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INTRODUCTION
The effect of seamount subduction on forearc 

morphology is documented from subduc-
tion zones worldwide. Subducting seamounts 
generally produce distinctive indentations in 
the deformation front as they enter the frontal 
prism, and their passage beneath the forearc is 
recorded by bathymetric furrows and a compli-
cated pattern of uplift and subsidence (e.g., Lal-
lemand et al., 1989; Dominguez et al., 1998). 
The effect on the frictional properties of the 
plate boundary and on generation and propaga-
tion of plate-boundary earthquakes, however, 
remains controversial. Relationships between 
plate boundary refl ectivity, crustal velocity 
structure, and earthquake activity beneath Costa 
Rica (von Huene et al., 2000), Nankai (Kodaira 
et al., 2000; Bangs et al., 2006), northeast Japan 
(Mochizuki et al., 2008), and Sumatra (Singh et 
al., 2011) indicate that the plate boundary steps 
over subducting seamounts in response to high 
fl uid pressure induced down dip of the sea-
mount, which should reduce the normal stress 
on the plate boundary. Other studies, however, 
suggest that subducted seamounts increase the 
stress on the plate boundary (Scholz and Small, 
1997), resulting in low-angle thrust earthquakes 
(Husen et al., 2002), and potentially transfer-
ring subducted seamounts to the upper plate at 
depths that are diffi cult to image seismically, as 
postulated by Cloos (1992). The impact of sub-
ducted seamounts on upper plate deformation, 
and whether and where they are transferred to 
the upper plate, likely varies from place to place 
depending on seamount size, the depth to which 
it has been subducted, the strength of the upper 
plate, and the amount of sediment on the sub-
ducting plate.

The seafl oor of the Juan de Fuca plate off-
shore Oregon and Washington (United States) is 
relatively smooth west of the deformation front, 
and the deformation front and lower continen-
tal slope do not generally show indentations 
and furrows typical of subducting topography 
(Fig. 1; Fig. DR1 in the GSA Data Repository1). 

Based on topography observed on comple-
mentary parts of the Pacifi c plate, however, it 
is likely that many seamounts and ridges exist 
but are buried by the thick sediments that blan-
ket the Juan de Fuca plate. The possible impact 
of these buried seamounts on subduction-zone 
earthquakes and segmentation along the Casca-
dia subduction zone has received little attention.

Although paleoseismic and historical evi-
dence exist for very large megathrust earth-
quakes on the Cascadia subduction zone (e.g., 
Atwater et al., 2005), the instrumental record 
of earthquakes on the plate boundary is sparse. 
In 2004, two moderate earthquakes (M > 4.7) 
with low-angle thrust mechanisms occurred on 
the plate boundary near 44.5°N (Fig. 1). Since 
then, ~30 smaller earthquakes (M < 3.3) have 
occurred in this region at a rate of 3–5 events/
yr; precise event relocations indicate that these 
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ABSTRACT
Bathymetry and magnetic anomalies indicate that a seamount on the Juan de Fuca plate 

has been subducted beneath the central Cascadia accretionary complex and is now located 
~45 km landward of the deformation front. Passage of this seamount through the accretionary 
complex has resulted in a pattern of uplift followed by subsidence that has had a profound 
infl uence on slope morphology, gas hydrate stability, and sedimentation. Based on potential-
fi eld data and a new three-dimensional seismic velocity model, we infer that this is the most 
recent of several seamounts subducted over the past several million years beneath this segment 
of Cascadia. More deeply subducted seamounts may be responsible for recent earthquake 
activity on the plate boundary in this region and for along-strike variations in the thickness of 
the subduction channel, which may affect coupling across the plate boundary.
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Figure 1. Topography of the cen-
tral Cascadia forearc. Data from 
the Global Multi-Resolution To-
pography 2.0 synthesis (Ryan 
et al., 2009) accessed using 
GeoMapApp (www.geomapapp.
org). Red dots are relocated 
earthquakes (Williams et al., 
2011); dates, magnitudes, and 
mechanisms are shown for the 
two largest events (Tréhu et al., 
2008). Slip vector shows motion 
of Juan de Fuca plate relative 
to Oregon block (McCaffrey et 
al., 2007). A, B, and C show lo-
cations of crustal transects in 
Figure 2. Orange segments in 
A and B indicate strong plate 
boundary refl ectivity (Tréhu et 
al., 1995; Gerdom et al., 2000), 
which may indicate high pore 
pressure. Magnetic anomalies 
M1 and M2 and gravity anoma-
lies G1 and G2 are shown in Fig-
ure 3 and discussed in the text. 
SES is seaward edge of Siletzia 
(see Fig. DR2 [see footnote 1]). 
Inset (Fig. DR1 for larger ver-
sion) shows the regional set-
ting and rough topography on 
the Pacifi c plate; DK is newly 
named Diebold Knoll, which 
rises 750 m above the generally 
sediment-blanketed seafl oor.
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smaller events cluster tightly around the two 
larger events (Fig. 1) and defi ne an east-dipping 
plane (Fig. 2). If slip heterogeneity during 
megathrust earthquakes is controlled by struc-
tures on the upper and lower plates, then corre-
lations between inter-event seismicity and struc-
ture in Cascadia may provide hints about what 
to expect in future megathrust events.

TOPOGRAPHIC, SEISMIC, AND 
MAGNETIC EVIDENCE FOR A 
SUBDUCTED SEAMOUNT BENEATH 
THE CENTRAL CASCADIA 
ACCRETIONARY COMPLEX

Based on seismic refl ection and refraction 
data, a 15-km-wide and 2-km-high “welt” on 
subducted oceanic crust beneath 8 km of sedi-
ment offshore Oregon was identifi ed (Tréhu et 
al., 1994) (Fig. 2A). The welt, located ~50 km 
landward of the deformation front and 15 km 
seaward of the crystalline backstop, was inter-
preted to be a subducted seamount or ridge. 
A subtle magnetic anomaly over the welt was 
modeled assuming the same magnetic proper-
ties as the underlying oceanic crust (Fleming 
and Tréhu, 1999). The magnetic data available 
at the time suggested a linear structure that 
extended to the south; near 44°12′N it appeared 
to merge with a large anomaly associated with 
the upper plate crystalline backstop formed by 

Siletzia (Snavely et al., 1968). No sign of a base-
ment ridge, however, was present in onshore and 
offshore large-aperture seismic data acquired 
in 1996 as part of the ORWELL (Oregon and 
Washington Exploration of the Lithosphere) 
project (Gerdom et al., 2000; Fig. 2B), prompt-
ing us to examine updated gravity and mag-
netic anomaly compilations (Figs. 3A and 3B) 
and extend the two-dimensional (2-D) velocity 
model to 3-D by inverting traveltimes from fan 
shots acquired along two margin-parallel lines 
(Fig. 3C).

Aeromagnetic data indicate that the 1989 
seismic profi le fortuitously passed through a cir-
cular magnetic anomaly (labeled M1 in Figs. 3B 
and 4A) and that several similar anomalies are 
present along this segment of the margin (M2–
M4 in Fig. 3B; Fig. DR2), although they are 
dwarfed by much larger amplitude anomalies to 
the east and west that result from the seaward 
edge of Siletzia (SES) and from seafl oor spread-
ing, respectively. Similar anomalies offshore 
Costa Rica have been modeled as subducted 
seamounts (Barckhausen et al., 1998). M1 can 
be modeled by a cone with a height of 3.5 km 
and basal diameter of 5.7 km that is on top of the 
subducted oceanic crust, assuming a magnetic 
susceptibility of 0 and an east-directed remnant 
magnetization of 10 A/m (Fig. 4B). The summit 
of this cone is slightly shallower and east of the 

summit of the 2-D structure modeled in Fleming 
and Tréhu (1999). Given the nonunique nature 
of potential-fi eld models and the likelihood that 
a subducted seamount has a more complicated 
geometry and internal structure, more detailed 
modeling is not warranted. Nevertheless, this 
exercise supports the conclusion that anomaly 
M1 and similar circular anomalies are likely 
caused by deeply subducted seamounts.

Seafl oor morphology provides additional evi-
dence that magnetic anomaly M1 results from a 
subducted seamount. We note a subtle seafl oor 
bulge coincident with M1 and an approximately 
circular basin southwest of it (Fig. 4C), as would 
be expected if a seamount had been subducted. 
The basin and the bulge each have a diameter 
of ~10 km, and the total elevation difference 
between the base of the 1-km-thick basin fi ll 
and the top of the bulge is ~2.3 km (Tréhu et 
al., 1995), similar to the dimensions of the mod-
eled seamount. Several low, narrow ridges cross 
the bulge with strikes of 324°–335°, approxi-
mately perpendicular to the relative direction 
of Juan de Fuca convergence (Fig. 4C). Such 
ridges are predicted by sandbox models of sub-
ducting conical seamounts (Dominguez et al., 
1998). Northwest-trending ridges are observed 
elsewhere in the Cascadia accretionary complex 
(Fig. 1), but they tend to strike more northward 
or westward and are more widely spaced.

At the present convergence rate (McCaffrey 
et al., 2007), the seamount would have been 
where the basin is now ~750 k.y. ago. Although 
the age of sediments in the basin is unknown, 
depositional relationships suggest that uplift 
was initially to the east (Fig. DR3). As the defor-
mation front migrated west, a new thrust ridge 
formed west of the basin.

NEW CONSTRAINTS ON THE 
GEOMETRY OF THE SUBDUCTION 
CHANNEL

The new 3-D seismic P-wave model shows 
that the P-wave velocity at a depth of 11 km var-
ies along strike (Fig. 3C; see Figs. DR4–DR7 
for model details and additional depth slices). 
This represents the velocity immediately above 
the subducting plate near the SES (Fig. 2). A 
velocity of ~5.5 km/s north of 44°30′N is indic-
ative of sediment subduction beneath Siletzia, 
whereas ~6.5 km/s to the south indicates a very 
thin or absent subduction channel.

Features outlined by solid white lines in Fig-
ure 2 indicate our proposed modifi cations to 
the interpretation of previously published mod-
els. These include a subduction channel a few 
kilometers thick beneath the outer 10–20 km of 
Siletzia in Figure 2B, and reinterpretation of the 
ridge in Figure 2C as a seamount. Resolution of 
the 3-D velocity model is not adequate to defi ne 
the detailed geometry of the boundary between 
Siletzia and the seamount, but does indicate 
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Figure 2. A: Two-dimensional (2-D) crustal model based on multichannel seismic refl ection, 
onshore and/or offshore refraction, and potential fi eld data (Tréhu et al., 1994, 1995; Fleming 
and Tréhu, 1999). Red quadrilateral is from the 2-D model of Fleming and Tréhu (1999). White 
dashed triangle labeled M1 is the cross section of the cone from the 3-D model in Figure 4. 
Locations of topographic bulge, strong bottom-simulating refl ection (BSR), and slope basin 
interpreted to have formed in response to a subducting seamount are shown schematically 
with exaggerated vertical scale. SES is seaward edge of Siletzia from magnetic data.  B: 2-D 
crustal model adapted from Gerdom et al. (2000). Region outlined in white and labeled “sc” for 
subduction channel is a reinterpretation of the model based on the new 3-D model (Fig. 3C). 
Velocity in this region is not well resolved in the 2-D model. C: Crustal model adapted from 
Fleming and Tréhu (1999). Region outlined in white was originally interpreted as a subducted 
ridge but is now interpreted to be a discrete seamount (sm) in contact with Siletzia. Region 
outlined in white is reinterpreted to be a discrete seamount (sm). G1 shows the excess mass 
needed to model gravity anomaly G1 (Fig. 3A). Hypocenters from Williams et al. (2011) are pro-
jected onto B and C with circle size proportional to magnitude. The fi ne horizontal white line at 
11 km depth is dashed where P-wave velocity is <6 km/s, and solid where it is >6 km/s (Fig. 3C). 
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either that it is attached to the subducting plate 
or that a subduction channel of resolvable thick-
ness has not yet developed beneath it.

SPECULATIONS ON THE 
RELATIONSHIP BETWEEN SUBDUCTED 
SEAMOUNTS AND EARTHQUAKES

The earthquake cluster near 44°20′N, 
124°25′W is located immediately west of mag-
netic anomaly M2 (Fig. 3B). We speculate that 
seismicity results from resistance to subduction 
as the seamount is juxtaposed against the over-
lying basaltic Siletz terrane.  The fault plane 
for the 12 July 2004 earthquake is rotated 20° 
clockwise relative to the predicted plate motion 
vector (Fig. 1), possibly due to complexities in 
the local stress pattern as the seamount interacts 
with the crystalline rocks of Siletzia.

In contrast to M1, we cannot associate a 
simple morphological pattern on the seafl oor 
with the projected track of M2 through the 
accretionary complex. M2 is currently located 

beneath Heceta Bank, where folded Miocene 
and Pliocene rocks crop out on the seafl oor 
(Torres et al., 2009). Modeling of anomaly G1 
(Fleming and Tréhu, 1999) required relatively 
high density material at shallow depth beneath 
the apparently nonmagnetic outer part of Heceta 
Bank (Figs. 2C and 3A). If a former subduc-
tion channel was blocked by M2 or a previously 
subducted seamount, the expected pattern of 
subsidence in the wake of the seamount may 
be overprinted by uplift as subducted sediments 
are underplated to the accretionary complex sea-
ward of the obstruction. We note that the pre-
ferred mass excess for G1 (Fleming and Tréhu, 
1999) has a cross-sectional area of ~72 km2, 
which is equivalent (assuming a subduction 
rate of 3.5 cm/yr) to the amount of material 
that would back up in 450 k.y. (i.e., 16 km of 
subduction) if a 4-km-thick subduction channel 
were blocked.

The northern patch of recurrent earthquake 
activity, located near 44°40′N, 124°15′W and 

~20 km east of the SES, is coincident with a 
pronounced gravity low (G2 in Fig. 3A) that 
corresponds to a sharp 1-km-deep, 25-km-long, 
and 5-km-wide depression in the Late Miocene 
unconformity (McNeill et al., 2000). If a sub-
ducted seamount is responsible for localized 
thinning of the upper plate at this location, its 
gravity and magnetic signature is masked by 
the overlying structure of the Siletzia terrane. 
We speculate that the basin indicated by G2 
may result from a subducted seamount that was 
accreted to the base of the upper plate, as postu-
lated by Cloos (1992). This should have initially 
caused uplift. Once it was accreted to the upper 
plate, the underplated material may have acted 
as an asperity, resulting in repeated earthquakes 
that gradually eroded the base of the upper plate, 
forming a basin (von Huene et al., 2000).

SUMMARY AND IMPLICATIONS FOR 
PLATE BOUNDARY COUPLING

Figure 5 summarizes our observations and 
compares them to the landward limit of full 
coupling as determined by Burgette et al. (2009) 
based on geodetic data. The landward limit of 
full coupling swings offshore between 43° and 
46°N, approximately following the SES. If the 
clusters of recent earthquakes defi ne the down-
dip edge of strong coupling, then this boundary 
may be irregular, with indentations related to the 
history of subducted seamounts of different size 
and their varying impacts on the thickness of the 
subduction channel.

Hu and Wang (2008) showed that the strength 
of the upper plate infl uences seafl oor deforma-
tion and tsunamigenesis in megathrust earth-
quakes. Seafl oor morphology overlying and in 
the wake of M1 indicates a local response of the 
upper plate to seamount subduction. In contrast, 
the response of the upper plate to subduction of 
M2 is broadly distributed, similar to block uplift 
and rotation observed in Costa Rica (Gardner 
et al., 2001), suggesting that the strength of the 
upper plate varies down dip and along strike.
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ing a topographic bulge above 
the interpreted subducted sea-
mount (dotted circle) and a 
basin in its wake. Bathymetric 
contours are in meters. Arrows indicate ridges (R) oriented perpendicular to the plate motion direction.
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(B) Uplift , slumping and gas 
hydrate destabilization.

(A) Seafloor dome crossed by 
folds perpendicular to the sub-
duction direction.

(C) Basin generated as the sub-
ducting seamount moves east.
(D) Healing of the deformation
front as it migrates seaward.
(E) Collision between a subducted 
seamount and the basaltic Siletz 
terrane.
(F) Underplating of accretionary 
complex because of a clogged 
subduction channel.
(G) Local basin formation because 
of erosion of the upper plate from 
below.
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Figure 5. Schematic sum-
mary of observations 
and interpretations. Red 
circles are earthquake 
epicenters (see Fig. 2 
caption). Blue line on 
map shows location of 
the composite cross sec-
tion, with dashed seg-
ments showing discon-
tinuities. Solid red line 
labeled LLFC shows the 
landward limit of the fully 
coupled plate boundary 
(Burgette et al., 2009). 
In the cross section, it 
shows the plate bound-
ary where it is thought to 
be fully coupled; whether 
the current plate bound-
ary is above or below the 
subducted seamount in-
ferred from M2 (E) is not 
resolved with existing 
data. In map view, the dotted red line schematically indicates a transition in the strength of 
the upper plate; in cross section, it shows a portion of the plate boundary that may be weak 
but exhibits velocity-strengthening behavior during megathrust earthquakes (Hu and Wang, 
2008). SES is seaward edge of Siletzia. 
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