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Abstract Connectivity models using empirically-

derived landscape resistance maps can predict potential

linkages among fragmented animal and plant popula-

tions. However, such models have rarely been used to

guide systematic decision-making, such as identifying

the most important habitat patches and dispersal corri-

dors to protect or restore in order to maximize regional

connectivity. Combining resistance models with net-

work theory offers one means of prioritizing manage-

ment for connectivity, and we applied this approach to a

metapopulation of desert bighorn sheep (Ovis canad-

ensis nelsoni) in the Mojave Desert of the southwestern

United States. We used a genetic-based landscape

resistance model to construct network models of genetic

connectivity (potential for gene flow) and demographic

connectivity (potential for colonization of empty habitat

patches), which may differ because of sex-biased

dispersal in bighorn sheep. We identified high-priority

habitat patches and corridors and found that the type of

connectivity and the network metric used to quantify

connectivity had substantial effects on prioritization

results, although some features ranked highly across all

combinations. Rankings were also sensitive to our

empirically-derived estimates of maximum effective

dispersal distance, highlighting the importance of this

often-ignored parameter. Patch-based analogs of our

network metrics predicted both neutral and mitochon-

drial genetic diversity of 25 populations within the study

area. This study demonstrates that network theory can

enhance the utility of landscape resistance models as

tools for conservation, but it is critical to consider the

implications of sex-biased dispersal, the biological

relevance of network metrics, and the uncertainty

associated with dispersal range and behavior when

using this approach.

Keywords Colonization � Connectivity �
Dispersal � Extinction � Fragmented population �
Gene flow � Graph theory � Habitat patch �
Landscape resistance

Introduction

Connectivity is a beneficial or necessary component of

many ecological processes, including gene flow,
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migration, dispersal from natal ranges, range shifts in

response to climate change, and metapopulation

dynamics (Crooks and Sanjayan 2006). The past

decade has seen rapid progress in the development of

connectivity models that use resistance surfaces to

explain effects of landscape features on animal

movement (Chardon et al. 2003; Perez-Espona et al.

2008; Chetkiewicz and Boyce 2009). Numerous

studies using resistance surfaces have demonstrated

that effective distance (ED), which combines geo-

graphic distance and relative habitat resistance, is a

better predictor of realized population connectivity

than simple Euclidean distance (Cushman et al. 2006;

Epps et al. 2007; McRae and Beier 2007). Resistance-

based connectivity models have facilitated the iden-

tification of likely routes for dispersal and movement

between habitat patches using methods such as least-

cost path (LCP) analysis and circuit theory (Adriaen-

sen et al. 2003; McRae et al. 2008). Although

resistance models may perform poorly when resis-

tance values are assigned to different habitats solely on

expert opinion (Spear et al. 2010; Sawyer et al. 2011),

landscape genetic analyses (e.g., Cushman et al. 2006;

Epps et al. 2007) or resource selection models (e.g.,

Chetkiewicz and Boyce 2009; Epps et al. 2013) can be

used to develop and optimize models with an empir-

ical basis. Developing such models has become

increasingly popular (Zeller et al. 2012) and empiri-

cally-derived resistance models have been used to

evaluate or map prospective dispersal corridors

(Cushman et al. 2010; Wasserman et al. 2012), but

they have rarely been used to guide more systematic

decision making. For instance, even knowing the

likely location and ED of dispersal routes does not

allow rigorous evaluation of their relative importance

in metapopulations or other fragmented systems.

Because conservation resources are always limited,

methods for prioritizing actions are a critical compo-

nent missing from many connectivity analyses.

Combining landscape resistance models with net-

work theory offers a compelling potential solution.

Network theory has risen to prominence in landscape

ecology as a framework for quantifying the role that

habitat patches and dispersal corridors play in linking

fragmented populations (Urban et al. 2009). In this

context, a network consists of ‘‘nodes’’ (habitat

patches or populations) and ‘‘edges’’ (connections

between populations). Information on actual or

potential dispersal between patches determines which

nodes are connected by edges, and in some cases the

strength of the connection. Network theory offers a

multitude of metrics to quantify contributions of

individual nodes and edges to network connectivity,

and thus could help guide decisions about where to

manage, maintain, or restore connectivity. However,

defining the location and strength of edges is prob-

lematic; many analyses connect nodes on the basis of

rough approximations such as the maximum dispersal

distance for the species according to telemetry data or

expert opinion (e.g., Fortuna et al. 2006; Minor and

Urban 2007), ignoring variation in the intervening

landscape. As described above, landscape resistance

models derived from empirical data allow the con-

struction of network models with edge weight deter-

mined by ED rather than geographic distance. Less

commonly, resistance models have also been used to

estimate maximum effective dispersal distance (Epps

et al. 2007; Parks et al. 2012), information that can be

used to limit network edges in a more meaningful way.

The resulting networks could provide a powerful tool

for quantifying the relative importance of each patch

and corridor to overall connectivity.

The need to prioritize conservation actions in

fragmented systems raises another commonly-

neglected point: distinguishing among different types

of connectivity may be important. The potential for

gene flow among populations (hereafter, ‘‘genetic

connectivity’’) and the potential for re-colonization of

habitat patches after local extinctions (hereafter,

‘‘demographic connectivity’’) are often cited as crit-

ical reasons to maintain connectivity among frag-

mented populations (Crooks and Sanjayan 2006; Mills

2007), but could potentially operate at different scales

if species exhibit sex-biased dispersal. Levels of

connectivity that allow for adequate gene flow may

not allow for adequate re-colonization, and patches or

corridors that are most important to genetic connec-

tivity of a metapopulation may not coincide with those

most important to demographic connectivity. This is

especially relevant for species with highly sex-biased

dispersal, where re-colonization potential may be

limited by the more philopatric sex but gene flow is

facilitated by both sexes.

Here, we combine resistance-based connectivity

models and network theory to develop tools for

prioritizing management options in a metapopulation

of desert bighorn sheep (Ovis canadensis nelsoni) in

the Mojave Desert of southern California and Nevada,
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USA. Bighorn sheep exhibit sex-biased dispersal

(Krausman et al. 1999); therefore, we consider genetic

and demographic connectivity explicitly and sepa-

rately. Bighorn sheep populations in this region

occupy numerous small mountain ranges separated

by broad expanses of relatively flat desert (Fig. 1), and

their relative isolation and small size makes them

vulnerable to loss of genetic diversity through genetic

drift and inbreeding (Epps et al. 2005). Population

extinctions occurred in nearly 40 % of central Mojave

populations over a 60-year period during the 20th

century (Torres et al. 1994), and there is a clear need to

maintain connectivity between habitat patches to

allow for re-colonization (Epps et al. 2010). Although

core habitat where bighorn sheep reside, forage, and

breed remains largely intact in the region, surrounding

dispersal habitat has been fragmented over the past

century by interstate highways, canals, urbanization,

mining operations, and other anthropogenic develop-

ments (Epps et al. 2005). In the absence of disease,

connectivity is expected to positively affect metapop-

ulation persistence and genetic diversity.

This landscape exemplifies the need for tools to

prioritize management actions in fragmented systems.

Current and proposed utility-scale renewable energy

development could further compromise connectivity

if energy facilities such as wind farms or solar arrays

are sited in or near bighorn sheep habitat or along

dispersal corridors (Lovich and Ennen 2011). Possible

management actions to protect connectivity in this

system include: (1) establishing additional protections

for occupied habitat patches; (2) establishing addi-

tional protections for intact dispersal corridors; (3)

reintroducing bighorn sheep populations in suitable

habitat patches that are currently unoccupied; and (4)

removing existing barriers to dispersal (e.g., installing

Fig. 1 Desert bighorn

sheep habitat patches in the

Mojave Desert region. Gray

polygons are occupied

patches, white polygons are

unoccupied patches, and

hollow dashed polygons are

‘‘buffer’’ patches outside the

study area. Barriers to

dispersal (interstate

highways, urban areas, etc.)

are shown in black. Patches

are labeled with 3-letter

abbreviations; for full patch

names, see Table S1 in

Supporting Materials
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wildlife crossing structures). We use genetic-based

landscape resistance models from the Mojave bighorn

sheep metapopulation to construct network models

with three objectives: (1) to establish priorities for

maximizing desert bighorn connectivity in the region;

(2) to determine how the prioritization process is

influenced by the type of connectivity (genetic versus

demographic); and (3) to evaluate the impact of model

error and assumptions on prioritization results.

Methods

Our analysis followed three general steps. First, we

used a least-cost path resistance model optimized from

genetic data (Epps et al. 2007) to estimate connectivity

among habitat patches in the Mojave Desert. Second,

we combined these connectivity estimates with

genetic estimates of dispersal thresholds to construct

network models describing genetic or demographic

connectivity. Third, we used network metrics to rank

the importance of each patch and corridor with respect

to network connectivity, and explored sensitivity of

rankings to connectivity type, network metric, and

modeling error.

Study area

We defined our study area to match the spatial extent

of the analyses in Epps et al. (2007), including 37

habitat patches currently occupied by bighorn sheep

populations (Fig. 1). Because bighorn sheep use steep

terrain almost exclusively, patch boundaries were

delineated on the basis of slope ([10 %) and effective

distance to perennial water sources (see Appendix 2 of

Epps et al. 2007); in some cases, boundaries were

modified using expert opinion to include additional

area known to be used by bighorn sheep. Each

population was associated with a single patch and

represented by a single network node because bighorn

habitat is discretely distributed on the landscape, and

previous genetic analyses supported these patch-based

population definitions (Epps et al. 2005, 2007); thus,

we hereafter use the terms ‘‘patch,’’ ‘‘population,’’ and

‘‘node’’ interchangeably. We also identified 13

‘‘restorable patches’’ in the study area that currently

do not support a bighorn sheep population but did in

the past (Wehausen 1999; Epps et al. 2004) and are

within dispersal range of an occupied patch.

Connectivity with patches beyond the boundary of

our study area is likely, which creates the potential for

bias in the network analysis: patches near the bound-

ary may appear relatively unimportant even if they

provide important connections to patches outside the

boundary. To minimize this bias, we included occu-

pied ‘‘buffer’’ patches adjacent to our study area

(n = 8), but did not evaluate potential management

actions among those buffer patches.

Genetic-based connectivity models

We inferred connectivity using a landscape resistance

model developed by Epps et al. (2007) that used gene

flow estimates among populations of desert bighorn

sheep (392 individuals; 26 populations; 14 microsat-

ellite loci) to test and optimize least-cost path

connectivity models incorporating distance and topog-

raphy and estimated dispersal thresholds in terms of

ED from the best model. We believe least-cost path

models better approximate ED for bighorn sheep in

this system than alternative methods that incorporate

less efficient dispersal routes (e.g., circuit theory,

least-cost corridor) because habitat patches are dis-

crete mountain ranges separated by desert flats,

allowing bighorn sheep to see for long distances to

other habitat patches within the scale of individual

movements and to visually navigate between patches.

Epps et al. (2007) used partial Mantel tests to compare

18 topography-based resistance models representing

all combinations of three percent-slope cutoffs

between high- and low-resistance slope categories,

and six ratios of high: low resistance values. The

strongest correlation between ED and gene flow

occurred when areas of [15 % slope were assigned

1/10th the dispersal cost of areas of\15 % slope. The

estimated maximum effective dispersal distance

(EDMAX) was 16.4 resistance units (referred to as

‘‘km-cost-units’’ in Epps et al. (2007); equivalent to

16.4 km of\15 %-slope terrain, or 164 km of[15 %-

slope terrain).

Bighorn sheep exhibit sex-biased dispersal, with

males moving between patches more frequently and

over greater distances than females (Krausman et al.

1999). Because the Epps et al. (2007) model was

developed from bi-parentally inherited genetic mark-

ers, it is suitable for describing gene flow but likely

overestimates the potential for re-colonization or

rescue, which are limited by female dispersal. Thus,
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a female-specific estimate of EDMAX was needed to

characterize demographic connectivity. We estimated

female EDMAX using two sources of data: (1) obser-

vations of radio-collared females moving between

patches, and (2) sharing of female mitochondrial

haplotypes between patches, which indicate past

female dispersal events given that mitochondrial

DNA is maternally inherited (explained fully in

Appendix S1 in Supplemental Material). The fre-

quency distribution of ED for female dispersal events

(Fig. S1) suggested female dispersal declined with ED

at a rate similar to that observed by Epps et al. (2007)

for male-limited gene flow, but with a smaller EDMAX.

We modified the equation from Epps et al. (2007)

predicting gene flow as a function of ED to account for

this reduced dispersal range, and explored sensitivity

to errors of up to 30 % in the estimation of female

EDMAX (Appendix S2).

We calculated the ED of the least-cost paths

between all pairs of habitat patches in the study area

(including buffer patches and patches for which

genetic data were unavailable) using the slope-based

resistance model described above. Anthropogenic

features acting as complete or nearly complete

barriers to bighorn sheep dispersal based on anec-

dotal evidence (Bleich et al. 1996) or genetic

analysis (Epps et al. 2005), including fenced inter-

state highways, urban areas, and aqueducts, were

incorporated into resistance surfaces by assigning

barrier cells a million times higher resistance than

non-barrier cells; this ensured that the least-cost path

between any pair of patches separated by a barrier

had ED [ EDMAX. Least-cost paths were calculated

in ArcGIS 10.0 (ESRI, Redlands, CA, USA). We

then used ED values to predict expected gene flow

(Nm; see Equation 2 in Epps et al. 2007) between

each pair of patches. While the interpretation of

FST-based estimates of Nm has been questioned

(Whitlock and McCauley 1999; Holsinger and Weir

2009), we used Nm merely as a measure of relative

differences in gene flow among pairs of habitat

patches.

Network models

We generated two network models to explore genetic

and demographic connectivity of the Mojave bighorn

sheep metapopulation:

1. Genetic network: This network modeled the

potential for gene flow among patches, which

should be limited by male dispersal range. We

included network edges representing dispersal

corridors between all pairs of patches separated by

ED \ 16.4 resistance units (and hereafter use the

terms ‘‘edge’’ and ‘‘corridor’’ interchangeably).

We then assigned these corridors weights equal to

their predicted Nm values (Appendix S1); thus,

within the estimated maximum male dispersal

range, the strength of dispersal varied with

effective distance as predicted by the genetic-

based resistance model. We assumed gene flow

between connected patches was symmetrical; the

validity of this assumption is discussed later.

2. Demographic network: This network modeled the

potential for rescue or re-colonization of a patch

from neighboring patches, which should be lim-

ited by female dispersal range. Accordingly, we

included corridors between all pairs of patches

separated by ED \ 10 resistance units, our esti-

mate of maximum female dispersal distance

(Appendix S1). Similar to the genetic network,

corridors were weighted by the female-specific

Nm-ED equation (Appendix S1), and we assumed

symmetrical dispersal. Thus, the demographic

network was a sparser version of the genetic

network, containing all of the same patches but

only a subset of the corridors due to the more

restricted movement of females.

Evaluating contribution of individual patches

and corridors to connectivity

We used an iterative approach to evaluate the impor-

tance of patches and corridors to network connectivity.

First, we identified subsets of network features that

could be targeted for each of four possible manage-

ment actions. The ‘‘patch protection’’ (PP) subset

included all patches in the current network, and the

‘‘patch restoration’’ (PR) subset included all restorable

patches within EDMAX of a patch in the study area. The

‘‘corridor protection’’ (CP) subset included all corri-

dors in the current network, and the ‘‘corridor

restoration’’ (CR) subset included all potentially

restorable corridors that are currently interrupted by

an anthropogenic barrier but would otherwise connect

two patches separated by \EDMAX. These subsets

Landscape Ecol (2014) 29:605–619 609
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differed between the genetic and demographic net-

works because these networks included different

numbers of restorable patches, corridors, and restor-

able corridors due to differences in EDMAX.

For PP and CP, we deleted one patch or corridor at a

time and then re-calculated network metrics (dis-

cussed below) to determine the effect of that specific

feature on network connectivity. Patches and corridors

whose removal resulted in larger decreases in network

connectivity metrics were inferred to be more impor-

tant contributors to genetic or demographic connec-

tivity, and higher priority for protection. Because

redundant corridors were excluded from the network

(Appendix S1), our method assumed that the loss of a

patch compromised all corridors passing through that

patch. For PR and CR, we added one patch or corridor

at a time and re-calculated network metrics; patches

and corridors whose addition resulted in larger

increases in network connectivity metrics were

inferred to be higher priority for restoration.

Contributions of individual nodes and edges to

network connectivity can be assessed using a wide

variety of network metrics, but choosing a biologically

appropriate metric to describe a particular aspect of

connectivity is challenging (Pascual-Hortal and Saura

2006; Moilanen 2011). Global metrics that describe

whole network-level properties can be used to

describe the impact of specific network features on

connectivity by comparing these metrics for networks

with and without a particular node or edge. However,

many global metrics are not calculable or not mean-

ingful when applied to fragmented networks consist-

ing of multiple disconnected subgroups of patches

(‘‘components’’), which are common among anthro-

pogenically-fragmented systems such as ours. We

used two metrics that describe network-level connec-

tivity but are unaffected by multiple components (see

additional details in Appendix S3):

1. Mean weighted closeness (MWC) Closeness is a

measure of how near a patch is to all other

network patches along shortest paths and can be

calculated in weighted networks using Dijkstra’s

(1959) algorithm, which accounts for the possi-

bility that paths containing many steps of large

weight may be more efficient than paths contain-

ing few steps of small weight. We used a

formulation of weighted closeness for networks

with disconnected components (Opsahl et al.

2010) and calculated the mean of this metric

across all patches. MWC reflects the long-term

potential for transfer of genes or individuals

across the network because it considers all

connections, including those between very distant

patches that would require numerous dispersal

steps. Network changes (e.g., patch or corridor

additions) that increase MWC can be interpreted

as increasing the efficiency of transfer for genes or

individuals within the network over multiple

generations.

2. Effectively connected pairs (ECP) We defined this

metric as the number of pairs of patches con-

nected by a total effective distance less than

EDMAX (i.e.,\16.4 resistance units in the genetic

network and \10 resistance units in the demo-

graphic network). This included pairs that are

connected by a single corridor or a multi-corridor

path with combined effective distance\EDMAX.

ECP describes the short-term potential for genetic

or demographic connectivity among populations.

For each management action, we calculated the

proportional change (hereafter, D value) in network

metrics when each feature was removed from the

network (for PP and CP) or added to the network (for

PR and CR). Larger D values indicate features with a

larger positive impact on connectivity.

To determine how the type of connectivity affected

prioritization results, we calculated Spearman’s rank

correlation coefficient between genetic network D
values and demographic network D values for each

metric (ECP or MWC) and type of management action

(PP, CP, PR, or CR). We also calculated the Spearman

correlation between ECP- and MWC-based D values

within each network to determine how metric choice

affected prioritization. In cases where between-net-

work comparisons involved different numbers of

patches or corridors, we calculated correlations using

D values for those features common to both networks.

Lastly, we identified ‘‘high-priority’’ patches or cor-

ridors for each management action as those ranking

among the top five in at least two of the four

combinations of connectivity type and network metric.

Sensitivity analysis

We evaluated sensitivity to changes in male and

female EDMAX (which define corridor presence/
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absence) by increasing or decreasing EDMAX in

5-percent increments up to 30 % (male EDMAX:

11.5–21.3, female EDMAX: 7.0–13.0 resistance units).

We then reanalyzed the data to produce new sets of D
values at each error level, and we calculated the

Spearman correlation between D values from original

EDMAX estimates and D values at each error level. We

also examined how the set of features identified as

potential targets for each management action changed

as a function of EDMAX (see Appendix S2 for further

details).

Testing ecological relevance of network metrics

Connectivity measures, especially network metrics,

have been criticized for having questionable relevance

to ecological processes such as gene flow or coloni-

zation (Pascual-Hortal and Saura 2006; Moilanen

2011). We tested the relevance of our network-level

metrics (ECP and MWC) by generating patch-level

analogs and determining whether they predicted

nuclear and mitochondrial genetic diversity of patches

in the genetic and demographic networks, respec-

tively. If the structures of our networks adequately

represent gene flow and colonization, and ECP and

MWC adequately capture these processes at the

metapopulation level, then we would expect that

patch-level analogs of ECP and MWC should be

correlated with: (1) allelic richness (A) and expected

heterozygosity (He) of patches in the genetic network,

which should be influenced most by male-mediated

gene flow, and (2) mitochondrial haplotype richness

(HR) of patches in the demographic network, which

should reflect female movements between populations

because mitochondrial haplotypes are maternally

inherited (see Appendix S4).

Results

As expected, the genetic network exhibited much

greater connectivity than the demographic network

(Fig. 2). The genetic network contained nearly twice

as many corridors (gen: 66, dem: 38) and effectively

connected pairs (gen: 122, dem: 65), and fewer than

half as many components as the demographic network

(gen: 5, dem: 13). MWC was nearly twice as high in

the genetic network than the demographic network

(gen: 11.57, dem: 5.83). We report additional network

properties in Appendix S5 to facilitate comparison

with other ecological networks.

We identified 21 restorable corridors and 13

restorable patches in the genetic network, and 15

restorable corridors and 11 restorable patches in the

demographic network. Prioritization of patches and

corridors varied between genetic and demographic

networks, and also between metrics (Tables 1, S3–S6;

Figs. 2, S8–S11).

Correlations between D values from the genetic

and demographic networks ranged from 0.62 to 0.95

depending on which management action and metric

was considered. Within a network type, correlations

between ECP- and MWC-based D values ranged

from 0.35 to 0.95; for all management actions

except corridor restoration, these between-metric

correlations were higher in the demographic net-

work than the genetic network. Although some of

these correlation values were quite low, agreement

among the top ranking features was generally much

better than among the entire set of features

(Tables 2, S3–S6). We identified at least four

patches or corridors for each management action

that met our criteria for high-priority features

(Table 2).

Sensitivity analysis showed that D values were

generally quite robust to errors in EDMAX, although

this varied across combinations of management

action, connectivity type (genetic vs. demographic),

and network metric (Fig. S4). The correlation of

original D values with new D values remained above

0.75 within the range of EDMAX values tested

(±30 %), with the exception of MWC-based results

in the genetic network, which changed considerably

when EDMAX was reduced by more than 20 %.

However, changing EDMAX led to changes in the

subsets of nodes and edges identified as potential

targets for each management action (Figs. S5, S6). For

instance, decreasing female EDMAX by 30 % meant

that only 65 % of the restorable corridors identified in

our analysis would still meet the criteria for a

restorable corridor.

Patch-based analogs of our network metrics calcu-

lated for the genetic network predicted both A and He

(R2 = 0.19–0.34; P = 0.002–0.029), and those cal-

culated for the demographic network predicted HR

(R2 = 0.53–0.56; P \ 0.0001), for 25 populations

within our study system (Appendix S4, Table S2). Our

patch-level analogs of ECP and MWC explained

Landscape Ecol (2014) 29:605–619 611
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considerably more variation in all three genetic

diversity indices than common centrality metrics

(Table S2), suggesting that ECP and MWC have

greater ecological relevance as measures of connec-

tivity, although much of the variation in genetic

diversity remained unexplained.

Fig. 2 Prioritization of patch and corridor protection according

to network type (genetic or demographic) and network metric used

to rank features (ECP effectively connected pairs, a measure of

short-term network connectivity, MWC mean weighted closeness,

a measure of long-term connectivity). Black circles and lines

represent existing patches and corridors included in the

prioritization analysis; circle size and line width are inversely

proportional to rank (larger circles and wider lines are more

important patches and corridors to protect). White circles and

dashed lines represent ‘‘buffer’’ patches and associated corridors

(not ranked). Patches are labeled with 3-letter abbreviations; for

full patch names, see Table S1 in Supporting Materials
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Discussion

Recognition of the need to prioritize management

(including restoration) of habitat patches and corridors

at the landscape scale is increasing, as evidenced by

recent publications addressing this issue using resis-

tance- or network-based approaches (McRae et al.

2012; Theobald et al. 2012; Albert et al. 2013). Yet,

very rarely have these two approaches been combined

to achieve greater insight into the effects of potential

management actions, as demonstrated by our analysis.

One exception is Lookingbill et al. (2010), who used

network theory to evaluate the relative importance of

existing dispersal corridors and habitat patches for the

Delarma fox squirrel (Sciurus niger cinereus); that

analysis used an individual-based simulation model of

dispersal across an expert opinion-based resistance

surface to estimate connectivity among patches and

construct a binary network. We further refined this

methodology by: (1) utilizing an optimized,

empirically-derived resistance model, (2) constructing

weighted networks that incorporate differences in

effective distances among corridors (i.e., edge

weights); (3) considering patch and corridor restora-

tions in addition to losses; and (4) evaluating multiple

types of connectivity. This combined approach pro-

vides a useful framework for distinguishing among

different processes related to connectivity, as well as

an objective means of balancing those biological

elements in our decision-making.

We observed large structural differences between

networks based on genetic connectivity and those

based on demographic connectivity (Fig. 2), with

much higher levels of both short-term (ECP) and long-

term (MWC) connectivity in the genetic network.

Therefore, managing to maintain only genetic con-

nectivity among bighorn sheep populations would not

necessarily maintain natural re-colonization; likewise,

important connections for gene flow might be missed

if only colonization potential was considered. This

Table 1 Correlation of prioritization results between networks and between metrics for each management action

Set 1 Set 2 Spearman correlation coefficient

Network Mgmt. action Metric Network Mgmt. Action Metric

Between-network correlations

G PP ECP D PP ECP 0.88

G PP MWC D PP MWC 0.62

G PR ECP D PR ECP 0.88

G PR MWC D PR MWC 0.95

G CP ECP D CP ECP 0.80

G CP MWC D CP MWC 0.78

G CR ECP D CR ECP 0.82

G CR MWC D CR MWC 0.85

Between-metric correlations

G PP ECP G PP MWC 0.74

D PP ECP D PP MWC 0.95

G PR ECP G PR MWC 0.85

D PR ECP D PR MWC 0.92

G CP ECP G CP MWC 0.77

D CP ECP D CP MWC 0.80

G CR ECP G CR MWC 0.46

D CR ECP D CR MWC 0.35

‘‘Set 1’’ and ‘‘Set 2’’ describe the two sets of D values being compared. For instance, the first row of the table shows the correlation

between ECP-based D values for patch protection in the genetic network (‘‘Set 1’’) and ECP-based D values for patch protection in

the demographic network (‘‘Set 2’’)

G genetic network, D demographic network, PP patch protection, PR patch restoration, CP corridor protection, CR corridor

restoration, ECP effectively connected pairs, MWC mean weighted closeness
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pattern is probably common among species that

exhibit strongly sex-biased dispersal. For such species,

researchers and managers must give greater recogni-

tion to the type of connectivity that they are trying to

model, preserve, or restore.

Considering different types of connectivity resulted

in markedly different prioritization results for some

management actions (Table 1, S3–S6). However,

there was generally strong agreement among the

highest ranking features in each network according to

one or both of our metrics. For each management

action, we found at least four high-priority features

and at least two features that ranked in the top five

across all four combinations of connectivity type and

network metric (Table 2), suggesting that conserva-

tion actions could target patches or corridors that are

highly important to both genetic and demographic

connectivity and to both short- and long-term connec-

tivity. Consistent with previous network-based

connectivity analyses (Jordán et al. 2003; Laita et al.

2011), prioritization also depended on the choice of

network metric (Table 1), reinforcing the need to

select biologically relevant network metrics. We chose

our two metrics to represent local and long-distance

transfer of genes or individuals in a bighorn sheep

metapopulation, but recognize that these metrics

cannot capture all aspects of those processes.

Our sensitivity analysis suggested that values of

connectivity metrics were relatively robust to errors in

estimating EDMAX (Appendix S2). However, such

errors were quite influential in determining which

features should be candidates for a particular man-

agement action. For instance, the Avawatz–S. Soda

(AVA–SSO) corridor was the highest ranking restor-

able corridor by MWC in the demographic network

(Table S6), but if female EDMAX was decreased by

only 10 %, the AVA–SSO corridor’s ED would be too

large for it to be considered a restorable corridor. Thus,

Table 2 High priority patches and corridors for protection or restoration in the genetic and demographic networks

Mgmt. action Patch or corridora Genetic network Demographic network

ECP MWC n ECP MWC n

Patch protection PRO 4 4 37 4 4 37

PCC 4 4 4 4

GRA 4 4 4

NBR 4 4 4

CAD 4 4 4

Patch restoration PIN 4 4 13 4 4 11

OWL 4 4 4 4

FIG 4 4 4 4

SLA 4 4 4 4

QUA 4 4 4

Corridor protection GRA–PRO 4 4 47 4 4 27

GRA–NBR 4 4 4 4

CAD–NBR 4 4 4

CSS–KME 4 4 4

CAD–SSO 4 4 4

Corridor restoration GRA–MAR 4 4 21 4 4 15

NBR–SBR 4 4 4 4

EMO–ORO 4 4 4

CLI–PRO 4 4

High priority features are defined as those ranking among the top 5 (represented with a 4 in the table) in at least two of the four

combinations of connectivity type (genetic, demographic) and network metric (ECP, MWC)

n total number of features associated with a particular management action in the genetic or demographic network
a See Table S1 for 3-letter patch abbreviations and full patch names
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even small errors in estimating dispersal thresholds or

dispersal functions, or estimates that ignore landscape

resistance, could affect conclusions about the relative

importance of patches and corridors to network

connectivity. Estimating dispersal functions and

thresholds remains a challenging research need and a

major limitation to many connectivity analyses (Parks

et al. 2012).

Analytical limitations

Our networks were constructed using the topography-

based Epps et al. (2007) landscape resistance model,

and the parameterization of that landscape resistance

model could affect our conclusions about the relative

importance of network features. Incorporating other

environmental variables in the resistance model could

influence network rankings, although Epps et al.

(2007) observed a strong relationship between genetic

differentiation and effective distance using the topo-

graphic resistance model. Additionally, resistance

models were tested using partial Mantel tests, which

have been demonstrated to have inflated risk of type I

error when applied to spatially autocorrelated data

(Graves et al. 2013; Guillot and Rousset 2013);

however, the best model was identified on the basis

on Mantel r correlation, not statistical significance,

and had a very small p value (\0.0001, unpublished

data).

We assumed that dispersal between patches is

symmetrical, but this may be an oversimplification.

Because habitat quality varies among patches (Epps

et al. 2004, 2006), source-sink dynamics could influ-

ence dispersal. Network theory can easily accommo-

date asymmetrical connectivity, but genetic methods

for estimating directional dispersal are less well

established.

Our prioritization assumed that only a single patch

or corridor was added or removed to the existing

network. Consequently, if multiple actions were taken

simultaneously, it would be incorrect to conclude that

the greatest benefit to connectivity would result from

pursuing actions in order of their D values. For

instance, if the two restorable corridors with the

highest D values in the genetic network were restored

(the Granite–Marble [GRA–MAR] and N. Bristol–S.

Bristol [NBR–SBR] corridors; Table S6; Fig. S8), they

would play nearly identical roles by linking the two

largest network components across Interstate

Highway 40. Restoring the GRA–MAR corridor and

a corridor across a different barrier (e.g., the Eagle–

Orocopia [EMO–ORO] corridor across Interstate

Highway 10) would be more useful. We strongly

recommend grouping restorable corridors by the

barrier feature with which they are associated, then

using our results to prioritize within each group rather

than on the basis of overall ranks.

Additional factors beyond the contribution of

patches and corridors to metapopulation connectivity

will need to be considered when prioritizing manage-

ment. Monetary costs, conflicts with other land uses,

effects on other species, effects on disease spread, and

public support are all likely to vary by management

action and location. Information on habitat quality

(e.g., Epps et al. 2004) may also allow more efficient

use of management resources than relying solely on

network connectivity rankings. Consideration of these

factors is beyond the scope of this analysis; here, we

have sought only to provide input on the biological

connectivity aspect of the overall prioritization

process.

Recommended actions in the Mojave Desert

region

Should conservation resources be allocated preferen-

tially to patch- or corridor-focused actions? Using D
values to compare patch protection versus corridor

protection is not informative because our analysis

assumed that the loss of a patch also compromised all

associated corridors (a necessary assumption because

network methods require that every edge connects two

nodes). However, comparisons between patch resto-

ration and corridor restoration effectiveness on the

basis of D values are warranted. Corridor restorations

had a much stronger effect on long-term connectivity

(as measured by MWC) than patch restorations in both

the genetic and demographic network: 18 of 21

restorable corridors in the genetic network and 9 of

15 in the demographic network would increase MWC

more than the top-ranked restorable patch (Tables S5,

S6). If increasing short-term connectivity is the goal,

however, then patch restorations could be nearly as

effective: only four restorable corridors in the genetic

network and two in the demographic network would

increase ECP more than the top-ranked restorable

patch (Tables S5, S6). There may be fewer new

opportunities for patch protection than corridor

Landscape Ecol (2014) 29:605–619 615

123



protection in our study area because the current system

of land protection (e.g., Wilderness designation)

focuses more on core bighorn sheep habitats (i.e.,

mountain ranges) than infrequently used dispersal

habitat. Yet, patch protection and restoration through

natural colonization or population reintroductions are

still vital to maintain metapopulation viability. Restor-

ing corridors to unoccupied patches could be war-

ranted when a patch contains favorable bighorn sheep

habitat but has experienced a population extinction

due to stochastic or temporary factors (e.g., local

drought or disease outbreak) and has not had oppor-

tunity to be naturally recolonized; in such cases,

restoring connectivity could make population reintro-

duction efforts unnecessary.

Our network approach is also amenable to evalu-

ating conservation actions targeting multiple patches

or corridors. For example, we used our models to

quantify the effects of four plausible multi-feature

restoration scenarios: (1) re-occupation of the N. Soda

(NSO) patch and restoration of the NSO–SSO, GRA–

MAR, and EMO–ORO corridors to mitigate barrier

effects of three interstate highways; (2) re-occupation

of four northern patches (Fort Irwin Granite [FIG],

Owlshead [OWL], Quail [QUA], and Slate [SLA])

that are currently unoccupied but have low predicted

extinction probabilities (Epps et al. 2004); (3) re-

occupation of the Sacramento (SAC) and Piute (PIU)

patches to provide stepping stones between eastern

and central patches in the metapopulation; and (4) all

of the above actions. Scenario 1 is the most efficient of

the individual scenarios for increasing MWC because

it links together the four largest components in the

network (Table 3). Scenario 1 is also most efficient for

increasing ECP in the genetic network, but slightly

less efficient than Scenario 2 in the demographic

network. Dramatic increases in metapopulation con-

nectivity are possible by combining patch and corridor

restorations: under Scenario 4, ECP and MWC would

more than double in the genetic and demographic

networks.

We suggest several actions to efficiently maximize

genetic diversity and metapopulation persistence in

the Mojave region. First, restore at least one connec-

tion across each of the three interstate highways that

currently fragment the metapopulation, which will

vastly improve the potential for long-distance gene

flow in this system and restore important demographic

links (Epps et al. 2005). Second, evaluate whether

existing infrastructure such as highway bridges over

washes can be modified to encourage use by bighorn

sheep; for instance, by removing highway fencing

around bridged washes and strategically locating

artificial water sources to lure sheep to the area, it

may be possible to facilitate bighorn sheep crossings

beneath highways in some locations. Third, maximize

patch occupancy by protecting or improving habitat,

protecting routes for natural re-colonization (even to

currently unoccupied patches), or reintroducing pop-

ulations where natural re-colonization is unlikely.

Finally, we note that our rankings could be used to

address situations where connectivity is potentially

problematic. For instance, our rankings may indicate

which populations or connections could have the

greatest impact on disease spread, such as in response

to a recent outbreak of respiratory disease within the

study area (California Dept. of Fish and Wildlife,

unpublished data).

Applying the network approach in conservation

Combining landscape resistance models with network

analysis offers a means of evaluating conservation

scenarios across complex systems. Other studies of

genetic connectivity have used genetic data alone

(e.g., pairwise genetic distances) to construct network

models (Dyer and Nason 2004; Garroway et al. 2008;

Rozenfeld et al. 2008). The advantage of this approach

is that it quantifies genetic connectivity between

populations more directly than the resistance-based

approach we used. However, it can only be applied to

Table 3 Effects of four multi-part conservation scenarios on

connectivity of genetic and demographic networks, as mea-

sured by D values associated with each scenario for both net-

work types and metrics

Genetic

network

Demographic

network

ECP MWC ECP MWC

Scenario 1: mitigate interstate

highways

0.57 0.93 0.46 0.65

Scenario 2: re-occupy

northern Mojave patches

0.35 0.18 0.48 0.33

Scenario 3: re-occupy

stepping stone patches

0.07 0.06 0.05 0.02

Scenario 4: all actions in

scenarios 1–3

1.16 1.27 1.02 1.07
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extant populations for which genetic data are avail-

able, and assumes that genetic distance reflects the

current landscape configuration. In contrast, our

resistance-based approach can be used to predict

connectivity between any set of habitat patches and to

evaluate effects of barrier mitigation or population

reintroduction. However, we reiterate that evaluating

how dispersal varies with effective distance is an

important component when combining resistance

models with network analysis, and better methods of

estimating such relationships are needed.

Evaluating the relative importance of habitat

patches and dispersal corridors by iterative removal

from and addition to network models is particularly

useful when the spatial footprint of potential threats to

habitat or connectivity is unclear. For instance, the

transitory nature of renewable energy development

plans in the Mojave Desert makes it difficult to

anticipate the specific locations and extents of energy

facilities with any certainty. Incorporating anticipated

landscape changes directly into resistance surfaces

and re-analyzing network structure might be prefera-

ble, but it may be too late for meaningful conservation

action by the time that final development plans are

available. Instead, the iterative prioritization method

can be used to evaluate landscape changes in accor-

dance with the importance of the patches and edges

likely to be affected due to their proximity.

Conservation applications of network theory have

been criticized for overemphasizing the relevance of

landscape connectivity (Moilanen 2011), which is

only one of several factors contributing to regional

persistence—the ultimate goal of most conservation

programs. More complex metapopulation models

allow for estimation of persistence probabilities and

have also been used to prioritize habitat patches and

dispersal corridors (Moilanen et al. 1998; Hoyle and

James 2005); yet the data requirements for such

models are prohibitive even in many well-studied

systems, limiting their application to real-world con-

servation issues. For instance, the well-known inci-

dence function model (Hanski 1994) requires

estimates of patch-specific colonization and extinction

rates that are typically obtained through multi-year

occupancy surveys of all possible habitat patches.

Obtaining these empirical estimates for species with

slow population turnover rates, such as desert bighorn

sheep, is simply not feasible within a short enough

time frame to inform management decisions. For

example, Epps et al. (2010) reported only four known

desert bighorn colonization events in a 20 year period

in the Mojave Desert. On the other hand, there is

abundant evidence that: (1) re-colonization is critical

for persistence of any fragmented system where

population extinction is common (Levins 1969) such

as the Mojave bighorn system (Epps et al. 2004); (2)

genetic diversity affects fitness and ultimately popu-

lation persistence, particularly for species with small

effective population sizes (Reed and Frankham 2003;

Frankham 2005); and (3) gene flow between popula-

tions is a primary driver of genetic diversity in this

system (Epps et al. 2006) and other systems of small,

partly-fragmented populations. Thus, clear biological

reasons exist for attempting to maximize genetic and

demographic connectivity through conservation

actions, even when estimates of their effect on

regional persistence are not possible.
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