 (1998).
- 5. Carroll, E. L. *et al.* Population structure and individual movement of southern right whales around New Zealand and Australia. *Mar. Ecol. Prog. Ser.* **432**, 257–268 (2011).
- 6. Kearse, M. *et al.* Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* **28**, 1647–1649 (2012).
- 7. Carroll, E. L. *et al.* Accounting for female reproductive cycles in a superpopulation capture recapture framework. *Ecol. Appl.* **23,** 1677–1690 (2013).
- 8. Paetkau, D. & Strobeck, C. Microsatellite analysis of genetic variation in black bear populations. *Mol. Ecol.* **3**, 489–495 (1994).
- 9. Rousset, F. Genepop'007: a complete re-implementation of the GENEPOP software for Windows and Linux. *Mol. Ecol. Resour.* **8,** 103–106 (2008).
- 10. Todd, S., Ostrom, P., Lien, J. & Abrajano, J. Use of Biopsy Samples of Humpback Whale (<i>Megaptera novaeangliae<i/>
) Skin for Stable Isotope (δ 13 C) Determination. *J. Northwest Atl. Fish. Sci.* **22**, 71–76 (1997).
- 11. Valenzuela, L., Sironi, M., Rowntree, V. & Seger, J. Isotopic and genetic evidence for culturally inherited site fidelity to feeding grounds in southern right whales (*Eubalaena australis*). *Mol. Ecol.* **18**, 782–791 (2009).
- 12. Ritland, K. Estimators for pairwise relatedness and individual inbreeding coefficients. *Genet. Res.* **67**, 175–185 (1996).

- 13. Lynch, M. & Ritland, K. Estimation of Pairwise Relatedness With Molecular Markers. *Genetics* **152**, 1753–1766 (1999).
- 14. Bérubé, M. *et al.* Polymorphic microsatellite loci isolated from humpback whale, Megaptera novaeangliae and fin whale, balaenoptera physalus. *Conserv. Genet.* **6**, 631–636 (2005).
- 15. Valsecchi, E. & Amos, W. Microsatellite markers for the study of cetacean populations. *Mol. Ecol.* **5,** 151–156 (1996).
- 16. Palsbøll, P., Bérubé, M., Larsen, A. H. & Jørgensen, H. Primers for the amplification of tri- and tetramer microsatellite loci in baleen whales. *Mol. Ecol.* **6**, 893–895 (1997).
- 17. Bérubé, M., Jørgensen, H., McEwing, R. & Palsbøll, P. Polymorphic dinucleotide microsatellite loci isolated from the humpback whale *Megaptera novaeangliae*. *Mol. Ecol.* **9**, 2181–2183 (2000).
- 18. Waldick, R. C., Brown, M. W. & White, B. N. Characterization and isolation of microsatellite loci from the endangered North Atlantic right whale. *Mol. Ecol.* **8,** 1763–1765 (1999).
- 19. Frasier, T. R. *et al.* Characterization of tetranucleotide microsatellite loci and development and validation of multiplex reactions for the study of right whale species (genus Eubalaena). *Mol. Ecol. Notes* **6**, 1025–1029 (2006).
- 20. Rooney, A., Honeycutt, R. & Derr, J. Historical population size change of bowhead whales inferred from DNA sequence polymorphism data. *Evolution* (*N. Y*). **55**, 1678–1685 (2001).
- 21. Ho, S. Y. W. *et al.* Bayesian estimation of substitution rates from ancient DNA sequences with low information content. *Syst. Biol.* **60**, 366–375 (2011).