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ABSTRACT

A nonlinear 2½-layer reduced gravity primitive equations (PE) ocean model is used to assimilate sea surface
temperature (SST) data from the Tropical Atmosphere–Ocean (TAO) moored buoys in the tropical Pacific. The
aim of this project is to hindcast cool and warm events of this part of the ocean, on seasonal to interannual
timescales.

The work extends that of Bennett et al., who used a modified Zebiak–Cane coupled model. They were able
to fit a year of 30-day averaged TAO data to within measurement errors, albeit with significant initial and
dynamical residuals. They assumed a 100-day decorrelation timescale for the dynamical residuals. This long
timescale for the residuals reflects the neglect of resolvable processes in the intermediate coupled model, such
as horizontal advection of momentum. However, the residuals in the nonlinear PE model should be relatively
short timescale errors in parameterizations. The scales for these residuals are crudely estimated from the upper
ocean turbulence studies of Peters et al. and Moum.

The assimilation is performed by minimizing a weighted least squares functional expressing the misfits to the
data and to the model throughout the tropical Pacific and for 18 months. It is known that the minimum lies in
the ‘‘data subspace’’ of the state or solution space. The minimum is therefore sought in the data subspace, by
using the representer method to solve the Euler–Lagrange (EL) system. Although the vector space decomposition
and solution method assume a linear EL system, the concept and technique are applied to the nonlinear EL
system (resulting from the nonlinear PE model), by iterating with linear approximations to the nonlinear EL
system. As a first step, the authors verify that sequences of solutions of linear iterates of the forward PE model
do converge. The assimilation is also used as a significance test of the hypothesized means and covariances of
the errors in the initial conditions, dynamics, and data. A ‘‘strong constraint’’ inverse solution is computed.
However, it is outperformed by the ‘‘weak constraint’’ inverse.

A cross validation by withheld data is presented, as well as an inversion with the model forced by the Florida
State University winds, in place of a climatological wind forcing used in the former inversions.

1. Introduction

In the last two decades, an increasing interest in the
study of ocean general circulation and its role in climate
processes has led to improved data acquisition and to
improved ocean models. A set of measurements is gen-
erally sparse in space and time, and cannot resolve the
circulation and the physical scales of interest. On the
other hand, a dynamical model contains information
only about the interaction of the physical processes tak-
en into account in the equations, and the model solutions
are computed given a prior estimation of the initial and
boundary conditions and the forcing. In general, outputs
from a direct or forward run of the model do not fit the
measurements. Thus, to find a good estimate of the ac-
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tual state of the ocean, it is necessary to use all available
information: the model and the measurements. There-
fore, data assimilation methods become inevitable.
These methods enable one to combine the information
about the actual state of the ocean, contained in a set
of measurements, with the other information about the
dynamical processes of the ocean, given by a mathe-
matical model. This approach can be considered as in-
terpolating or smoothing the set of measurements in
space and time, with the model acting as a dynamical
constraint. The resulting estimate of the actual state of
the ocean, also referred to here as the generalized in-
verse, should therefore be much more uniformly real-
istic than the estimates obtained from the measurements
or the model alone.

Our assimilation method will consist of minimizing
a weighted least squares functional expressing the model
misfit to the data. The forcing is poorly known, nu-
merically resolvable dynamics are sometimes neglected,
unresolved dynamics are poorly parameterized; and
truncation error especially in the vertical can be severe.
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Hence, we will only allow the model to act as a ‘‘weak
constraint’’ (Sasaki 1970), contrary to the strong con-
straint approach that assumes the model to be perfect.
Thus the functional shall, in addition to data and initial
misfits, also contain terms that penalize the dynamical
misfits.

The generalized inverse or the best fit may be ob-
tained using variational methods. These lead to an
Euler–Lagrange (EL) system, which in turn is solved
using the representer method (Bennett 1992; Bennett et
al. 1996). As described in these references, the gener-
alized inverse is expressed as a first guess plus a finite
linear combination of representer functions. The ap-
proach is based on the assumption that the forward mod-
el and the measurement operator or functional are linear.

The use of a primitive equation (PE) model on one
hand offers the advantage of including the resolvable
processes neglected by intermediate models. On the oth-
er hand, as with the intermediate models, it leads to a
nonlinear EL system and thus prevents us from using
the representers expansion immediately. We overcome
this difficulty by solving the nonlinear EL equations
iteratively. We devise linear iterates of the nonlinear EL
equations. The iterates will be solved in turn by the
representer method. We hope that the solution iterates
converges; if it does, it will be to a solution of the
nonlinear EL problem.

Solving a nonlinear EL system iteratively has already
been implemented by Bennett and Thorburn (1992) for
a nonlinear quasigeostrophic ocean model, by Bennett
et al. (1996) for a global NWP model, and by Bennett
et al. (1998) for an intermediate coupled model. We
introduce a slight modification of their approach in order
to avoid the difficulties they faced with their lineari-
zation. The basic requirement guiding any linearization
is that the sequence of solutions of the linear approxi-
mate EL systems should converge toward the solution
of the nonlinear EL system. In the case where there is
no data, this method reduces to solving the nonlinear
PE model iteratively: the subsequent sequence of so-
lutions of the linear approximate PE models should con-
verge toward the solution of the nonlinear PE model.
We refer to these as the dataless iterations. Since there
is no theoretical guarantee for convergence of the linear
approximations of the full EL system, we will cautiously
focus first on the dataless iterations. These preliminary
calculations will be reported here. Then we will include
the data and present the results of a generalized inver-
sion with monthly mean Tropical Atmosphere–Ocean
(TAO) SST data for December 1996–May 1998, con-
taining the latest strong El Niño–Southern Oscillation
(ENSO).

This paper is organized as follows: the model ocean
is presented in section 2. The generalized inversion is
presented in section 3, based on the iterated indirect
representer method. The dataless iterations are presented
in section 4, and the first inversion experiment in section
5. In section 6 we present a second inversion, which is

a cross validation. A third inversion, with Florida State
University (FSU) real-time winds in place of Rasmusson
and Carpenter climatological winds (in the previous in-
versions), is presented in section 7. Then a summary
and concluding remarks are presented in section 8.

2. The model ocean

We use a 2½-layer reduced-gravity PE ocean model,
following McCreary and Yu (1992). We make a slight
modification to the vertical discretization of the vertical
advection terms: we use a centered differencing instead
of the first-order upwind scheme, since the latter adds
further nonlinearities and nondifferentiabilities to the
discrete model operator. Details may be found in the
appendix. We also replaced their biharmonic friction by
a Laplacian friction, in the interest of simplicity. The
equations of momentum, energy, and continuity are
written in advective form as follows:

]vi 1 v · =v 1 f k 3 v 1 =pi i i i]t

t (v 2 v )1 2 25 d 2 (d w 1 d w ) 1 k ¹ v1 1 e 2 d 2 ii i ih h1 i

2 giu , (1)i

]Ti 1 v · =Ti i]t

Q (T 2 T )i 1 2 25 2 (d w 1 d w ) 1 k ¹ T , (2)1 e 2 d 2 ii ih hi i

]hi 1 = · (h v )i i]t
25 « (d w 1 d w ) 1 k ¹ h , (3)i 1 e 2 d 2 ii i

where the index i stands for the layer; v, h, and T denote
the velocity, thickness, and temperature, respectively; t
is the wind stress at the surface; Qi is the heat added
to layer i; i and k are the unit vectors in the east and
vertical directions, respectively; dij is the Kronecker del-
ta; and «i 5 2(21) i. The equatorial b plane is adopted
throughout, so that f 5 by. A y-dependant drag coef-
ficient g(y) is included in the zonal-momentum equa-
tions near the open northern and southern boundaries
of the model ocean to prevent large-scale, boundary-
trapped instability from developing there. The pressure
gradient terms =pi are given by

=p 5 ag=[h (T 2 T ) 1 h (T 2 T )]1 1 1 3 2 2 3

1
2 agh =T and (4)1 12

=p 5 ag=[(h 1 h )(T 2 T )]2 1 2 2 3

1
2 ag h 1 h =T , (5)1 2 21 22
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TABLE 1. Model parameters and descriptions.

Laplacian mixing coefficient
Maximum value of damper
Surface heating timescale
Lower-layer heating timescale
Entrainment timescale
Detrainment timescale
Entrainment depth
Detrainment depth
Intial thickness of upper layer
Intial thickness of lower layer
Initial temperature of upper layer
Intial temperature of lower layer
Temperature of deep ocean
Coefficient of thermal expansion
Characteristic speed of mode 1
Characteristic speed of mode 2

3 2 21k 5 5 3 10 cm s2

21g 5 1 day
t 5 100 day1

t 5 500 day1

t 5 5 daye

t 5 40 dayd

H 5 75 me

H 5 75 md

H 5 75 m1

H 5 175 m2

T* 5 288C1

T* 5 158C2

T 5 08C3

21a 5 0.000258C
21c 5 316 cm s1

21c 5 123 cm s2

where a is the (constant) coefficient of thermal ex-
pansion, g is the acceleration of gravity, and T3 is the
temperature of the deep ocean. The vertical velocities
we (entrainment) and wd (detrainment) are parameter-
ized by

2(H 2 h )e 1w 5 Q(H 2 h ) and (6)e e 1H te e

2(H 2 h )d 1w 5 2 Q(h 2 H ), (7)d 1 dH td d

where Q(x) is the Heaviside step function [Q(x) 5 1 if
x . 0, 50 otherwise]. According to this parameteri-
zation, entrainment occurs when the thickness of the
upper layer is less than a specified constant value He,
and its rate increases parabolically to a maximum value
He/te as h1 goes to zero. Similarly, detrainment occurs
when the thickness of the upper layer becomes larger
than Hd. Entrainment is a crucial process in this model,
acting to prevent the interface from surfacing, to cool
the upper layer, and to provide the stress between the
two layers. Likewise, detrainment is important because
only with detrainment can the model adjust to a rea-
sonable mean state. In our computations He 5 Hd.

Finally, the heat fluxes are parameterized as follows:

H1Q 5 (T* 2 T ) and (8)1 1 1t1

H2Q 5 (T* 2 T ). (9)2 2 2t2

Here and are the initial uniform temperatures ofT* T*1 2

the layers, and t1 and t2 are timescales for the temper-
atures to relax back to the initial values. The heating
Q2 represents adjustment to a steady thermohaline cir-
culation, and is necessary to balance the warming of the
lower layer caused by detrainment. The constants a, g,
He, H1, H2, te, t1, t2, , , and T3 follow Table 1 ofT* T*1 2

McCreary and Yu (1992) and are reproduced here in

Table 1. All the parameterizations in (4)–(9) also follow
that same reference. The model is forced by the cli-
matological wind fields of Rasmusson and Carpenter
(1982) for the dataless iterations (section 4) and the first
two inversions (sections 5 and 6). For the third inver-
sion, the climatological winds are replaced by FSU
winds. We compute the model solutions in a rectangular
basin of the tropical Pacific extending from 298S to 298N
and 123.758E to 84.528W; eastern and western bound-
aries are closed, while a free slip condition is imposed
at the northern and southern boundaries. The horizontal
grid is stretched in such a way that the meridional grid
spacing is about 0.38 near the equator and gradually
increases to 1.38 at the northern and southern bound-
aries. The zonal grid spacing is about 0.38 near the east-
ern and western boundaries (to resolve the boundary
layer) and gradually increases to about 28 in the middle
of the ocean.

3. The generalized inversion

a. The Euler–Lagrange system

As mentioned in the introduction, we cannot apply
the representer method directly in order to solve a non-
linear EL system. In this section, we describe how we
circumvent the difficulty. We linearize the EL system
around a given background field and solve the resulting
linear EL system by the representer method. Then the
solution of the linear EL becomes the background field
for the next linearization and we iterate until apparent
convergence. In solving iteratively the nonlinear EL
equations, two approaches can be considered: 1) line-
arize directly the nonlinear EL equations, or 2) linearize
the nonlinear forward model, and then derive the cor-
responding EL equations. In both cases, the linear ap-
proximations have to satisfy the following condition:
(i) formal convergence toward the nonlinear problem at
the limit. Note that by convergence we do not mean
that of a numerical scheme of ever finer resolution, but
rather that of a sequence of solutions of linear EL sys-
tems with fixed numerical resolution. Another condition
that is effective but not necessary is (ii) that a linear
EL problem be solved at each iterate, that is, the line-
arized EL equation has adjoint symmetry with respect
to the linearized forward model. This condition enables
the representer method, in the sense that it ensures the
symmetry of the representer matrix. By construction,
the symmetry of the representer matrix depends on two
factors (Bennett 1992, chapter 5, section 5.4): the ad-
joint symmetry of the EL system, and the symmetry of
the model (dynamical) error covariances. The latter are
symmetric by definition and by choice, being covari-
ances. Thus the symmetry of the representer matrix de-
pends solely on the adjoint symmetry of the EL system.
Therefore one has to preserve this symmetry carefully,
when linearizing the EL system. This is achieved by
following point 2 above and is described below. A fail-
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ure to satisfy condition ii would worsen the conditioning
of the solution process at each iterate.

To avoid the complexity of the model equations, we
describe the linear iteration scheme using a simple non-
linear model. Consider the equation

ut 1 F (u)ux 5 F 1 f ,

0 # t # T, 0 # x # L, (10)

where F 5 F(x, t) is the prior estimate of model forcing,
f 5 f (x, t) is the residual or model error, while F is a
prescribed nonlinear function of u. For the sake of sim-
plicity, we assume homogeneous initial and boundary
conditions. Given a vector of measurements: dm, with
errors em,

dm 5 u(xm, tm) 1 em, 1 # m # M, (11)

and prior estimates of the means and the covariances
Cf 5 Cf (x, t, x9, t9) and Ce for the model and observa-
tional errors, respectively, we can define a penalty func-
tional:

T T L L

J [u] 5 dt dt9 dx dx9 f (x, t)W (x, t, x9, t9)E E E E f

0 0 0 0

3 f (x9, t9) 1 e*W e,e (12)

where f is related to u as in (10), em to u as in (11),
while Wf and We are the operator inverses of the co-
variances. We do not bother to include initial penalties
in (12) for this discussion.

The fundamental assumption that allows us to use the
variational approach for minimizing (12) is that F be
differentiable, or at least Gâteaux differentiable (Milne
1980). We can then derive the EL system for a local
extremum û of (12):

û 1 F (û)û 5 F 1 C • m, and (13)t x f

2m 2 [F (û)m] 1 F 9(û)mû 5 d*W (d 2 û), (14)t x x e

where d and û are the vectors with components d(x 2
xm)d(t 2 tm) and û(xm, tm), respectively, while Cf • m is
defined by

T L

C • m(x, t) 5 dt9 dx9C (x, t, x9, t9)m(x9, t9). (15)f E E f

0 0

We can meet the Gâteaux differentiability requirement
for the nonlinear PE model operator with the modifi-
cations described in the appendix, if the layer thick-
nesses do not vanish.

b. Linear approximations

Our first attempt to linearize the EL system follows
Bennett et al. (1996) and consists of linearizing directly
the nonlinear EL system by rewriting (13) and (14) as

n n21 n nû 1 F (û )û 5 F 1 C • m and (16)t x f

n n21 n n21 n21 n212m 2 [F (û )m ] 5 2F 9(û )m ût x x

n1 d*W (d 2 û ), (17)e

subject to linear homogeneous boundary, initial, and
final conditions. This system is linear and formally con-
sistent with (13) and (14) as n → 1`. Note that the
linearized system has adjoint symmetry: it is equivalent
to the EL system for a linear inverse. The first term in
the rhs of (17) is included in order to satisfy our con-
dition i. In a PE model, many such terms arise from the
nonlinear advection, from the entrainment, and from the
pressure gradient. However these inhomogeneous terms
require the computation of a first guess for the adjoint
equation, and they cause the iterative scheme to require
the storage of both the time-dependent state and the
time-dependent adjoint variables. Without the first in-
homogeneous terms in (17), the system (16) and (17)
is still a linear EL system for each n. But as n → 1`,
it fails to be an EL system and so its solutions formally
fail to converge toward the solution of the nonlinear EL
system (13) and (14).

We propose below another linearization that will sat-
isfy both our conditions i and ii simultaneously, without
adding any inhomogeneous terms. This second approach
consists of linearizing the forward model first, then de-
riving the associated EL equation. We will see that if
the nonlinearities in the forward model are ‘‘properly’’
treated (linearized), then by taking the adjoint, not only
do we (automatically) meet the adjoint symmetry re-
quirement for the linearized EL system, but we also
ensure its consistency and convergence toward the non-
linear EL system. Given a ‘‘good’’ starting point field
ûo, we assume that the difference between two consec-
utive iterated solutions of the linearized forward model
is small. Therefore, we can linearize the forward model
as a first-order Taylor expansion around the previous
iterate. Hence, we approximate (10) by the tangent lin-
earization (see Lacarra and Talagrand 1988):

n n21 n n21 n n21 n21u 1 F (û )u 1 F 9(û )(u 2 û )ût x x

5 F 1 f . (18)

Compared to (16), the additional term in the left-hand
side can be thought of as a correction term. The EL
system corresponding to this linearization is

n n21 n n21 n n21 n21û 1 F (û )û 1 F 9(û )(û 2 û )ût x x

n5 F 1 C • m and (19)f

n n21 n n21 n21 n2m 2 [F (û )m ] 1 F 9(û )û mt x x

n5 d*W (d 2 û ). (20)e

These equations are linear, they do compose an EL sys-
tem, and they have no inhomogeneous terms as in (17).
Moreover, as n → 1`, they converge toward the EL
system associated with the nonlinear forward model.
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TABLE 2. Standard deviations, length scale, and timescale for the
model residuals.

Residuals Std dev s Zonal scale
Meridional

scale Timescale

r , r(1) (1)
u y

r , r(2) (2)
u y

r(1)
T

r(2)
T

r(1)
h

r(2)
h

1026 m s22

1027 m s22

2.5 3 1027 K s21

2.5 3 1028 K s21

|we| ; 1026 m s21

|we| ; 1027 m s21

106 m
106 m
106 m
106 m
106 m
106 m

2.5 3 105 m
2.5 3 105 m

106 m
106 m
106 m
106 m

2 3 106 s
2 3 106 s
2 3 106 s
2 3 106 s
2 3 106 s
2 3 106 s

With the linearization (19) and (20), we also avoid the
storage of the time-dependent adjoint variable. How-
ever, we run the risk of introducing an additional linear
instability into the linearized dynamics: compare the
left-hand sides of (19) and (20), to those of (16) and (17).

c. Significance test

Generalized inversion is not only aimed at fitting the
model to the data; it is also a test of the hypothesized
prior statistics for the errors. If the model error f and
the data error e have zero means, and are uncorrelated
(i.e., f 5 e 5 fe 5 0), and if f and e are Gaussian
with the prescribed covariances Cf and Ce, then it may
be demonstrated (Bennett 1992) for linear models that
the reduced penalty functional is a x2 random variable
with M degrees of freedom, where M is the number of
measurements. This random variable has mean M and
variance 2M.

d. Estimating the scales for the model errors

The advantage of the McCreary and Yu primitive
equations ocean model over the intermediate model con-
sidered by Bennett et al. (1998) is that the PE model
includes all the resolvable processes such as momentum
advection and mean advection of mean heat. Thus there
are fewer sources of error in the PE model, even though
those remaining sources are themselves significant.
Faced with the confusion of estimating errors arising
from the neglect of resolvable processes as well as un-
reliable parameterization of unresolved processes, Ben-
nett et al. based their estimates of dynamical errors on
the former alone. One of the most difficult aspects of
developing priors is assigning correlation scales for
model errors. At least in the case of neglected but re-
solvable processes, it can be reasonably assumed that
the processes involve the El Niño disturbance itself, and
so it is plausible that correlation scales are those of the
disturbance itself. For the McCreary and Yu model,
however, we can only attribute errors to the inadequacies
of subgrid-scale parameterizations. Given the extreme
crudity of the vertical resolution, we shall set aside the
horizontal flux errors and only consider vertical flux
errors. The upper-ocean turbulence studies of Moum
(1996), Peters (1994), and the information in Fig. 10 of
Peters et al. (1988) are particularly helpful. To begin,
consider the momentum balance

]u ]
211 · · · 5 · · · r J , (21)m]t ]z

where Jm is the vertical eddy flux of horizontal mo-
mentum. The variation of Jm in the first 50 m of the
water column is about 0.05 N m22; thus, its vertical
divergence is about 1 3 1023 N m23. We assume that
the parameterization of this eddy flux divergence as the
entrainment formula in (1) is 100% in error for layer 1.
With ri ù 103 kg m23, we arrive at a residual for(1)ru

(1) of 1 3 1026 m s22. The flux divergence observed
by Peters et al. (1988) and entrainment formula com-
puted here have much smaller values in the lower layer
so we assume 5 1 3 1027 m s22.(2)ru

The heat balance is

]T ]
211 · · · 5 · · · (rC ) J , (22)p h]t ]z

where Jh is the vertical eddy flux of heat. The variation
of Jh in the first 50 m of the water column is about 50
W m22; thus, its vertical divergence is about 1 W m23.
Again, we assume that the entrainment formula in (2)
is 100% in error for layer 1. With rCp ù 4 3 106 J m23

K21, we arrive at a residual for (2) of 2.5 3 1027(1)rT

K s21. The value of is assumed to be 10 times smaller.(2)rT

We have no data for vertical thickness fluxes so we
assume that the computed entrainment values in (3) are
100% in error. That is, we estimate to be 1026 m(1)rh

s21, with 10 times smaller.(2)rh

There are no data for horizontal and temporal cor-
relation scales for vertical fluxes. Moum et al. (1989)
remark that the fluxes are influenced by the passage of
20-day tropical instability waves. It is plausible that the
fluxes are so influenced over the 1000-km zonal wave-
length of such waves. We therefore speculate that, even
though the eddy fluxes are not due solely to the passage
of the tropical instability waves, errors in flux param-
eterizations could also be correlated over scales of 20
days, 1000 km zonally, and 250 km across the merid-
ional extent of the equatorial current system. These as-
sumptions can scarcely be defended, yet we can find no
contrary data nor even contrary arguments. It is em-
phasized that the process of inversion is a test of these
assumptions with a model and a large-scale circulation
data. Our scales are summarized in Table 2. Finally, the
spatial and temporal forms of the covariances have the
simple separable Gaussian forms in Bennett et al.
(1998), except with the scales described above.

4. The dataless iterations

As stated above, there is no rigorous mathematical
proof for the convergence of this iterative scheme, for
fixed time intervals of arbitrary length. We can therefore
speak of convergence only formally, when we seek a
sequence of numerical solutions of system (19) and (20)
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FIG. 1. Time series of the upper-layer model variables h, T, u, and y , picked at location (08, 1608W), in the first
experiment. The figure shows the nonlinear solution (solid line), the first guess n 5 0 (long-dashed line), n 5 20
(dotted–dashed line), n 5 30 (dashed line), and n 5 39 (dotted line).

converging toward the solution of system (13) and (14).
There is a proof of convergence for the inverse of a
barotropic vorticity equation by Hagelberg et al. (1996).
Before implementing the iterations on the full nonlinear
EL system, we will first seek to solve the nonlinear PE
model iteratively. This corresponds to the case when
there are no data at all, or the data are worthless (We

5 0). In this case, the linearized EL system (19) and
(20) is reduced to

(23)n n21 n n21 n n21 n21u 1 F (u )u 1 F 9(u )(u 2 u )u 5 F,t x x

and we require its associated sequence of solutions to
converge, as n → 1`, toward the solution of

ut 1 F(u)ux 5 F. (24)

Were this test to fail, there would be concern for the
convergence of the iterations on the full problem, that
is, with positively weighted data. Then again, we might
speculate that data in fact ‘‘guide’’ the convergence.

We have applied the linearization (18) on the nonlin-
ear PE model (1)–(9) and then iterated. The full line-
arized equations are given in the appendix. First we
computed the solution of the nonlinear PE model forced
by the climatological wind stress of Rasmusson and
Carpenter (1982) for one year. This solution served as

the reference solution toward which the iterated solu-
tions should converge. We used, as the ‘‘n 5 0’’ first
guess for the iteration, a solution of the nonlinear PE
model with the wind stress decreased by 20%. For n $
1, we restored the full wind stress. To explore robustness
of the linearization, and to show that the convergence
does not depend on this idealized first guess, we did a
second experiment with a first guess computed using
50% of the wind stress. In the figures below (Figs. 1–4),
we present time series of upper- and lower-layer thick-
ness, temperature, zonal and meridional currents at
(08N, 1608W) for both experiments. Time series for
many other locations were examined, and all show con-
vergence toward the nonlinear solution in both exper-
iments. We include only essential examples here. Each
panel in Figs. 1–4 consists of the reference or nonlinear
solution (solid line), the n 5 0 first guess to start the
iterations (long-dashed line), n 5 20 (dotted–dashed
line), n 5 30 (dashed line), and n 5 39 (dotted line).
The figures display the convergence of all variables in
both experiments.

Comments
We observed some oscillations in the sequence of

iterations in preliminary computations (not shown), so
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FIG. 2. Same as in Fig. 1 except for the second experiment.

we included a smoothing relaxation term n¹2(un 2 un21)
in the rhs of (23), in order to damp these oscillations.
This term vanishes formally as n → 1`. A large value
of n damps the oscillations and accelerates convergence,
provided it does not break the numerical stability cri-
terion. The smoothing relaxation term was included in
every equation of the PE model, with n 5 7 3 104 m2

s21.
In the first experiment (using 80% of the wind stress

to compute the first guess), the time series of the upper-
and lower-layer variables converged in about 20 itera-
tions at all test locations, as shown in the panels of Figs.
1 and 3 for our display location (08, 1608W). Note that
the first guess in this experiment was not very far from
the reference solution. Except for the initial condition,
which is the same for all the iterates, the largest dis-
crepancies between the first guess and the reference so-
lution in the upper layer were about 1–3 m for h1, about
18–28C for T1, less than 20 cm s21 for u1, and only a
few (1–2 cm s21) for y 1, at our display location. These
discrepancies were about the same in the lower layer as
in the upper layer, except for T2 (less than 18C). After
20 iterations all these discrepancies have almost van-
ished in both layers, and after 30 iterations, there is no
difference between the iterated solution and the refer-
ence solution.

In the second experiment (50% of the wind stress),
there were larger discrepancies between the reference
solution and the first guess (Figs. 2 and 4), as one would
expect. For example, in the upper layer, the dynamical
discrepancy was about 6–12 m for h1, 18–58C for T1,
and 10–60 cm s21 for u1. In the lower layer the dis-
crepancies were about 4–15 m for h2, 0.38–1.58C for
T2, and 10–60 cm s21 for u2. After 30 iterations, the
upper-layer discrepancies were reduced to less than 40
cm for h1, 0.58C for T1, 0.5 cm s21 for u1, and were
about the same range for the lower-layer variables.

In both experiments, the iterated solutions converged
toward a common limit. The second experiment needed
more iterations than the first. Effective convergence was
attained in about 30 iterations for both experiments, by
which time the discrepancies are reduced to less than
10% of their initial values. The reduced discrepancies
are then comparable to or smaller than the errors in the
TAO data that will be introduced subsequently: see sec-
tion 5 (fifth paragraph). Convergence proceeds from
‘‘left to right’’ in time, since all the iterates have the
same initial conditions.

5. Experiments and results
The iterative inversion method described above (sec-

tion 3) was applied to the nonlinear PE model in section
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FIG. 3. Same as in Fig. 1 except for the lower layer.

2, for the assimilation of monthly mean sea surface
temperatures data from the TAO buoys. The data cover
a period of 18 months, from December 1996 to May
1998. This dataset consists of 1088 measurements (real
numbers) and contains the latest strong ENSO signal,
peaking in November–December 1997 with a 58C
anomalous warm pool in the eastern equatorial Pacific.
TAO data are available from the Pacific Marine Envi-
ronmental Laboratory (PMEL) via the Internet. The
PMEL-distributed TAO display software provides grid-
ded SST and 208C isotherm depth (Z20) using an ob-
jective analysis procedure. We emphasize that we as-
similated the TAO monthly mean SST at buoy locations.
The gridded SSTs from PMEL/TAO software are only
used for comparison with the inverse solution.

The first background field needed to start the linear
iterations is generated by a direct run of the model with
uniform initial conditions, forced by the climatological
wind, and without either data or model error. This so-
lution is labeled n 5 0 in the figures on the assimilation.
We linearize the nonlinear PE model around this back-
ground field and solve the associated linearized EL
equations by the representer method. The solution of
this linear inverse becomes the background field for the
new linearization, and so on. Note that the climatolog-
ical wind forcing is used in the dataless iterations, and

this same climatological wind is used in the generalized
inversion at each iterate.

The inverse shows ability to retrieve SST large-scale
features as shown by the ‘‘quick look’’ maps from the
PMEL TAO project (Figs. 5 and 6). The results pre-
sented in these figures, and also in Figs. 7 and 8, were
obtained after five iterations. The inverse SST fields
display more variability than PMEL maps. The latter
are obtained by bilinear interpolation; thus, they do not
contain dynamical interactions of physical processes.
Subtracting the climatological SST monthly means
(Rasmusson and Carpenter 1982) from the inverse SST
fields, we get anomalous SST fields that are in good
agreement with PMEL anomalous SST maps. The warm
and cool pools are retrieved by the inverse, at the same
locations as in PMEL maps, with slight differences in
shape. For example, the maximum anomalous warming
(58C) occured in December 1997 along the equator, be-
tween 1008 and 1108W, as shown on the TAO maps
(Fig. 5b). The inverse solution shows an anomalous
warm pool of 4.58C at the same location (see Fig. 6b).
In both figures, we can see that the anomalous temper-
ature decreases westward, from 58C (1008W along the
equator) to 18C (1758–1708W).

The generalized inverse tightly smoothes the data at
the measurement locations and gives an estimate of the



JUNE 2000 1765N G O D O C K E T A L .

FIG. 4. Same as in Fig. 3 except for the second experiment.

circulation where and when the data are not available.
This is best shown by the time series (Figs. 7–9). We
show selected time series, along the equator (Fig. 7) and
off the equator (Fig. 8). Although the background so-
lution (n 5 0) is far from the data (by as much as 88C
at some locations in Fig. 8), the inverse fits the data to
within one standard measurement error, here 0.38C for
every single data. This data error accounts for the in-
strumental error (0.18C), the interpolation from TAO
buoy locations to neighboring model grid points (0.18C),
and the inconsistency of (linearly) relating temperatures
measured at ocean levels to a layered model (0.18C).
Here we have the difficulty of identifying SST with the
temperature in the model’s 50-m-thick upper layer (M.
McPhaden, PMEL/TAO Project Office, 1998, personal
communication) The fit to the data is similarly good at
all measurement sites. We also show in Fig. 9 an ex-
ample of how the time series behave as we iterate. They
are very close to each other for n $ 1. Indeed, each
iterate is a linear inverse solution that tries to fit the
data. The situation is very much the same at all mooring
locations. The main conclusion here is that complex
fields governed by Rossby wave–like and Kelvin wave–
like dynamics can be reconciled with the TAO data.

Because the data do not vary as we iterate, we can
say that they ‘‘guide’’ the iterations, in the sense of fixed

values. This explains why a small number of iterations
(five) is needed for the generalized inverse to converge,
compared to 30 in the dataless iterations (section 4).

The quality of our assimilation is not only assessed
by the close fit to the data, but also by the reduced
(minimal) value of the penalty functional Ĵ, after we
have performed the inversion. As stated above (section
3c), if the hypothesis about the prior means and co-
variances for the model and data errors is true, then Ĵ
should be a x2 random variable with M degrees of free-
dom. For our iterative inversion, we expect the value
of Ĵ at each iterate to be M (1088 in this experiment).
The values of the prior and posterior (reduced) penalty
functional are displayed in Fig. 10, showing that Ĵ
(.900) is about four standard deviations below the ex-
pected value, that is, 17% smaller than the mean. This
hints that we were pessimistic about the scales and var-
iances in section 3d. Remember that the mean of is2xM

M, and its standard deviation is 2M.Ï
Also, Fig. 10 shows the different contributions to Ĵ:

posterior misfits for initials conditions, dynamics, and
data. The prior penalty functional is only the misfit be-
tween the data and the first guess, since the first guess
satisfies the dynamics, initial, and boundary conditions
exactly. Clearly, Ĵ is largely dominated by the posterior
dynamical misfits, compared to those for the initial con-



1766 VOLUME 128M O N T H L Y W E A T H E R R E V I E W

FIG. 5. Monthly means SST and SST anomalies from PMEL: (a) Aug 1997, (b) Dec 1997, and (c) May 1998.

ditions and the data. This suggests that the inversion
could not be performed using the model as a strong
constraint (no dynamical errors) when fitting the data.
In fact, we ran an experiment with an assumption of no
dynamical error (Cf 5 0). The comparative fits at one
mooring (08, 958W) are shown in Fig. 11, which con-
firms the suggestion. The shortcoming of the strong con-

straint experiment is due presumably to the long interval
of time (18 months) for the assimilation. Initial con-
ditions cannot control the ocean circulation beyond the
model decorrelation timescale (about three months),
which is about the time when the strong constraint so-
lution loses track of the data.

Preliminary attempts to assimilate 208 and 168C iso-
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FIG. 6. Monthly means SST and SST anomalies from the generalized inverse: (a) Aug 1997, (b) Dec 1997, and (c)
May 1998.
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FIG. 7. SST time series at TAO buoys locations along the equator, from Dec 1996 to May 1998. The diamond symbols represent the data,
the dashed line is the first background (model run without data, n 5 0), and the solid line is the generalized inverse after five iterations.
The error bar (0.38C) is the same in each panel and for each data.

therm depth data failed as the lower-layer thickness al-
ways vanished during the first iteration on the non-
linearities.

6. Cross validation

Cross validation is the comparison of an inverse so-
lution to independent data not used in the inversion. For
the tropical Pacific and TAO data, the independant data
here are measured currents and subsurface temperatures
or isothermal layer depths, since we are assimilating
only SST data. On one hand, the comparison with mea-
sured velocities is not reasonable when the model is

subject to climatological wind forcing. However, such
a comparison (not carried out here) is reasonable for an
inverse solution computed with a reanalysis or real wind
forcing. On the other hand, thickness data are, in gen-
eral, estimated from the vertical temperature structure.
Thus, cross validation by thickness data is an implicit
cross validation by subsurface temperatures. Our solu-
tion cannot be so cross validated because of the poor
vertical resolution and poor empirical parameterizations
(fluxes, entrainment). The 2½-layer model allows us to
estimate temperatures only at two vertical grid points
(for each horizontal grid point). The resulting two-point
vertical interpolation cannot produce a realistic map of
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FIG. 8. Same as in Fig. 7 except for some locations off the equator.

FIG. 10. Prior and posterior misfits with respect to iterations, and
contributions to the posterior misfits: prior misfits (bullets), posterior
misfits (squares), expected posterior misfits (dashed line), posterior
dynamical misfits (diamonds), posterior data misfits (triangles), and
posterior initial misfits (stars).

FIG. 9. Convergence of iterated SST time series from the gener-
alized inversion at (88S, 1808): data (diamonds), n 5 0 (thin line), n
5 1 (long-dashed line), n 5 2 (dashed line), n 5 3 (dotted–dashed
line), n 5 4 (dotted line), and n 5 5 (solid line).
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FIG. 11. Comparison between weak (solid line) and strong con-
straint (long-dashed line) experiments, the background (dashed line),
the climatology (dotted line), and the data (diamonds), at (08, 958W).

FIG. 12. Comparison between the inverse with all data (solid line) and the inverse with withheld data (long-dashed
line) at locations where data are assimilated in both inverses.

the verical temperature structure. We are confronted
here with the difficulty that the model is not designed
to resolve the vertical temperature structure. Therefore,
the cross validation here is limited to comparison with
withheld SST data, that is, SST data that are not assim-
ilated.

Keeping the same climatological wind forcing, we
performed a second inversion in which we withheld SST
data at eight different TAO mooring locations—(88S,
1708W), (28S, 1558W), (28S, 1108W), (08, 1808), (28N,
1258W), (28N, 958W), (58N, 1658W), and (88N,
1558W)—for the whole time window of assimilation.
The withheld data consist of 133 measurements (about
12%) out of the original set of 1088 data points. The
resulting inverse solution is compared with the inverse
solution including all SST data. First, we compare these
inverse solutions at mooring locations where data are
used in both inversions. As one would expect, both in-
verses fit the data very well: see Fig. 12. This also shows
that the withheld data do not have impact on the fit to
the remainder. Then we compare both inverses at moor-
ing locations where data are withheld. Figure 13 shows
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FIG. 13. Comparison between the inverse with all data (solid line) and the inverse with withheld data (long-dashed
line) at locations where data are not assimilated in the second inversion.

that the second inverse (dashed line) compares very well
with the first inverse (solid line). The former fits the
withheld data to within one standard data error and re-
mains close to the latter at the locations where data were
withheld. However, the former occasionally misfits the
data and strays from the first inverse (with all data) by
slightly more than one standard error, but never ex-
ceeding 1.5 standard errors. This is the case, for ex-
ample, from December 1996 to February 1997 and Sep-
tember to October 1997 at (88S, 1708W), April to May
1998 at (28S, 1558W), and February 1997 at (08, 1808).
Recall that the second inverse in Fig. 13 (dashed line)
is independent of the data at the locations displayed.
For conciseness, we do not present the total SST and
SST anomaly maps from the second experiment, but
they also show very good agreement with the first in-
verse, and hence with PMEL/TAO maps. Our second
inverse solution thus survives this cross validation.

7. Real winds

We have computed a third inverse solution by re-
placing the climatological wind forcing with the FSU

wind analyses for our period of interest. The winds were
downloaded from the FSU wind products ftp site via
the Internet. In this experiment, all the 1088 SST month-
ly mean data points are included in the inversion.

The monthly mean SST and SST anomaly maps from
the inversion with FSU winds are shown in Fig. 14 for
August 1997. This figure is to be compared with Fig.
5a. This new inverse solution reproduced the 48–4.58C
anomalous warm pool in the eastern Pacific, which is
consistent with the PMEL maps and in good agreement
with the first inverse (forced by climatological winds).
Both inverse maps are very similar for large-scale fea-
tures. However, the third inverse, with real winds, dis-
plays more variability than the first inverse with cli-
matological winds. The latter is smoother. This is not
surprising, since the FSU winds are monthly mean wind
fields based on real wind observations in the tropical
Pacific for the period of time we are assimilating the
data. Both inverses fit the data to within one standard
error, as shown in Figs. 15 (off the equator) and 16
(along the equator). These time series plots confirm the
remark that the inverse forced with FSU winds has more
variability than the other.
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FIG. 14. Monthly means SST and SST anomalies from the generalized inverse with FSU winds for Aug 1997.

FIG. 15. Comparison between the inverse forced with FSU winds (solid line) and the inverse forced with
climatological winds (long-dashed line) at some mooring locations.
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FIG. 16. Same as in Fig. 15 but all locations are along the equator.

What then, do we learn from these two experiments,
since both inverses do fit the data to within one standard
data error? Fitting the data is to achieve only one ob-
jective of data assimilation. Another equally important
objective is the estimation of model errors, which in-
clude forcing errors. The two assumed wind forcings
are erroneous first guesses of the ‘‘true’’ forcing, and
we would like to ‘‘invert’’ the SST data in order to
correct the first guesses. In Figs. 17 and 18, for the first
and third inverses, respectively, we present (a) the first-
guess wind fields, (b) the corrections estimated by the
respective inverses, (c) and the corrected (first guess
plus correction) winds. The month is December 1997,
when the latest ENSO peaked. As one would expect,
these figures clearly show that the climatological winds
needed larger-amplitude corrections than do the FSU
winds. At some places, the estimated corrections to the
climatological wind exceed two standard deviations
(0.05 N m22, as specified in section 3d). None that all
the arrows in Figs. 17 and 18 are scaled by 0.25 N m22

(longest arrow). Figure 17b shows that the inverse could
detect westerly anomalous winds (near the equator, from
the date line to about 1158W) by assimilating only SST

data. The uncorrected and corrected FSU winds (Fig.
18c) are substantially stronger than the corrected cli-
matological winds (Fig. 17c), which explains the dif-
ference in variability on the time series and maps as
noted above.

All the results shown for the third inversion were
obtained after two iterations. The inverse calculation
had to be halted prior to convergence, as the upper layers
in successive background fields were close to outcrop-
ping. We are discouraged from further work with layered
models, and will work with sigma-coordinate-type mod-
els in the future.

8. Summary and conclusions

We have now advanced from the inverse of an in-
termediate coupled model (Bennett et al. 1998) to the
inverse of a full nonlinear PE ocean model. The PE
model is a 2½-layer reduced-gravity version, after
McCreary and Yu (1992). We slightly modified their
entrainment/detrainment formula and their treatment of
vertical divergence terms, for Gâteaux differentiability.
An iterated indirect representer method was then applied
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FIG. 17. Wind fields: (a) first guess from climatology, (b) correction estimated by the inverse,
and (c) corrected first guess for Dec 1997.

to solve the nonlinear EL system (Bennett et al. 1996,
1998). We used a revised linearization of the EL system
and thus avoided the computation and the storage of a
first-guess field for the time-dependant adjoint variables.

Before solving an inverse model involving TAO data,
we solved the nonlinear PE model iteratively. This is
equivalent to an inversion without data. Starting from
a first guess, each iterate was computed by tangent lin-
earizing the model equations about the previous iterate.
With smoothing relaxation, effective convergence was
obtained after 30 iterations.

For the generalized inversion including data, the var-
iances, length scales, and timescales for the model error
covariances were estimated from observations of upper
ocean eddy fluxes. We assumed that the parameteriza-
tions of the vertical fluxes of heat, momentum, and
thickness in the model were 100% in error. We computed
an inverse of the PE model, and 18 months of monthly

mean TAO SST data from December 1996 to May 1998
covering the latest strong El Niño disturbance. The data
were assimilated only at the mooring locations. The
generalized inverse is in good agreement with the TAO
project quick-look maps of the SST fields and anoma-
lies. The inverse fits the data to within one standard data
error and corrects discrepancies as large as 68 and 88C
between the very first background (n 5 0) and the data
at some mooring locations. The reduced penalty func-
tional was about four standard deviations below the ex-
pected value. This indicates that we were pessimistic in
our hypothesis about the means and covariances of the
initial, model, and data errors. However, the reduced
penalty functional Ĵ was only 17% smaller than the
mean. Thus, rescaling all the prior variances uniformly
by 17% would yield identically the same inverse (an
extremum for J is an extremum for 2J), but then the
posterior penalty functional would be exactly equal to
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FIG. 18. Wind fields: (a) first guess from FSU, (b) correction estimated by the inverse, and (c)
corrected first guess for Dec 1997.

its expected value of M 5 1088. Such a minor rescaling
of the prior variances yields values that are just as plau-
sible as the original values. We conclude that the original
hypothesis for the model errors, initial errors, and the
data errors sensibly survives the significance test.

A small number of iterations (five) is needed for the
inverses to converge, because the data ‘‘guide’’ the it-
erations.

The ‘‘strong constraint’’ inverse lost track of the data
after about three months. However, a careful comparison
between ‘‘weak’’ and ‘‘strong’’ constraint inverses
should be made for a three-month inversion.

Guided by our experience when attempting to assim-
ilate thickness data, and guided by the unconvincing
representation of thickness in our low-resolution model,
we do not expect it to cross validate well against thick-
ness data. We have made no attempt to do so. With-

holding 12% of the data did not prevent the inverse
from fitting all SST data to within within one standard
error, even at those mooring locations where the data
were withheld. The first inverse was able to infer anom-
alous westerly winds. The TAO data were also inverted
to find errors in FSU real-time winds. As expected, the
error estimates were smaller than those for the clima-
tological winds, but the inverse calculation had to be
halted prior to convergence, as the upper layer in suc-
cessive background fields was close to an outcropping.
Again, we are discouraged from further work with lay-
ered models and will work with sigma-coordinate-type
models in the future.

Because of the poor vertical resolution of the model,
we were limited to the assimilation of SST data only.
Future work will include an ocean model with finer
vertical resolution, specifically a 15½-level sigma-co-
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ordinate reduced-gravity PE modeled closely after Gent
and Cane (1989). It will be inverted with surface and
subsurface TAO data.
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APPENDIX

Linearization

Here we describe the slight modifications mentioned
in section 2 and the detailed linearization of all the
nonlinearities appearing in the PE model (1)–(9), by
applying the linearization scheme described in (23).

Three types of nonlinearities are present in the model:
products (basically found in the nonlinear advection and
the pressure gradients), divisions (by layer thicknesses
obtained when deriving the advective form of the mod-
el), and switches (in the entrainment/detrainment for-
mulas).

(i) The products: for any two model variables U and
V, the product UV is symmetrically linearized following
(23) as

(UV)n 5 Un21Vn 1 (Un 2 Un21)Vn21, (A1)

where the superscript n is the iteration index. The prin-

ciple remains the same when a linear operator acts on
U or V or on the product.

(ii) The divisions: also following (23), the ratio U/V
is linearized as

n n n21 n n21U U U (V 2 V )
5 2 , (A2)

n21 n21 21 2V V (V )

provided that Vn21 does not vanish.
(iii) The entrainment: the linearization of the entrain-

ment/detrainment presents two major difficulties, as the
formula uses switches (the Heaviside functions) and is
quadratic. We want to rewrite the entrainment as a linear
functional of . We linearize these formulas in twonh1

steps. First, we use one expression for entrainment, in
order to avoid the discontinuities introduced by the
Heaviside functions in (6) and (7). The sign of the new
entrainment should change as indicated by the Heaviside
functions. Therefore, we replaced (6) and (7) by

3(H 2 h )e 1w 5 . (A3)
2H te e

The second step consists of replacing the first-order
upwind scheme used by McCreary and Yu (1992) in the
discretization of the vertical advection terms. We define
the momentum and temperature at the interface to be
the mean of their respective values in the upper and the
lower layers, which is commonly used in layer models.
For example, the temperature at the interface is defined
as (T1 1 T2)/2 (Gent and Cane 1989; Murtugudde et al.
1995), instead of T1 or T2 depending on the sign of the
entrainment, since checking the sign of the entrainment
is a nonlinear operation. The vertical advection terms
then become sums of products of the model variables
that we can linearize as described above.

The full linearized equations of the forward model
are

n]vi n21 n n n21 n21 n n1 v · =v 1 (v 2 v ) · =v 1 f k 3 v 1 =pi i i i i i i]t

n n21 n21 n n n n21 n21 n21 n21 n n21t t (h 2 h ) [w (v 2 v ) 1 (w 2 w )(v 2 v )] w (h 2 h )1 1 1 2 1 2 i in21 n215 d 2 1 2 (v 2 v )1 1 2i n21 n21 2 n21 n21 21 2h (h ) 2h 2 (h )1 1 i i

2 n n n 2 n n211 k ¹ v 2 giu 1 r 1 n¹ (v 2 v ), (A4)2 i i v i ii

n]Ti n21 n n n21 n211 v · =T 1 (v 2 v ) · =Ti i i i i]t
n n21 n n21 n21 n n n n21 n21 n21 n21 n n21Q Q (h 2 h ) [w (T 2 T ) 1 (w 2 w )(T 2 T )] w (h 2 h )i i i 1 2 1 2 i in21 n215 2 1 2 (T 2 T )1 2n21 n21 2 n21 n21 2h (h ) 2h 2 (h )i i i i

2 n n 2 n n211 k ¹ T 1 r 1 n¹ (T 2 T ),2 i T i ii
(A5)

n]hi n21 n n n21 n21 n 2 n n 2 n n211 = · [h v 1 (h 2 h )v ] 5 w 1 k ¹ h 1 r 1 n¹ (h 2 h ), (A6)i i i i i 2 i h i ii]t
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where , , and are the residuals for the momentum,n n nr r rv T hi i i

temperature, and layer thicknesses. All the iterations are
subject to the same initial and boundary conditions:

R initial conditions,
n n nv 5 0, T 5 T*, h 5 H , at t 5 0;i i i i i

R north and south,
n n n]u ]h ]T

n5 y 5 5 5 0;
]y ]y ]y

R east and west,
n n]h ]T

n nu 5 y 5 5 5 0.
]x ]x

The linearized pressure gradient, entrainment, and
heat fluxes terms are given by

n n21 n n n21 n21=p 5 ag=[h (T 2 T ) 1 (h 2 h )(T 2 T )1 1 1 3 1 1 1 3

n21 n n n21 n211 h (T 2 T ) 1 (h 2 h )(T 2 T )]2 2 3 2 2 2 3

1
n21 n n n21 n212 ag[h =T 1 (h 2 h )=T ], (A7)1 1 1 1 12

n n21 n21 n=p 5 ag=[(h 1 h )(T 2 T )2 1 2 2 3

n n n21 n21 n211 (h 1 h 2 h 2 h )(T 2 T )]1 2 1 2 2 3

n21h2n21 n2 ag h 1 =T1 21 2[ 2

n n21h h2 2n n21 n211 h 1 2 h 2 =T , (A8)1 1 21 2 ]2 2
n21 2 n n21 3(H 2 h ) (H 2 h ) (H 2 h )e 1 e 1 e 1nw 5 3 2 2 , (A9)

2 2H t H te e e e

H1n nQ 5 (T* 2 T ), and (A10)1 1 1t1

H2n nQ 5 (T* 2 T ),2 2 2t2

(A11)

where a, g, He, H1, H2, te, t1, t2, , , and T3 areT* T*1 2

constants.
The penalty functional we minimize at each iterate is

n n n n n nJ 5 J [u , y , T , h ]
2

n n n n n n5 r • W • r 1 r • W • r 1 r • W • rO u u u y y y T T Ti i i i i i i i i
i51

n n1 r • W • r 1 initial misfits 1 data misfits.h h hi i i

(A12)

We did not include boundary misfits in this experiment.
The weights in the penalty functional are the inverses
of prior estimates of covariances of respective dynam-

ical residuals. In practice, we do not need to invert these
covariances. The minimization algorithm can be for-
mulated with the covariances only, see Bennett (1992).
The • symbols in (36) denote integrals over space and
time such as

n nr • W • ru u ui i i

T T L L L L

n5 dt dt9 dx dy dx9 dy9rE E E E E E ui

0 0 0 0 0 0

n3 (x, y, t)W (x, y, t, x9, y9, t9)r (x9, y9, t9).u ui i
(A13)

We chose not to include the adjoint equations in the
paper, since they are readily (if tediously) derived from
the linearized forward model as described in section 3b.
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