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Vegetation structure quantified by light detection and ranging (LiDAR) can improve
understanding of wildlife occupancy and species-richness patterns. However, there is
often a time lag between the collection of LiDAR data and wildlife data. We investi-
gated whether a time lag between the LiDAR acquisition and field-data acquisition
affected mapped wildlife distributions ranging from an individual species distribution
to total avian species richness in a conifer forest. We collected bird and LiDAR data in
2009 across a 20,000 ha forest in northern Idaho. Using the 2009 LiDAR data, we
modelled the probability of occurrence for the brown creeper (Certhia americana).
Using the same 2009 LiDAR data, we additionally modelled total avian species
richness and richness of three different bird nesting guilds (ground/understory, mid/
upper canopy and cavity). We mapped brown creeper occupancy probability and
species richness using the 2009 models, and then compared these maps with maps
based on the same models applied to a 2003-LiDAR dataset. A prior study identified
areas harvested between 2003 and 2009. There was on average a 5% absolute decrease
in mapped probabilities of brown creeper occurrence in non-harvest areas between
2003 and 2009. Species richness changed by less than one species in all cases within
non-harvest areas between the 2003 and 2009 maps. Although these comparisons were
statistically significant at the p < 0.0001 level, it is likely that the high number of map
cells (~480,000) influenced this result. Similar patterns between our 2003 and 2009
maps in non-harvest areas for this suite of avian responses suggests that a 6-year
difference between field-data collection and LiDAR-data collection has a minimal
effect on mapped avian patterns in an undisturbed coniferous forest. However, because
this is one case study in one ecosystem, additional work examining the effect of
temporal lags between LiDAR and field-data collection on mapping wildlife distribu-
tions is warranted in additional ecosystems.

1. Introduction

The ability of scientists to map fine scale 3-D vegetation structure over broad spatial
scales using light detection and ranging (LiDAR) is likely to influence the conservation
and management of a broad spectrum of animal taxa. LiDAR-based mapping of 3-D
habitat features creates the potential to use these data to explore animal–habitat relation-
ships ranging from fine spatial scales (e.g. arthropods; Müller and Brandl 2009; Vierling

*Corresponding author. Email: kerriv@uidaho.edu

Remote Sensing Letters, 2014
Vol. 5, No. 2, 185–193, http://dx.doi.org/10.1080/2150704X.2014.891773

© 2014 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

O
re

go
n 

St
at

e 
U

ni
ve

rs
ity

] 
at

 1
2:

44
 3

0 
M

ay
 2

01
4 



et al. 2011) to coarser spatial scales, such as in the case of birds (Goetz et al. 2007;
Clawges et al. 2008; Flaspohler et al. 2010; Müller, Stadler, and Brandl 2010; Lesak et al.
2011) and bats (Jung et al. 2012).

The use of LiDAR for wildlife applications has included assessments of distribution,
habitat quality, and diversity. For instance, LiDAR products have been utilized to map the
distribution of avian species of special concern (Smart et al. 2012; Wilsey, Lawler, and
Cimprich 2012). LiDAR products have also been used to describe forest structure that
influences avian-habitat quality (Hinsley et al. 2002, 2006; Goetz et al. 2010), and current
studies that incorporate LiDAR-derived metrics note that species-diversity patterns of
birds (e.g. Lesak et al. 2011), and arthropods (e.g. Vierling et al. 2011) can be described.
Generally, foliage height diversity has a positive influence on species diversity, but other
structural factors can also have strong influences on species diversity (e.g. Flaspohler et al.
2010).

These studies indicate that LiDAR-derived metrics can advance our understanding of
how vegetation structure influences multiple animal–habitat relationships, but it is impor-
tant to acknowledge that LiDAR acquisitions do not always coincide in time with the
collection of animal-related field data. Vegetation structure characterized by a LiDAR
acquisition at one point in time will change due to plant growth and/or disturbance. Our
objective was to compare maps based on concurrent bird and LiDAR-data collection with
maps where LiDAR data were collected 6 years previous to bird data collection. We
generated maps utilizing previously developed models describing occurrence for (1) the
brown creeper, (2) total avian species richness and (3) the species richness of the ground/
understory nesting guild, the mid/upper canopy nesting guild and the cavity nesting guild
(Vogeler 2011; Vogeler et al. 2013). Because managers rely on maps in planning and
assessment activities, it is important to determine whether maps depicting animal–habitat
relationships are sensitive to the age of the LiDAR acquisition relative to the collection of
the animal data.

2. Methods

2.1. Study area

The study centres on the Moscow Mountain (area ~20,000 ha; latitude 46° 48’ N,
longitude 116° 52’ W) located in north central Idaho, USA. The core study area is
forested but largely bounded by croplands associated with dryland agriculture. Major
tree species are ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.),
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco), grand fir
(Abies grandis (Douglas ex D. Don) Lindl.), western red cedar (Thuja plicata Donn ex D.
Don) and western larch (Larix occidentalis Nutt). The variety of habitat types, stand
composition and age structures stemming from forest management serve to diversify
forest biophysical settings and successional stages (Falkowski et al. 2009). Major harvest
disturbance occurred between 2003 and 2009 including harvest, thinning and prescribed
fires (Hudak et al. 2012).

2.2. Remotely sensed data processing

LiDAR data were collected during the summers of 2003 and 2009. Mean LiDAR point
densities were 0.4 points/m2 in 2003 and 12 points/m2 in 2009, while other acquisition
parameters were consistent (Hudak et al. 2012). Canopy height and density metrics were
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computed across the study area from all returns within 20 m × 20 m grid cells using a
script coded in R Development Core Team (2007). The origins of the mapped metrics
were defined such that the 2003 and 2009 grid cells exactly overlaid. Tree aboveground
biomass was independently mapped in 2003 and 2009 using field plots measured in the
same years as the repeat LiDAR surveys (Hudak et al. 2012). Biomass loss of 66 Mg ha−1

or greater was considered indicative of forest harvest; all other changes in biomass values
were considered non-harvest and representative of natural growth and attrition (Hudak
et al. 2012). Because the LiDAR provided only structural and not spectral information,
Landsat image data (collected on 3 July 2003 and 3 July 2009) were also used to calculate
the normalized difference vegetation index (NDVI), a very broadly applied metric indi-
cative of vegetation greenness found to be useful in prior avian habitat-mapping studies
(e.g. Hurlbert and Haskell 2003).

2.3. Bird data collection and modelling

We collected brown creeper data and avian species richness data in the field. Point counts
were conducted during 2009 at 151 locations distributed across a range of forest succes-
sional stages (Vogeler et al. 2013). The top model for brown creepers included only the
percentage of LiDAR hits between 20 and 30 m above ground level (hereafter upper
canopy density) and the standard deviation of canopy height (Vogeler et al. 2013). Vogeler
(2011) also modelled total species richness (TSR), the species richness of ground/unders-
tory nesters (GSR1), the species richness of mid/upper canopy nesters (GSR2) and cavity
nesters (GSR3). Top models for TSR and GSR1 both included the understory density
metric (i.e. the percentage of LiDAR returns located between 1.0 and 2.5 m above ground
level) and NDVI (Vogeler 2011). Similarly, competitive models for GSR2 and GSR3
included the standard deviation of canopy height (m) and NDVI. We used these models to
map (1) brown creeper occupancy probabilities, and (2) species richness across the
Moscow Mountain from 2009 and 2003 LiDAR-derived metrics using the
AsciiGridPredict function in the yaImpute package of R. Changes in avian responses
per 20 m × 20 m map cell were then compared by subtracting the 2003 map from the
2009 map, so that increases were expressed as positive and decreases as negative values.
We used the Z-test statistic for populations to assess the significance of differences in all
mapped responses between 2003 and 2009, and we calculated Spearman’s rank correla-
tion (rs) for the often non-normal distributions in brown creeper occupancy probability
and species richness, between 2003 and 2009 at the 151 random stratified field sites.
Sample sizes are represented by n.

3. Results

Mapped brown creeper occurrence probabilities differed significantly between 2003 and
2009 (p < 0.0001). The change in probability of brown creeper occupancy ranged from
0.00 to 0.95, with a 0.13 mean decrease. There was high spatial correspondence between
the magnitude of changes in brown creeper occurrence probability and the harvesting
activities mapped by Hudak et al. (2012) (Table 1, Figure 1). Twenty-seven percent of the
study was harvested; upon excluding harvest areas, the mean difference across time in
non-harvest areas decreased to – 0.05 (Table 1). Spearman’s rank correlations between the
2003 and 2009 occupancy maps were over twice as strong at field sites in non-harvest
areas (rs = 0.87, n = 111) than at field sites in harvest areas (rs = 0.39, n = 40;
Figure 2(a)).
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Table 1. Changes in avian response variables per 20 m × 20 m map cell compared between maps
generated using 2003 LiDAR data and 2009 LiDAR data.

Harvest Non-harvest Total

Number of map cells 104,847 379,200 484,047
Mean change in probability of brown
creeper occurrence

−0.40 (0.29) −0.05 (0.15) −0.13 (0.24)

Mean change in total species richness −1.67 (1.03) −0.99 (1.28) −1.14 (1.33)
Mean change in GSR1 −0.87 (0.70) −0.80 (1.20) −0.81 (1.11)
Mean change in GSR2 −1.36 (0.87) −0.31 (0.46) −0.54 (0.72)
Mean change in GSR3 0.47 (0.32) 0.10 (0.16) 0.18 (0.25)

Notes: A negative value indicates a decrease from 2003 to 2009. Means are followed by standard deviations in
parentheses. GSR1 represents the richness of ground and shrub nesters. GSR2 represents the mid/upper canopy
nester richness, and GSR3 represents cavity nester species richness. All comparisons between the 2003 and 2009
maps were significant at the p < 0.0001 level.

46° 52′ 0″ N

46° 50′ 0″ N

46° 48′ 0″ N

46° 46′ 0″ N

–1.0 – –0.5

0.5 – 1.0
Harvest areas

3.5 1.75 0 3.5 km
0.0 – 0.5
–0.5 – 0.0
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5 – 9
Harvest areas

–1 – 4
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(a)

(b)

Figure 1. Mapped distributions of (a) the change in brown creeper occupancy probability and (b)
the change in total bird species richness in a mixed coniferous forest. Negative values indicate a
decrease from 2003 to 2009. Areas outlined in black represent harvested areas. White areas
represent non-forest, and were excluded from the analysis.
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The magnitude of differences between species richness maps was small, but was
statistically significant (p < 0.0001) for all comparisons. The maximum number of species
categorized in each nesting guild ranged from six (for both mid/upper canopy nesters and
cavity nesters) to ten (for the ground/shrub nesters). TSR (n = 23) included brown-headed
cowbirds (Molothrus ater), which were not categorized into a nesting guild because they
are brood parasites. Regardless of harvest activity, the mean difference between the 2003
and 2009 maps for TSR was –1.14 species (Table 1; Figure 1). Upon excluding harvest
areas, the mean difference between 2003 and 2009 TSR maps was –0.99 species in non-
harvest areas. Spearman’s rank correlations between the 2003 and 2009 species richness
maps were similarly higher (rs > 0.78) for all measures of species richness in non-harvest
areas compared to harvest areas, where rs ranged from 0.33 to 0.43 (Figure 2).

LiDAR metrics differed significantly for all variables examined (p < 0.0001), and all
metrics with the exception of canopy height variability decreased between 2003 and 2009,
regardless of harvest (Table 2). There was a larger decrease in NDVI, upper canopy density
and canopy height variability in harvest compared to non-harvest areas. However, unders-
tory canopy density decreased more in the non-harvest areas compared to the harvest areas.
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Figure 2. Scatterplots of 2003 versus 2009 (a) brown creeper occupancy probability, (b) total
species richness, and species richness of (c) nest guild 1 (understory nesters), (d) nest guild 2
(overstory nesters), and (e) nest guild 3 (cavity nesters) at 151 field plots sampled in 2009 that were
either not harvested since 2003 (n = 111) or harvested (n = 40). The 1:1 line, Spearman’s rank
correlations (rs), and p-values are indicated on each graph.
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4. Discussion

Brown creepers are associated with old and mature forests during their breeding season,
and this species is of management concern throughout its range because of habitat loss
and degradation (Poulin et al. 2013). This species is generally associated with high
amounts of biomass in the upper canopy and large trees that are used for foraging and
nesting (Sallabanks, Haufler, and Mehl 2006; Poulin et al. 2013). Brown creepers forage
for bark-dwelling insects, and large trees typically serve as foraging sites where this
species often gleans and probes for its prey (Farris et al. 2010; Poulin et al. 2013). Large
trees and snags are also important as nest sites, and nests are typically constructed
underneath loose bark (e.g. Poulin et al. 2013). Because harvest activities often remove
larger trees, harvest is likely to influence brown creeper distributions. In our analysis,
harvest activity affected distributions in predictable ways; in areas where harvest occurred,
brown creeper occupancy decreased markedly and significantly. However, there were also
slight yet statistically significant decreases in occupancy probabilities within non-harvest
areas. These changes likely reflect the natural processes that can change canopy structure
(trees felled by windstorms, pest defoliations, etc.) that are detected by LiDAR yet are too
small or subtle within the scale of a 20 m × 20 m map cell to exceed the ‘harvested’
threshold of disturbance (Hudak et al. 2012). Nevertheless, the absolute change in
occupancy probability was relatively small (5%) between 2003 and 2009; therefore, the
canopy changes that occurred within non-harvest areas were not sufficiently large to
change occupancy map patterns across the approximately 20,000 ha study site (Figure 1).

We utilized different nesting guilds to help understand how changes in component
nesting guilds and harvest may influence changes in TSR. In harvested areas, scatterplots
show less of a deviation from the 1:1 line (Figure 2) for the shrub nesting guild, GSR1
compared to the other two nesting guilds. Predictably, GSR2 overstory nesting species
richness decreased with harvest, which likely decreased nesting habitat. Some cavity
nesters prefer open forests (e.g. Vierling, Saab, and Tobalske 2013); assuming suitably
sized snags remain after harvest, loss of overstory with a concurrent increase in shrub
growth may account for the changes seen in the GSR3 cavity nesting guild (Figure 2).

All of our comparisons were statistically significant, although the magnitude of the
changes in species richness were relatively small. Multiple authors have noted that
statistical significance and biological significance are not synonymous (e.g. Yoccoz
1991) and analyses based on high sample sizes with high power may be statistically
significant but biologically trivial (Steidl, Hayes, and Schauber 1997). Although we found
all 2003–2009 differences to be statistically significant, we caution that statistical sig-
nificance may not equate to biological significance in many cases. The statistically

Table 2. Mean change between 2003 and 2009 in NDVI and LiDAR metrics used to predict the
avian response variables, summarized for harvest and non-harvest areas. Means are summarized
from the 75 m radius focal mean values used in predictive models.

Harvest Non-harvest Total

Number of map cells 104,847 379,200 484,047
NDVI −0.21 (0.13) −0.05 (0.08) −0.09 (0.11)
Upper canopy density (%) −15.2 (11.4) −1.89 (5.19) −4.76 (8.89)
Understory canopy density (%) −0.72 (2.89) −2.85 (5.41) −2.39 (5.05)
Canopy height variability (m) −0.69 (1.71) 0.01 (0.74) −0.14 (1.07)

Notes: A negative value indicates a decrease from 2003 to 2009. Means are followed by standard deviations in
parentheses. All 2003 to 2009 changes are significant at the p < 0.0001 level.
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significant results based on the Z-test statistic for populations are in all likelihood
misleading because they include not just a large sample but the entire population of
forested map cells (Table 1, Figure 2). The relative changes among the mapped 2003–
2009 avian-response variables likely have more ecological significance than the absolute
differences between 2003 and 2009 maps for any given response variable. Moreover, the
mean differences in the mapped responses, even after limiting the 2003–2009 map
differences to non-harvest areas, does not factor in uncertainty in the maps themselves.
For instance, an uncertainty of ± 1 in TSR in either the 2003 or 2009 maps could be
considered acceptable, therefore explaining much of the apparent differences that con-
tribute to statistical significance (Table 1) yet are likely not biologically significant. The
same argument could be applied to the LiDAR metrics used as predictors (Table 2), which
have their own uncertainties that propagate into the uncertainty and errors in the mapped
responses (Table 1), yet are not considered in our analysis. The Spearman correlations
between the 2003 and 2009 responses at the 151 field sites are also reported because they
provide a much more conservative test of the agreement between the maps (Figure 2).
Similar to the Z-test statistical results (Table 1), the higher relative significance of the
Spearman’s rank correlations between the 2003 and 2009 maps in non-harvest areas,
compared to harvest areas (Figure 2), is probably a more useful indicator of ecological
significance than the p-values themselves.

LiDAR data are extremely powerful for wildlife studies because the forest structural
attributes of interest (e.g. biomass at a particular canopy height) can be determined post
hoc as can the spatial extent of the analysis (e.g. Vierling et al. 2008; Swatantran et al.
2012). Tree species composition is not easily detected via LiDAR alone, but when
partnered with other sensors, it may be possible to differentiate tree species (e.g. Hill
and Thomson 2005). In addition to the differences in time scale between the two
acquisitions, the point densities differed. The 2003 LiDAR acquisition had a lower
point density; however, Hudak et al. (2012) note that the vertical structure represented
by the lower-point density was consistent with the vertical structure represented by the
higher density of points in the 2009 dataset.

Finally, it is important to note that these findings are limited at the current time to the
avian community in a temperate coniferous forest. It is not clear how changes in forest
structure in a 6-year period might influence animals that utilize different components of
forest structure at different spatial scales. Bird data in this study were collected within
75 m of a survey point (Vogeler 2011), but the appropriate spatial scale of analysis will
depend on the taxa of interest. For instance, other taxa such as arthropods utilize habitat at
much finer spatial scales (Vierling et al. 2011), and thus, changes in vegetation that might
have negligible effects on bird distributions may have larger effects on arthropods.

5. Conclusion

This study describes how time lags between bird data collection and airborne LiDAR
acquisitions might affect wildlife-habitat mapping. Our findings suggest that while a 6-
year time difference between a LiDAR acquisition and the collection of bird field data
does result in statistically significant differences, the absolute differences in non-harvest
locations are nonetheless quite small and therefore may not be biologically significant in
this conifer forest. As a result, the temporal mismatch between LiDAR and field-data
acquisition would still likely produce avian distribution maps of use to forest managers,
despite the time lag. Because this is one case study in one ecosystem, additional work
examining the effect of temporal lags between LiDAR- and field-data collection is
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warranted under different vegetation growth rates, disturbance and climatic regimes to
better understand the influences of data collection time lags on predicting animal
distributions.
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