
WATER RESOURCES RESEARCH, VOL. 36, NO. 12, PAGES 3467-3479, DECEMBER 2000 

On the late-time behavior of tracer test breakthrough curves 

Roy Haggerty 
Department of Geosciences, Oregon State University, Corvallis 

Sean A. McKenna and Lucy C. Meigs 
Geohydrology Department, Sandia National Laboratories, Albuquerque, New Mexico 

Abstract. We investigated the late-time (asymptotic) behavior of tracer test breakthrough 
curves (BTCs) with rate-limited mass transfer (e.g., in dual-porosity or multiporosity 
systems) and found that the late-time concentration c is given by the simple expression 
C = tad{COg -- [mo(Og/Ot)]}, for t >> tad and t• >> tad , where tad is the advection 
time, Co is the initial concentration in the medium, m 0 is the zeroth moment of the 
injection pulse, and t• is the mean residence time in the immobile domain (i.e., the 
characteristic mass transfer time). The function g is proportional to the residence time 
distribution in the immobile domain; we tabulate g for many geometries, including several 
distributed (multirate) models of mass transfer. Using this expression, we examine the 
behavior of late-time concentration for a number of mass transfer models. One key result 
is that if rate-limited mass transfer causes the BTC to behave as a power law at late time 
(i.e., c - t-t:), then the underlying density function of rate coefficients must also be a 
power law with the form ak-3 as a -• 0. This is true for both density functions of first- 
order and diffusion rate coefficients. BTCs with k < 3 persisting to the end of the 
experiment indicate a mean residence time longer than the experiment, and possibly an 
infinite residence time, and also suggest an effective rate coefficient that is either 
undefined or changes as a function of observation time. We apply our analysis to 
breakthrough curves from single-well injection-withdrawal tests at the Waste Isolation 
Pilot Plant, New Mexico. 

1. Introduction 

Mass transfer continues to be cited as a critical transport 
process in groundwater, soils, and streams. Estimation of rate 
coefficients (for both diffusion and sorption) is highly sensitive 
to the late-time behavior of breakthrough curves (BTCs). In- 
deed, recent studies have shown that the late-time data (i.e., 
after the advective peak has passed) may be the most impor- 
tant data for estimation of both the capacity coefficient and the 
rate coefficient or density function of rate coefficients [e.g., 
Farrell and Reinhard, 1994; Wagner and Harvey, 1997; Werth et 
al., 1997; Haggerry and Gorelick, 1998; Haggerry et al., 2001]. 
With improvements in experimental and analytical techniques, 
concentration observations are now frequently available from 
laboratory and field experiments over several orders of mag- 
nitude of both time and concentration. Therefore the exami- 

nation of late-time behavior of BTCs is both feasible and 

critically important to the evaluation of rate-limited mass 
transfer, particularly if discrimination between different mod- 
els of mass transfer is desired. 

A rapidly growing body of recent work on mass transfer and 
transport has extended the basic model of single-rate mass 
transfer [e.g., Coats and Smith, 1964; van Genuchten and 
Wierenga, 1976; Cameron and Klute, 1977; Rao et al., 1980] or 
two-rate mass transfer [e.g., Brusseau et al., 1989] to models 
with distributed or multiple rates of mass transfer described by 
a density function of rate coefficients and primarily applied to 
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laboratory data [Connaughton et al., 1993; Lafolie and Hayot, 
1993; Pedit and Miller, 1994, 1995; Backes et al., 1995; Chen and 
Wagenet, 1995; Haggerty and Gorelick, 1995; Ahn et al., 1996; 
Chen and Wagenet, 1997; Culver et al., 1997; Cunningham et al., 
1997; Sahoo and Smith, 1997; Werth et al., 1997; Cunningham 
and Roberts, 1998; Deitsch et al., 1998; Haggerty and Gorelick, 
1998; Kauffman et al., 1998; Lorden et al., 1998; McLaren et al., 
1998; Hollenbeck et al., 1999; Stager and Perram, 1999]. It 
should be noted, however, that the concept of multiple time- 
scales of mass transfer has been employed for at least 3 de- 
cades, primarily in chemical engineering and soil physics [Ruth- 
ven and Loughlin, 1971; Villermaux, 1981; Rao et al., 1982; 
Neretnieks and Rasmuson, 1984; Rasmuson, 1985; Fong and 
Mulkey, 1990; Valocchi, 1990], as have multiple timescales of 
reaction in chemistry [e.g., Albery et al., 1985]. 

A power law BTC (i.e., c --- t -k) plots as a straight line on 
a double-logarithmic graph. Consequently, in this paper we will 
frequently refer to the value of the power k as the "slope." 
Although the slope is always negative, for the sake of brevity, 
we will refer only to its absolute value. 

Power law behavior at late time in BTCs has been noted in 

a number of laboratory and field experiments. Power law be- 
havior was observed in single-well injection-withdrawal 
(SWIW) tests conducted in a fractured dolomite in New Mex- 
ico [Meigs and Beauhelm, 2001]. After pulse injections of solute 
the BTC data in five SWIW tests showed power law behavior 
at late time with k ranging from 2.1 to 2.8. While a lognormal 
density function of diffusion rate coefficients provided excel- 
lent matches to the data [Haggerty et al., 2001], the details of 
the power law behavior were left for another paper. Farrell and 
Reinhard [1994] and Werth et al. [1997] observed power law 
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BTC and mass recovery curves with sorbing organic solutes in 
unsaturated media. Cunningham et al. [1997] were able to 
represent the Werth et al. [1997] data with a gamma density 
function of diffusion rate coefficients, while Haggerty and 
Gorelick [1998] were able to approximate the power law be- 
havior with a lognormal density function of diffusion rate co- 
efficients. Both Cunningham et al. [1997] and Haggerty and 
Gorelick [1998] noted the inability of conventional models of 
mass transfer to yield the appropriate power law behavior. 
Power law behavior with a slope of 3/2 has been observed in 
field data from the Grimsel, Switzerland, test site and has been 
adequately explained with conventional (single rate) matrix 
diffusion [Eikenberg et al., 1994; Hadermann and Heer, 1996]. 
However, single-rate diffusion is only able to yield a power law 
of exactly t -3/2 and can only maintain this behavior slightly 
longer than the mean immobile-domain residence time (t, = 
a2/lSDa for spheres and a2/3Da for layers), where D a is the 
apparent diffusivity and a is the half thickness of the immobile 
domain. Power law behavior such as that observed by Farrell 
and Reinhard [1994]; Werth et al. [1997], or Meigs and Beauhelm 
[2001] cannot be explained with conventional single-rate dif- 
fusion. Jaekel et al. [1996] showed that power law BTCs can 
result from a pulse injection of solute and equilibrium Freun- 
dlich sorption. Unfortunately, none of the three data sets men- 
tioned above are explained by this (the Meigs and Beauheim 
tracers were nonsorbing, and equilibrium Freundlich sorption 
is insufficient to explain the power laws in the other data sets 
[Werth et al., 1997]). 

The purpose of this paper is to explore the nature of tailing 
in mobile-immobile (dual porosity) tracer test BTCs for a wide 
variety of linear mass transfer models. Specifically, we have the 
following objectives: (1) develop an analytic expression for the 
late-time BTCs for transport experiencing a distribution of 
either first-order sorption or diffusion timescales and for both 
pulse injections and media with nonzero initial concentrations, 
(2) examine the information that can be provided by the late- 
time behavior of the BTC, and (3) examine BTCs that exhibit 
power law behavior at late time and the implications for mass 
transfer. Particular expressions describing the late-time BTCs 
for single-rate models with both infinite and finite immobile 
domains, as well as multirate models with first-order and dif- 
fusion rate coefficients defined by lognormal, gamma, and 
power law density functions, are provided. Implications of the 
late-time slopes defined by these equations are discussed with 
respect to mass transfer processes, including implications for 
estimates of the mean residence time in the immobile domain 

(or, equivalently, a characteristic mass transfer time). The 
power law late-time behavior of BTCs in two SWIW tests from 
the Waste Isolation Pilot Plant (WIPP) site in New Mexico are 
examined. 

2. Mathematical Development 
2.1. General Case: Late-Time Solution for Concentration 

The mass balance equation for a solute advecting and dis- 
persing in one dimension (i.e., along a single stream tube) and 
interacting with rock via diffusion, linear equilibrium sorption, 
and/or linear nonequilibrium sorption is 

la( ac )ac ax = 37 + r(x, t), 
where c [M L -3] is solute concentration, aL [L] is longitu- 
dinal dispersivity, v [L T- 2] is pore fluid velocity, R a [dimen- 

sionless] is the retardation factor in the mobile (advective, 
effective, or kinematic) porosity, c [M L-3] is solute concen- 
tration within the advective porosity, and F(x, t) [M L -3 T -1] 
is the source-sink term for mass exchange with the immobile 
(matrix or diffusive) porosity and nonequilibrium sorption 
sites. From this point forward, we will adopt the terminology of 
"mobile" and "immobile" domains and concentrations, which 
refer to either sorption or diffusion. We will employ the uni- 
form initial conditions 

c(x, t = 0) = Cim(X , Z, t = 0): Co, (2a) 

where Cim [M L -3] is solute concentration within the immo- 
bile domain, which may, in the case of diffusion, be a function 
of a second spatial coordinate z oriented normal to the mobile- 
immobile domain interface. We will also employ the boundary 
conditions 

c(x = O, t) = moa(t), (2b) 

c(x --> •c, t) = Co, (2c) 

where mo [M T L -3] is the zeroth moment of the BTC, Co 
[M L -3] is the initial concentration in the system, and 8(t) 
[T -•] is the Dirac delta. The Dirac injection is never met in 
practice. However, as long as the duration of the pulse is much 
shorter than the mean residence time in the immobile domain, 
(2b) will be a sufficiently good approximation. For a finite 
pulse injection with constant velocity the zeroth moment m o is 
the injected concentration multiplied by injection time. 

For initial and boundary conditions (2a)-(2c) then at late 
time, 

c•c 

O•L •XX << C, t >> tad , (3) 

where tad [T] is the average advective residence time (equal to 
LR,/v if velocity and retardation are constant in space). In 
other words, once the input pulse has advected far past the 
point of observation L, then dispersion has a negligible effect 
on concentration. Figure 1 (discussed in section 3.2) shows that 
the late-time result we obtain is valid independent of the dis- 
persivity. Note that (3) is always valid (including early time) if 
a• << L. Similarly, if the immobile domain has a long mean 
residence time relative to advection, then at late time 

c•c 

<< r(x, t), t >> t,,j t, >> tad, (4) ot 

where t, [T] is the mean residence time in the immobile 
domain. At late time, concentrations do not change signifi- 
cantly with time, and changes of concentration along the 
streamline are determined by exchange between the mobile 
and immobile domains. In other words, at late time, concen- 
tration at any point in space is determined only by the sum of 
diffusion out of the immobile domain between the point of 
injection and the point of interest. Note that from this point 
forward, it will be assumed that t, >> tad and t >> tad unless 
otherwise stated. Therefore (1) may be rewritten: 

v Oc 

Ra Ox = r(x, t), (s) 

where we have assumed that there are no sources and sinks of 

fluid and velocities are steady (note, however, that v and R a 
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may still be variable in space). By integration we can obtain a solution for concentration at late time: • I •t Ik \ I•^D•(Pe= 1000) I- 

c(x = L, t) = - •,(x) F(x, t) dx, (6) 
I 

where L [L]is the distance from point of injection to point of 10 2 : 

observation along the flow path. Note that the integration over [ 5 space is valid because at late time the source-sink term changes 100 
very slowly relative to the advective residence time. If the 
parameters and functions that compose F(x, t) are spatially 10 '2 

10 's 10 's 10 • 10 "a 10 '2 10 '• 10 ø 10 • 
uniform (the spatially variable case is left for a future paper), 
then this leaves us with a very simple expression for concen- 
tration at late time: 

c(x = L, t) = --tadF(t). (7) 

Note that this expression is valid even if the velocity field is not 
spatially uniform. From this point on, the dependency of c on 
x = L and t is assumed implicitly. 

2.2. Source-Sink Term F(t) 

The source-sink term F(t) is the rate of loss or gain of 
concentration to or from the immobile domain (loss at early 
time and gain at late time). The source-sink is commonly 
expressed as a derivative of immobile concentrations [e.g., van 
Genuchten and Wierenga, 1976; Cameron and Klute, 1977], but 
for our problem it is more convenient to express it as a con- 
volution, following Carrera et al. [1998]. For any linear mass 
transfer problem with uniform initial conditions the source- 
sink term at all times is 

t Oc(t- z) Oc Og r(t) = o• g(*) d, = • *g = c* • + cgo- cog 

where g(z) is a "memory function" to be defined [T-•], the 
asterisk represents the convolution product, go is the memory 
function at t = 0 [T-•], and c o [M L -3] is the initial 
concentration. Note that the Laplace transform of (8) is com- 
monly used in analytical solutions [e.g., Villermaux, 1974; Car- 
rera et al., 1998; Cunningham ahd Roberts, 1998; Hollenbeck et 
al., 1999] and that the right-hand-side of (8) is most easily 
derived in the LaplaCe domain. Equation (8) has been ex- 
pressed explicitly in the time domain by, for example, Peszyti- 
ska [1996] and Camera et al. [1998], and results in an integro- 
partial differential equation when substituted back into (1). 
The memory function #(t) may be physically interpreted as the 
capacity coefficient (•3tot (see Appendix A)) multiplied by the 
residence time distribution in the immobile domain, given a 
Dirac pulse at the surface. The derivative of #(t) is propor- 
tional to what is commonly called iri statistical physics the 
probability of first return or distribution of first passage times 
[e.g., Bouchaud and Georges, 1990, pp. 271-272]. 

We desire to find a closed-form eXPression for the source- 
sink term in (8), accurate at late time, that may be substituted 
into (7). We recognize the following characteristics of F (t)' (1) 
At early time the function represents rapid loss from a high- 
concentration pulse in the mobile domain to the immobile 
domain, and (2) at late time the function represents slow gain 
to the mobile domain (which has very low concentration) from 
the immobile domain. To obtain a solution that is accurate at 

late time, we therefore require an approximate function for 

Da t 

Figure 1. Late-time solution and full advection-dispersion 
mass transfer (ADMT) solutions (Pe = 10 and 1000) for 
spherical diffusion. 

mobile-domain concentration that has the correct pulse size at 
early time and that is approximately zero at late time. Such an 
approximation is available in c = moB(t), where mo is the 
zeroth moment of the injection. Note that this approximation 
is used only for calculating the source-sink term and not as an 
approximation for late-time concentration itself. This approx- 
imation works because at late time the source-Sink term does 

not strongly retain "memory" of the details of the input but 
only of the magnitude of the input. That this approximation is 
sufficient will become apparent when the results are compared 
to full numerical solution. Employing the properties of convo- 
lution, (8) can now be expressed: 

0# 
F(t) --- mo •- cog, t >> tad ta >> tad. (9) 

The general form of the memory function is (modified from 
Carrera et al. [1998, p. 182]) 

g(t) = ab(a)e -ø•t da, (10) 

where a is a rate coefficient [T -•] and b(a) is a density 
function of first-order rate coefficients [T]. Note two differ- 
ences between our definition of the memory function and that 
of Carrera et al. [1998, p. 182, Equations (15) and (16)]. First, 
our memory function #(t) includes the constants that are 
placed before the source-sink term in Carrera et al.'s mass 
balance equation. Second, although Carrera et al. [1998] ex- 
press (10) as a discrete function, the more general expression 
is as a continuous function, allowing for density functions of 
diffusion rate coefficients, etc. Various density functions b (a) 
are given in Table 1 along with the corresponding memory 
function #(t). Note that using (15) from Carrera et al. [1998, p. 
182] is equivalent to using our (10) for diffusion in a finite layer 
(see Table 1). 

We note that (10) is the Laplace transform of ab(a), where 
t substitutes for the Laplace variable. We also use the property 
of the Laplace transform [e.g., Roberts and Kaufman, 1966, p. 4] 

Og 
•{a2b(a)} = at ' (11) 

where •{ ) indicates the Laplace transform. 
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Table 1. Density Functions b(a), Corresponding Memory Functions #(t), and Harmonic Means &u of the Density 
Functions 

Model b(a) g(t) 

First order /•tot•( O/ -- O/f) 0/f•tote-o•ft 0/f 

b(•) 
Multirate b( 
Gamma /•tot an-le-a/• /•tot'YTI('yt + 1)-'!- 1 0 T} <: 1 

distribution 3,nF(r/• (r/- 1)T r/> 1 

Power law - ak-3 -t•-k 0 
distribution (k- 3) 

= 0 a with O/mi n (k- 2) O/max 

finite layer • (2j - 1)2-z2 a a - 4 •-• • 2/3tot •- exp - 4 a2 t 3 •-• 
j=l j=l 

infinite layer b lim (2j - 1)2w2Ra a ot- 4 •-• Ra a--• = 

Diffusion: 4/•to t Da 

cylinder c • • • Ot -- ///2 •- E 4/•tøt •- exp --uf •t 
j=l j=l 

Diffusion: 6/•tot D a Da 
sphere • j-Y-• & a - j2 w2 •- E 6/•tot •- exp & • t 

j=l j=l 

lognormal * 8•to t In (2j- 1)2-z 2 -/x 
Da/a 2d • • (2/-- 1)2rra exp -- 2o • 

must be obtained numerically 

Da 

k_<3 

k>3 

Da 
15• 

Gamma • 3,(2j 3,(2j E 2/•totTT/ Tt (2j - 1)27r 2 -7-1 0 T/<• 1 D./a2d (2j -- 1)2wxr(•/)c• C i)2w2 exp -- Z ])2712 • q- 1 3(T} -- l)'y T} > l j=l n=l 

aSee text and equations (30)-(37) and Table 2 for other cases and details. 
brim [dimensionless] is matrix retardation factor; 0im [dimensionless] is matrix porosity; a w [L-1] is the specific surface area of matrix. 
CHere uj is the jth solution of Jo(uj) = 0, where J0 is a Bessel function of the first kind. 
aThis is a distribution of one-dimensional pathways or layers. 

Employing (7), (9), (10), and (11), we can now write an 
approximation for concentration at late time: 

C -- tad C O# -- /T/0 

= tad (Co + amo)ab(a)e -"tda, 

= tad•J•{(½ 0 + amo)ab(a)}. (•2) 

Equation (12) was verified against a numerical model. The 
numerical model solved the full advection-dispersion mass 
transfer (ADMT) equations (i.e., (1)) for several types of 
source-sink terms, F. These numerical solutions are discussed 
in section 3 and shown for several cases in Figures 1-4. The 
numerical solution required none of the assumptions required 
to develop (12). 

All forms of (12) are equivalent and are useful in different 
ways for understanding the late-time behavior of BTCs. We 
expect that in most applications only one of Co or m o will be 
nonzero; however, (12) holds true regardless of the values of 
the initial concentration in the porous medium Co and the 
zeroth temporal moment of the input pulse mo. Note that the 
late-time concentration can be calculated for various density 

functions b (a) using # (t) supplied in Table 1. See Appendix B 
for two notes regarding the use of (12). 

At this point we reemphasize the restrictions on (12). These 
are as follows: (1) Time is much greater than the advection 
time; (2) the mean residence time in the immobile domain is 
much greater than the advection time; and (3) time is much 
greater than the duration of the injection pulse, meaning that 
an impulse (Dirac) function is a valid approximation to the 
injection. In a spatially varying velocity field, restrictions (1) 
and (2) mean that both time and mean residence time in the 
immobile domain must be much greater than the sum of ad- 
vection time across a control plane and the standard deviation 
of that advection time. In particular, a power law distribution 
of advection times (such as invoked by, for example, Berkowitz 
and Scher [1997]) would invalidate the use of (12). 

2.3. Mean Residence Time in Immobile Domain 

One of the criteria for use of (12) is that the mean residence 
time in the immobile domain be much greater than the advec- 
tion time. This section outlines the calculation of this mean 

residence time, as well as providing an effective rate coefficient 
that may be used in an "equivalent" first-order model of mass 
transfer. 

The residence time distribution in the immobile domain 

given a Dirac impulse at the surface is 9(t)//•to t. The mean 
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residence time (or characteristic mass transfer time) is there- 
fore 

[1998] make the same assertion. In the case of spherical blocks 
the density function is 

ta: J•to-• t#(t) dt 
(13) 

1 b(.) -- dO/. 
•tot 

It can be shown [e.g., Cunningham and Roberts, 1998] that the 
zeroth, first, and second temporal moments of the BTC are the 
same for any density function of rate coefficients provided that 
the mean residence time in the immobile domain is the same. 

Therefore the best effective rate coefficient (i.e., the one that 
yields the same zeroth, first, and second moments of the BTC) 
is the harmonic mean of the density function, since 

1 •b(a) 
= = . 

Notably, the harmonic mean may be zero for some densi• 
functions, meaning that the mean residence time in the immo- 
bile domain is infinite. Note that an infinite mean residence 

time does not require infinite size or infinite capaci• in the 
immobile domain. The harmonic means for a number of den- 

si• functions b(a) are shown in Table 1. 

3. Late-Time Behavior of BTCs 

In this section we will consider a number of examples of 
BTCs after a pulse injection into a medium with zero initial 
concentration. Many of the functions developed in this section 
are summarized in Table 1, as are several others not discussed 
here. 

3.1. Simple Example 1: First-Order Mass Transfer 

Consider the simplest case of mass transfer described by a 
single first-order rate coefficient O/f. The density function of 
rate coefficients is 

b(O/)-'- j•tot•(O/- O/f). (15) 

The memory function g(t), given by applying (10) to (15), is 

g(t) = afi3tote -•'t. (16) 

The resulting late-time approximation for concentration in the 
mobile domain (with initial concentration of zero) is given by 
substituting (16) into (12): 

C = motad•totO/•e -•f't. (17) 

This solution displays the well-known behavior that late-time 
concentration is exponential with a semilog slope d(ln c)/dt of 

3.2. Simple Example 2: Finite Spherical Blocks 

Consider the case of diffusion into finite spherical matrix 
blocks. Haggetty and Gorelick [1995] showed that a particular 
discrete density function of first-order rate coefficients results 
in a model that is mathematically identical, from the perspec- 
tive of the mobile domain concentrations, to that of diffusion 
into and out of various matrix geometries. Using mathematics 
that is similar to that presented in this paper, Cartera et al. 

••1 613tøt j2,rr2 b(o/) = : j•--•-•2 • o/- -•- (18) 

where J•tot [dimensionless] is the capacity coefficient of the 
spherical blocks, D a [L2 T-1] is the apparent diffusivity, and 
a [L] is the radius of the spherical blocks. This density func- 
tion is a series of Dirac deltas with monotonically decreasing 
weight. The harmonic mean of (18) is the well-known linear 
driving force approximation 15 Da/a 2 [e.g., Glueckauf, 1955], 
and the mean residence time in the spheres is therefore t• = 
a2/15Da . The memory function is 

• Da (_j2zr2Da ) #(t) = • 6j•to t • exp •¾ t . 
j=l 

(19) 

Readers familiar with diffusion in spherical geometry will 
recognize (19) as proportional to the mass flux out of spheres 
initially saturated with a uniform solute concentration and with 
a boundary concentration of zero [e.g., Crank, 1975, p. 91; 
Grathwohl et al., 1994]. 

The resulting late-time approximation for concentration in 
the mobile domain (with initial concentration of zero) is given 
by substituting (19) into (12): 

C -- m0tadJ•to t • E 6J 2rr2 exp -j2rr 2 Da . (20) 
j=l 

From this expression we can see that the late-time concentra- 
tion is exponential; therefore on a double-log plot the late-time 
slope will approach infinity shortly after the mean residence 
time in the immobile domain (t• = a2/15Da) is reached. 

Figure 1 shows the full solution to the advection-dispersion 
mass transfer (ADMT) equations and the late-time approxi- 
mation. The ADMT equations were solved using STAMMT-L 
[Haggetty and Reeves, 2000] for mo = 1 x 104 s kg m -3, tad = 
1 X 104 S, Da/a 2 = 1 x 10 -8 s -•, J•tot : 1, and Peclet 
numbers of both 10 and 1000. STAMMT-L is a code that 

solves (1) with no assumptions other than steady, uniform 
velocity. It is capable of handling a range of mass transfer 
models (e.g., first order, diffusion in various geometries, mul- 
tiple timescales of diffusion, etc.) Since STAMMT-L employs 
none of the late-time assumptions used in this paper, it is a 
good check of the mathematics developed here. All concen- 
trations have been nondimensionalized by the terms in front of 
the infinite series in (20). 

From Figure 1 we make four points. First, the approximation 
very accurately represents the late-time behavior of the ADMT 
solution (regardless of the Peclet number) but obviously does 
not contain the advective-dispersive peak. We can see in Fig- 
ure 1 that the late-time approximation is valid when t >> tad 
provided that t• >> tad. 

Second, the late-time behavior demonstrates the well-known 
3/2 slope for matrix diffusion [e.g.,Hadermann and Heer, 1996], 
which ends when tDa/a 2 > 1. As long as the block size a is 
large enough (or D a small enough) that tDa/a 2 << 1 over the 
entire time of a tracer test, then the slope remains 3/2. In such 
a case it would not be possible to estimate the value of Da/a 2 
from the BTC. The limiting case of "infinite" matrix blocks is 
given in Table 1 for c --- d#/dt --• t -3/2. Note that the 
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Figure 2. Late-time solution and full ADMT solution for 
gamma distribution of first-order rate coefficients. 

harmonic mean rate coefficient for this case is zero, meaning 
that the mean residence time for very large blocks approaches 
infinity. 

Third, the location of the BTC peak in the ADMT solution 
may lie anywhere on the late-time approximation curve, de- 
pendent on the relative values of tad and Da/a 2. 

Last, we note that it is possible to estimate both ½tot and 
Da/a 2 by using the late-time approximation as a type curve, if 
the break in slope is present. The capacity coefficient ½tot 
would be estimated from the vertical shift, while Da/a 2 would 
be estimated from the horizontal shift. 

3.3. Gamma Density Function of First-Order 
Rate Coefficients 

Gamma density functions of rate coefficients have been used 
to represent multirate mass transfer in several papers. Cun- 
ningham et al. [1997] developed the mathematics of a gamma 
density function of diffusion rate coefficients, while Werth et al. 
[1997] applied this model successfully to several mass-fraction- 
remaining data sets. Connaughton et al. [1993] used a gamma 
density function of first-order rate coefficients to model release 
of naphthalene from soil, while Pedit and Miller [1994] em- 
ployed a gamma density function of first-order rate coefficients 
to examine diuron sorption. Other examples include Ahn et al. 
[1996], Chen and Wagenet [1997], Culver et al. [1997], Sahoo 
and Smith [1997], Deitsch et al. [1998], Kauffman et al. [1998], 
Lorden et al. [1998], and Stager and Perram [1999]. The method 
we are using is applicable to both types of density functions, 
and the key relationships for both are given in Table 1. Al- 
though the early-time behavior will differ between gamma 
density functions of first-order and diffusion rate coefficients, 
the late-time slope will be identical for the same value of 

The gamma density function of first-order rate coefficients is 

•tot 

b(a) = 3'T(r/) aT-'e -"/•, (21) 
where 3' [T-x] is the scale parameter and rt [dimensionless] is 
the shape parameter. The harmonic mean of (21) is 0 if r/is less 
than 1, a fact that is of particular importance for applications. 
As a consequence, the mean residence time in the immobile 
domain would be infinite. (This is also true for gamma density 
functions of diffusion rate coefficients.) If rt is greater than 1, 
the harmonic mean of (21) is (r/- 1)3'. 

The memory function is 

0 

9(t) = --½tot • (3't + 1) -7. (22) 

Therefore the late-time concentration in the mobile domain is 

given by 

rt(rt + 1) (23) ½ = m0tadCtøt3'2 (3't + 1) 7+2' 
Note that when 3't >> 1, the BTC follows a power law: 

c • t -7-2 (24) 

The same late-time power law behavior is also exhibited with a 
density function of diffusion rate coefficients. Note that a 
power law BTC (c • t -k) with k < 3 would indicate an 
infinite second (and higher) temporal moment and an infinite 
mean residence time in the immobile domain. 

Figure 2 shows the late-time approximation in (23) nondi- 
mensionalized by the transport terms. We have normalized 
time by the mass transfer rate 3'. Figure 2 also shows a solution 
to the ADMT equations with STAMMT-L [Haggerty and 
Reeves, 2000] for mo = 1 x 104 s kg m -3, tad = 1 X 104 S, 3' ---- 
1 x 10 -4 s -•, r/: 0.5, ½tot : 1, and a Peclet number of 1000. 

We see from (24) and Figure 2 that the late-time double-log 
slope of concentration will be -(rt + 2). For comparison to 
published values, Connaughton et al. [1993] estimated values of 
rt in the range of 0.17 to 0.37 for a gamma density function of 
first-order rate coefficients, while Pedit and Miller [1994] esti- 
mated r/ = 0.11 from their experiments; Culver et al. [1997] 
estimated rt = 0.023 to 0.054 for their column experiments; 
Deitsch et al. [1998] estimated r/from 0.092 to 350 in 15 ex- 
periments with different materials, with the majority having rt 
below 1. Kauffman et al. [1998] estimated r/= 0.60 and 0.84 in 
two column experiments. Werth et al. [1997] found values of rt 
equal to approximately 0.5 for a gamma density function of 
diffusion rate coefficients. Note that almost all of these esti- 

mated rt (i.e., those below 1) will lead to an infinite mean 
residence time within the immobile domain. Consequently, the 
variance of the breakthrough times will be infinite with these 
models. Late-time behavior associated with gamma density 
functions is discussed further in section 4.2. 

3.4. Lognormal Density Function of Diffusion 
Rate Coefficients 

Lognormal density functions of rate coefficients have also 
been used to represent mass transfer in natural systems. Pedit 
and Miller [1994], Backes et al. [1995], Haggerry [1995], Culver et 
al. [1997], and McLaren et al. [1998] all used a lognormal 
density function of first-order rate coefficients to model uptake 
and release of sorbing solutes in soils. Pedit and Miller [1995] 
and Haggerry and Gorelick [1998] used a lognormal density 
function of diffusion rate coefficients to model diffusion of 

sorbing solutes in soils. As is true for the gamma density func- 
tions of rate coefficients, the behavior of both lognormal mod- 
els is very similar, especially at late time and large variances. In 
our analysis here we will employ only a density function of 
diffusion rate coefficients: 

-- D a exp - 20.2 , (25) b* -•- ',,,•= 0. a 2 
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where tx and o- are the mean and standard deviation of 
In (D a/a2), respectively, in a lognormal distribution. The 
equivalent density function of first-order rate coefficients is 
given by Haggetty and Gorelick [1998]' 

b(0/) = .j•l 'j27r5 (2/ - 1)2o-o/ 

{ I (40/) 1 2 } In (2j- 1)2rr 2 - tx 
ß exp - 20.2 ' . (26) 

The harmonic mean of (26) is 3 exp (ix - o2/2). Consequently, 
the effective rate coefficient is approximately 0.22o 2 orders of 
magnitude smaller than the geometric mean. For large 0- the 
effective rate coefficient is approximately zero, and the mean 
residence time in the immobile domain approaches infinity. In 
the limit of very large 0- the density function is log-uniform and 
is equivalent to a power law density function with --• 0/-•. As we 
shall see in section 3.5, this corresponds to a late-time BTC of 
.-..t-2. 

The Laplace transform of (26) must be done numerically. 
The result may then be inserted into (12). After taking the 
second derivative in time (numerically), the late-time approx- 
imation for a concentration BTC is shown in Figure 3 for 
various values of 0-. The time axis of Figure 3 is normalized by 
the geometric mean of (21), and concentration is normalized 
the same as previously. Figure 3 also shows the solution to the 
ADMT equations in the presence of a lognormal density func- 
tion of diffusion rate coefficients. The ADMT equations were 
solved using STAMMT-L [Haggetty and Reeves, 2000] for 
m o = 1 x 10 4 S kg m-3, tad = 1 x 10 4 s,e • = 1 x 10 -4 S -•, 
0-: 5, /3to t --- 1, and a Peclet number of 1000. Note that the 
late-time slopes for the lognormal distribution lie between 2 
and 3 for a large range of time, provided that 0- is greater than 
approximately 3. 

Published values of 0- for lognormal distributions of rate 
coefficients are typically larger than 3 [e.g., Pedit and Miller, 
1994, 1995; Culver et al., 1997; Haggetty and Gorelick, 1998; 
Haggetty et al., 2001], suggesting that mass transfer rate coef- 
ficients have large variability in natural media. With such large 
values of 0- we would expect to see late-time slopes on double- 
log BTCs after a pulse injection between 2 and 3. 

3.5. Power Law Density Function of First-Order 
Rate Coefficients 

An alternative density function that has been less commonly 
used to describe mass transfer in groundwater and soils is a 
power law density function. Hatano and Hatano [1998] used a 
power law density function of waiting times in the context of a 
continuous-time random walk to model the sorption of radio- 
nuclides in a column experiment. Power law density functions 
of waiting times have frequently been used in statistical physics 
to describe anomalous transport behavior [e.g., Bouchard and 
Georges, 1990; Scher et al., 1991]. Frequently, such density 
functions arise from diffusion or rate-limited sorption on a 
fractal geometry. A particular advantage of a power law dis- 
tribution, within the context of this work, is that it allows us to 
investigate power law BTC behavior for a larger range of 
late-time slopes. 

As with a gamma density function, it is possible to define 
both a density function of first-order rate coefficients and an 
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Figure 3. Late-time solution and full ADMT solution for 
lognormal distribution of diffusion rate coefficients. The value 
e • is the geometric mean of the distribution and has units of 

equivalent density function of diffusion rate coefficients. 
Again, although the early time behavior will differ for power 
law density functions of first-order and diffusion rate coeffi- 
cients, the late-time slope will be identical for the same value 
of k. For the sake of brevity, we show only the power law 
density function of first-order rate coefficients. 

A truncated power law density function may be written as 
follows: 

/3tot(k -- 2) 0/k_3, k > 0 k 4= 2 (27a) b(0/) = k-2 k-2 , 
0/max -- 0/min 

0/mi n • 0/ • 0/max, 

where 0/ma x [ T- 1] is the maximum rate coefficient, 0/mi n [ T- 1 ] 
is the minimum rate coefficient, and k is the exponent. The 
value of 0/mi n may be zero if k > 2. The reason for choosing 
to write the power law as k - 3 will become apparent shortly. 
If k = 2, the density function may be written 

3tot 
b(0/) = 0/-1. (27b) 

In ( 0/ma•i,XmlnX ) 
The late-time concentration in the mobile domain is 

motad[3tot(k -- 2) f• .... 0/k-le-at C : k-2 k-2 , 
(0/ma x -- 0/min) 

mln 

k>0 k4=2. 

(28) 

For arbitrary (noninteger) values of k, (28) must, in general, 
be evaluated numerically. However, the most important point 
about (28) is that 

c --- t -k, -• 0/•-n•n. (29) 

Expressed in words, the slope of the BTC is k for times much 
greater than -• and much less than 0/•,•n for all values of k. 0/max 

At times greater than 0/•,•n, the slope goes to infinity. 
It is possible to present closed-form solutions for many spe- 

cific cases of (28); we will provide the solutions for the cases 
k = 1, k = 2, and k = 3. First, let us define three other 
variables in terms of 0/ma x and 0/min i 

q'= 0/maxt , (30a) 
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Table 2. Approximations for the Harmonic Mean of a 
Truncated Power Law 

Approximation to 
Harmonic Mean &u [T-•] Conditions 

k-3) k <2 • O/m] n 
In (,•t)Otmin k = 2 

k 2//k --3\ 2 < k < 3 

O/max k = 3 
In (At) 

(k-3) k>3 • •m• 

The exact expression is given in equation (34). Note that all approx- 
imations are valid only if ,•t >> 1 (i.e., if the ratio of O/ma x is much 
greater than O/min)' 

2 

o/p : 

•t • o/max/o/min, 
2 

O/max 

2 
O/max 

In (Xt)' 

k•-2 

k--2. 

(30b) 

(30c) 

Note that ap is a function of o/ .... o/min, and k and is used for 
the purpose of simplifying the following equations only. 

Using these variables, the late-time concentration for k = 1 
is therefore 

C = motad•toto/p2(e -•/x'- e-*)r -•. (31) 
If k - 2, then the density function is log-uniform, and the 
late-time concentration is 

c = m0tad•toto/p e • + 1 -- e r + 1) r- . 
If k = 3, then the density function is uniform, and the late- 
time concentration is 

E ( ) 2 -v/x, r2 2r -*(r2 C--motad•toto/p e •2t2 +•-• + 2 -e + 2r + 2) 
(33) 

From the above equations we see that a family of curves is re- 
quired for each value of k since both o/rain and o/max appear in all 
equations. However, inspection of the equations indicates that the 
curves for each value of k will be identical until t approaches 

The harmonic mean of the density function (27a) and (27b) is 

o/min/\t 

In (X,) Xt- 1' k = 2, 
o/max k = 3, 

In (X,)' 
(k- 3)•.•-2 _ 1 

otherwise. 
o/min (k- 2) Xt i-3- 1' 

(34) 

Approximations (see Table 2) may be made to (34) that are 
useful in understanding what controls the harmonic mean of 
the distribution. Note again that the mean residence time in 
the immobile domain is simply the inverse of dH. 

We make two points in regard to (34) and Table 2 and leave 
further discussion of late-time behavior associated with power 
law density functions to section 4.2. First, if the late-time slope 
of the BTC is less than 3 (i.e., k < 3), then the harmonic mean 

is controlled by o/min' The parameter o/min cannot be estimated 
from a BTC, however, if the late-time behavior of the BTC 
remains power law until the end of the experiment. Conse- 
quently, the harmonic mean (and therefore the mean resi- 
dence time in the immobile domain) cannot be estimated if the 
behavior of the BTC remains power law until the end of the 
experiment, with a slope less than 3. 

Second, if k < 3 and o/min -- 0, then the harmonic mean is 
0. Therefore, if a BTC has a late-time slope of k < 3 and the 
behavior is due to mass transfer, this may indicate an infinite 
mean residence time in the immobile domain. It also causes 

the second and higher temporal moments of the BTC to be 
infinite. 

Note that there is nothing that physically precludes a late- 
time slope between 2 and 3 being maintained to infinite time 
(i.e., 2 < k < 3 as t -• oc). A slope of k -< 2 to infinite time, 
however, would require an infinitely large immobile domain 
(i.e., infinite capacity). Therefore a slope of k -< 2 cannot be 
maintained for infinite time (for this reason, k = 3/2 is pos- 
sible with diffusion but only until a time of •a2/Da). 

The late-time behavior of concentration, as given by (31)- 
(33), is shown in Figure 4 for o/min = 10-5 o/max' Figure 4 also 
shows the solution to the ADMT equations in the presence of 
a power law density function of rate coefficients. The ADMT 
equations were solved using STAMMT-L [Haggetty and Reeves, 
2000] for m o = 1 s kg m -3, tad ---- 1 S, o/max = 1 S -1, o/min = 1 X 
10 -s s -1, k = 1, •tot -- l, and a Peclet number of 1000. 

3.6. Summary of Late-Time Slopes 

Figure 5 provides a summary of late-time slopes for several 
of the models presented. Late-time slopes are given versus 
nondimensional time. Note that a BTC with advection and 

dispersion will mask some portion of the slopes shown in Fig- 
ure 5 at earlier times. The slopes given in Figure 5 will only be 
present when t >> tad. A power law slope is a constant at late 
time, such as provided by the gamma and power law density 
functions. Note that conventional diffusion model is equivalent 
to the lognormal density function with (r - 0. The slope in the 
conventional model is 3/2 until approximately the mean resi- 
dence time in the immobile domain (a2/3Da for one- 
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Figure 4, Late-time solution and full ••T solution 
powc• law distribution of •st-o•dc• mtc coefficients. 
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dimensional diffusion). Note that the lognormal density func- 
tion with larger (7 cannot provide a true power law BTC but 
can hold the slope relatively constant over a long time. All 
lognormal density functions will approach an infinite slope as 
time goes to infinity. 

4. Applications to Tracer Tests and Discussion 
4.1. WlPP Tracer Tests 

Figure 6a shows data and confidence intervals from two 
single-well injection-withdrawal (SWIW) tracer tests con- 
ducted in the Culebra Dolomite Member of the Rustler For- 

mation at the Waste Isolation Pilot Plant (WIPP) site in south- 
eastern New Mexico. The Culebra is a 7-m-thick, variably 
fractured dolomite and is a potential pathway to the accessible 
environment in the event of a radionuclide release from the 

WIPP. These two tests were performed in the central well at 
two multiwell sites, designated Hl l and H19. The SWIW tests 
consisted of the consecutive injection of one or more slugs of 
conservative tracers into the Culebra Dolomite, followed by 
the injection of a Culebra brine chaser (containing no tracer), 
and then followed by a resting period of approximately 6.5 x 
104 S (18 hours). The tracers were then removed from the 
formation by pumping on the same well until concentration 
was close to or below detection levels. The total residence time 

(i.e., tad ) of the slug in the formation was approximately 9.0 x 
104 S (25 hours). Details of the tracer tests are given by Meigs 
and Beauhelm [2001] and by Meigs et al. [2000]. Interpretation 
of the SWlW tests by Haggerty et al. [2001] suggests that the 
late-time behavior of the BTC is due to multiple rates of mass 
transfer. It is clear that neither heterogeneity nor tracer drift 
alone can be responsible for the observed behavior, though a 
combination of the two may explain some fraction of it [Lessoff 
and Konikow, 1997; Meigs et al., 2000; Haggerty et al., 2001]. 

Note that although the SWIW tests have a velocity field that 
changes in both space and time, our method is still applicable. 
First, the method is not limited to spatially uniform velocity 
fields (provided that residence time distribution in the immo- 
bile domain is spatially uniform, although this restriction will 
be relaxed in a future paper), so the radial nature of the 
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Figure 5. Slopes of late-time double-log breakthrough 
curves (BTC). Note that during the time that the BTC is 
dominated by advection and dispersion (i.e., at early time), the 
slopes will be different from those shown here. Nondimen- 
sional time is given as in Figures 1, 2, 3, and 4 for each of the 
models. 
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Figure 6. Plots of single-well injection-withdrawal data from 
(a) the Waste Isolation Pilot Plant site, (b) the slopes of the 
data, and (c) an advection-dispersion mass transfer model of 
the data. 

velocity field is not a limitation. Second, the transient nature of 
the velocity field is of minor importance, because the tran- 
sience is at very early time (prior to 9.0 x 104 S or 25 hours). 
Since the transience is of very small time relative to the time- 
scales of mass transfer that we are interested in, the transience 
does not influence the analysis. 

The SWIW data in Figure 6a display late-time slopes that 
are approximately constant over several hundred hours. The 
slopes at all times for both BTCs are given in Figure 6b, which 
was calculated using a five-point, moving-window average. As 
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can be seen from Figures 6a and 6b, the late-time behavior of 
both BTCs is essentially power law. The Hll-1 BTC has a 
slope of about 2.123 after 2.5 x l0 s s (69 hours). The slope of 
the Hll-1 BTC appears to become more negative after about 
3 x 106 $ (830 hours), but this may be due to a 70% increase 
in the pumping rate at that time. In addition, the accuracy of 
the data is relatively low after 2 x 106 S, making slope calcu- 
lations uncertain. The H19Sl-1 BTC has a constant slope of 
about 2.165 from 5 x l0 s s (139 hours) to the end of the test. 
Note that conventional (single rate) diffusion can only provide 
a constant late-time slope of 3/2, which is shown for compar- 
ison in Figure 6a. 

The late-time behavior of the SWIW tests was interpreted by 
Haggerry et al. [2001] using a lognormal density function of 
diffusion rate coefficients (D,•/a2). As shown in that paper, a 
lognormal density function does an excellent job of represent- 
ing the entire BTC (with o- = 3.55 for Hll-1 and o- = 6.87 for 
H19Sl-1). However, on the basis of the BTC data alone it is 
not possible to rule out other density functions of rate coeffi- 
cients, including a gamma density function or a power law 
density function. 

4.2. Implications Power Law BTC Behavior 

We note again that both the gamma and power law density 
functions result in power law BTCs at late time, with the 
relationship k - r• + 2. The conventional diffusion model 
also causes power law BTCs with a slope of 3/2 prior to t - 
a2/D,•. There are four important scenarios for such power law 
behavior. 

4.2.1. Case 1: Power law behavior to infinite time and k < 3. 

The first scenario is that the BTC behaves as a power law over 
all time (i.e., the slope of the BTC would be power law to 
infinite time) and that the slope is less than 3. It is important 
to note that (1) this is physically possible provided that the 
slope k is also greater than 2 and (2) several papers effectively 
invoke case 1 by assuming a gamma density function and find- 
ing estimates of r/less than 1 [e.g., Connaughton et al., 1993; 
Pedit and Miller, 1994; Culver et al., 1997; Werth et al., 1997; 
Deitsch et al., 1998; Kauffman et al., 1998; Lotden et al., 1998]. 
In case 1 the mean residence time in the immobile domain 

must be infinite. Consequently, there can be no effective sin- 
gle-rate model that is equivalent to the multirate model in the 
way that a single-rate first-order model is approximately equiv- 
alent to a conventional single-rate diffusion model. No single- 
rate (either first order or diffusion) model can yield the same 
second or higher temporal moments as the multirate model. In 
fact, any single-rate model (either first order or diffusion) fit to 
data will have parameters that are a function of the experi- 
mental observation time (i.e., the experiment length). 

4.2.2. Case 2: Power law behavior longer than experimen- 
tal timescale and k < 3. The second scenario is that the 

power law behavior ends at a particular time that is beyond the 
experimental observation time and that the slope is less than 3. 
In this case the mean residence time in the immobile domain 

cannot be ascertained from the experimental data alone. In 
other words, it is impossible, based solely on the BTC data, to 
estimate an effective rate coefficient: The effective rate coef- 

ficient could be either undefined (as in case 1) or simply longer 
than the inverse of the experimental time. 

If the slope k is less than 2, then the power law behavior 
either must end at some time or the slope must steepen to 
greater than 2. Such is the case with conventional diffusion and 
a slope of 3/2. Because the immobile domain cannot be infi- 

nitely thick, the power law behavior with k less than 2 must end 
at some time. However, without information external to the 
tracer test data the time at which the power law behavior ends 
(and therefore the mean residence time in the immobile do- 
main) cannot be known. 

4.2.3. Case 3: Power law behavior ends within experimen- 
tal timescale. The third scenario is that the power law be- 
havior ends within the experimental observation time. An ex- 
ample of this is the conventional diffusion model with a slope 
of 3/2 at intermediate time. In this case an effective rate coef- 
ficient or mean residence time in the immobile domain can be 

estimated. The mean residence time will be larger for smaller 
slopes and for very small slopes will approach the inverse of the 
time at which the power law behavior ends. Note that case 3 
cannot be modeled by a gamma density function because a 
gamma density function does not allow for an end to the power 
law behavior. 

4.2.4. Case 4: Power law behavior with k > 3. The fourth 

scenario is that the BTC has a slope greater than 3. In this case 
the mean residence time can be estimated even if the power 
law behavior extends to infinite time. This is because the har- 

monic mean of a power law density function is nonzero and 
dominated by the value of a .... provided that k > 3. 

Which scenario do the WIPP SWIW tracer tests fit? On the 

basis of the BTC data alone, H19Sl-1 must be either case 1 or 
case 2. Since the power law behavior extends to the end of the 
data set, it is not possible to estimate the mean residence time 
of the immobile domain. We know only that the mean resi- 
dence time must be at least the inverse of the experimental 
time (i.e., -1.9 x 106 S). H11-1, however, may be case 3. If the 
marked change in slope at approximately 3 x 106 S is not 
primarily due to the increase in pumping rate, then Hll-1 is 
case 3. However, if this is an artifact of the increase in pumping 
rate, then Hll-1 may be case 1 or 2. Given the data uncertainty 
after approximately 2 x 106 s (560 hours) and the fact that we 
have not investigated the case of time-varying pumping rate, 
we remain uncertain as to which case Hll-1 fits. 

Models of the two breakthrough curves were constructed 
and are shown in Figure 6c. In both cases a gamma distribution 
of rate coefficients was used to model mass transfer, which 
yields a power law BTC with late-time behavior of t-"- 2 (i.e., 
slope of k = r• + 2). In addition to mass transfer the model 
simulated advection and dispersion radially away from a well, 
a brief resting period, and advective-dispersive transport back 
to the well (more details on the transport code are given by 
Haggerry et al. [2000, 2001]). Since Hl l-1 exhibits an average 
late-time slope of 2.123 (measured directly from the data), we 
modeled it with r• = 0.123. The only estimated parameters in 
this model were 3' (3.05 x 10 -5 s-I), the advective porosity 
(0.0158), and the dispersivity (0.151 m). Since H19Sl-1 exhibits 
an average late-time slope of about 2.165, we modeled it with 
r• = 0.165. Again, the only estimated parameters in this model 
were y (2.96 x 10 -4 S-•), the advective porosity (0.0679), and 
the dispersivity (0.115 m). In both models all other parameters 
were taken from field measurements and the model of Haggerry 
et al. [2001, Tables 1 and 3]. In both Hll-1 and H19Sl-1 the 
late-time behavior of the data could have been modeled with 

only a single estimated parameter, advective porosity. How- 
ever, the other parameters were estimated to fit the peak of the 
BTC. 

It can be seen that both models are very good representa- 
tions of the SWIW data, particularly at late time. It is worth 
noting that the parameter r• determining the late-time slope of 
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the BTCs was simply read from the data and not fit. This good 
representation of the late-time data emphasizes three points: 
(1) The late-time approximation is a good tool for analyzing 
BTCs; (2) the approximation does not depend on uniform 
velocity; and (3) the approximation does not depend on a 
Dirac injection pulse or negligible dispersion to work well. 

5. Conclusions 

With improvements in experimental and analytical tech- 
niques, breakthrough curves (BTCs) are now available from 
many laboratory and field experiments with several orders of 
magnitude of data in both time and concentration. The late- 
time behavior of BTCs is critically important for the evaluation 
of rate-limited mass transfer, especially if discrimination be- 
tween different models of mass transfer is desired. Double-log 
plots of BTCs are particularly helpful and commonly yield 
valuable information about mass transfer. 

We have seven primary conclusions. First, we derived a 
simple analytical expression for late-time BTC behavior in the 
presence of mass transfer. Equation (12) gives the late-time 
concentration for any linear rate-limited mass transfer model 
for either zero-concentration or equilibrium initial conditions. 
The expression requires the advection timescale, the zeroth 
moment of the injection pulse, the initial concentration in the 
system, and the memory function #(t) be known. Note that 
caution is advised in using (12) if the variance of tad is large 
(such as in a strongly heterogeneous velocity field). We expect 
that (12) will be exploited to understand breakthrough curves 
from field and laboratory experiments, as well as to develop 
criteria for designing better tracer tests to meet specific goals 
(e.g., estimating mass transfer rate coefficients). 

SeCond, the memory function #(t) is proportional to the 
residence time distribution in the immobile domain given a 
unit impulse at the surface of the immobile domain. This 
memory function is simply the derivative of the Laplace trans- 
form of the density function of rate coefficients describing the 
immobile domain. Consequently, the late-time concentration 
is proportional to the first or second derivative of the Laplace 
transform of the density function of rate coefficients. 

Third, the effective rate coefficient that yields the same 
zeroth, first, and second BTC temporal moments as does the 
full density function is the harmonic mean of the density func- 
tion of rate coefficients. However, for any density function of 
rate coefficients with power law a •- 3 as a -• 0 and where k < 
3, the harmonic mean is zero. Consequently, the mean resi- 
dence time in the immobile domain is infinite, and there is no 
single effective rate coefficient. This applies both to density 
functions of diffusion rate coefficients and density functions of 
first-order rate coefficients. Many such distributions have been 
invoked in the literature. 

Fourth, if the BTC (after a pulse injection) goes as •t -• as 
t -• c•, then the underlying density function of rate coefficients 
must be • a •-3 as a -• 0. This holds for density functions of 
both first-order and diffusion rate coefficients. For a BTC from 

a medium with initially nonzero but equilibrium concentra- 
tions, the equivalent BTC goes as t •-•, 

Fifth, if the slope of a BTC (after a pulse injection) goes to 
k as t -• • and k -< 3, then the mean residence time in the 
immobile domain is infinite. (This is a corollary to the third 
and fourth conclusions.) Consequently, there is no single ef- 
fective rate coefficient in this medium. A second consequence 
is that any single-rate (either diffusion or first order) rate 

coefficient estimated from the BTC will be a function of ex- 

perimental observation time. Again, for a BTC from a medium 
with initially nonzero but equilibrium concentrations, the 
equivalent BTC goes as t -k + •. 

Sixth, if a BTC exhibits power law behavior (c --- t -•') to the 
end of the experiment, then one of two cases must exist. If k -< 
3, then the mean residence time (and effective rate coefficient) 
cannot be estimated from the BTC. The mean residence time 

must be at least the experimental observation time and could 
be infinite. If k > 3, then the mean residence time (and its 
inverse, the effective rate coefficient) can be estimated. 

Seventh, the late-time approximation does not strictly de- 
pend on several of the assumptions used in its derivation. The 
approximation was able to adequately characterize a distribu- 
tion of mass transfer rate coefficients from a single-well injec- 
tion-withdrawal tracer test, which has conditions of radial 
time-varying flow, significant dispersion, and a nonpulse-type 
injection. 

Appendix A: Notes on the Density Function b(ct) 
We add two notes regarding the density function b (a). First, 

a useful definition is that of the zeroth moment of the density 
function of rate coefficients: 

fo © b(a) da = •tot, (A1) 
where/3to t [dimensionless] is commonly known as the capacity 
coefficient [e.g., Haggerry and Gorelick, 1995]. The capacity 
coefficient is the ratio of mass in the immobile domain tO mass 

in the mobile domain at equilibrium; in the absence of sorption 
it is the ratio of the two volumes. 

Second, we note without derivation that the Laplace trans- 
form of the density function of rate coefficients is a particularly 
useful function by itself. This function is proportional to the 
mass fraction remaining in the immobile domain, where the 
initial conditions are uniform concentration in the immobile 

domain and the boundary condition on the immobile domain is 
zero concentration. The mass fraction (M/Mo) remaining in 
the medium (both mobile and immobile domains) at late time 
is therefore 

M(t) •{b(a)} fo © b(a)e -"tda 
M•-= 1 +/3to • --' 1 n t- •tot ' (A2) 

where M(t) is the mass at any time and Mo is the total initial 
mass. In other Words, the mass fraction remaining within, for 
example, a column after several pore volumes have been 
flushed through it, is calculated simply by finding the Laplace 
transform of the density function b(a). 

Appendix B: Notes on Application 
of Equation (12) 

Equation (12) presents an interesting theoretical develop- 
ment for two reasons. First, the late-time behavior of the BTC 
is easily obtained for a wide variety of density functions b(a) 
using any comprehensive table of Laplace transforms. Equa- 
tion (12) is simpler for first-order mass transfer than the equa- 
tions developed by Vereecken et al. [1999]. The equation also 
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provides an asymptotic expression for any mass transfer pro- 
cess with a known memory function #(t), which is easily cal- 
culated for a wide range of sorption and diffusion processes. 
Conversely, it must be pointed out that the equations devel- 
oped by Vereecken et al. [1999] allow for time-varying velocity. 

Second, (12) suggests that the density function of mass trans- 
fer rate coefficients (whether from diffusion, nonequilibrium 
sorption, or a general density function of mass transfer pro- 
cesses) is available directly and analytically from breakthrough 
data. In fact, if (12) is treated as an integral equation where 
b (a) is an unknown, the density function b (a) may be directly 
calculated using the inverse Laplace transform. If the medium 
is initially free of tracer, then Co = 0 and the density function 
b(a) is given analytically by the Bromwich integral: 

tadmooz2(2rri) c(x = L, t)e •t dt 
r 

tadm0cr 
2 •-•{C(X = L, t)}, (B1) 

where i is the unit imaginary number and Br represents the 
Bromwich contour [see, e.g., LePage, 1961, pp. 319-320]. A 
similar equation may be easily constructed for the case of 
nonzero initial conditions and continuous flushing of tracer- 
free fluid, such as in a purge experiment. Unfortun'htely, the 
practical use of (B1) is limited by the conditions that we can 
only use the late-time breakthrough data and that scatter in the 
data introduce numerical instabilities in the inverse Laplace 
transform. Nonetheless, (B1) will allow us to determine certain 
important properties of the density function b (a). 

For relatively simple cases (i.e., single-rate mass transfer) 
the properties of (12) allow estimation of the rate coefficient 
and capacity coefficient directly from the BTC [also see Ver- 
eecken et al., 1999]. For some more complex cases (e.g., gamma 
and power law density functions) the properties of (12) allow 
certain properties of the density function of rate coefficients to 
be determined. 
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