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The Statistical Distribution of Swash Maxima on Natural Beaches 

K.T. HOLLAND AND R.A. HOLMAN 

College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis 

Cartwright and Longuet-Higgins (1956) describe the statistical distribution of maxima that would result 
from the linear superposition of random, Gaussian waves. The distribution function depends solely upon the 
relative width of the power spectrum and root-mean-square value of the process time series. Runup field 
data from three experiments are presented to determine the extent to which the distribution of swash maxima 
can be approximated using the Cartwright and Longuet-Higgins probability density function. The model is 
found to be satisfactory for describing various distribution statistics including the average maxima, the 
proportion of negative maxima, and the elevation at which one third of the swash maxima are exceeded. 
However, systematic discrepancies that scale as a function of time series skewness are observed in the 
statistics describing the upper tail of the distributions. Although we conclude that the linear model is 
incapable of delineating these apparent nonlinearities in the swash time series, the extent of the deviation 
can be estimated empirically for the purpose of constraining nonlinear models and nearshore engineering 
design. 

INTRODUCTION 

Estimation of extreme values of wave runup (shoreline water 
level) is of interest to oceanographers, ocean engineers, and 
coastal planners. Many applications require accurate predic- 
tions of maximum runup elevations to allow choice of appro- 
priate and economically feasible shoreline setback criteria and 
design of shore protection structures. Maximum runup predic- 
tion under monochromatic conditions is straightforward; the 
runup reaches approximately the same elevation for every 
wave. However, under random wave conditions, a distribution 

of runup maximum elevations is observed. In the following, 
we apply an existing statistical model to estimate the distribu- 
tion of runup maxima under the assumption that runup can be 
approximated as a linear, Gaussian process. 

Figure 1 diagrams a hypothetical runup time series. For a 
given set of wave conditions, the runup elevation q(t) can be 
decomposed into two components. The setup, •i, is taken to be 
the mean water surface elevation above the still water level, 
while swash, q'(t), is defined as fluctuations of the runup about 
the setup level, q'(t) = q (t) - •i. Laboratory researchers 
commonly use the term runup to describe discrete maximum 
elevations rather than a continuous process, and make no 
distinction between setup and swash. We would like to remove 
this ambiguity by defining swash maxima • to be the 
difference in elevation between any local crest in q(t) and the 
setup level. Although this definition of local maxima is less 
common than the zero-crossing definition, R, the distribution 
of local maxima can be derived theoretically. One major 
difference between the two definitions of maxima is that for 

non-narrow-band processes the local maxima definition can be 
either positive or negative, while the zero-crossing definition 
allows for only positive maxima. Both definitions are equiva- 
lent for extremely narrow-band time series. For simplicity, 
subsequent use of the symbols defined above will pertain to 
nondimensional forms, whereas a caret (^) indicates specific 
reference to physical variables. 

Theories describing the swash motions of irregular, break- 
ing waves (reviewed by LeM•haut• et al. [ 1968]) are difficult to 
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apply to field and laboratory data. However, several empirical 
methods for determining the distribution of irregular wave 
runup maxima have been formulated. One of the earliest meth- 
ods, given by Saville [1962], relies on individual wave analy- 
sis to construct the runup maxima distribution. Basically, a 
runup relation developed under monochromatic wave condi- 
tions is applied to equivalent individual waves from an irregu- 
lar wave train. The assumption inherent to this method is 
known as the hypothesis of equivalency. Equivalency is not an 
assumption of linearity in terms of direct superposition; 
rather, the hypothesis presumes linear relationships between 
statistical averages only, not individuals. The resulting empir- 
ical distribution is calculated graphically for each particular 
combination of wave steepness and structure slope assuming 
independence of deepwater wave height and length. Battjes 
[1971] extended Saville's method to include conditions of 

varying correlation between wavelength and wave height by 
making the additional assumption that the maximum 
monochromatic runup elevation,/}, is given by Hunt's [ 1959] 
empirical equation for waves breaking on a smooth slope: 

•: C4•oL tan•3 (1) 

where/-/o is the offshore wave height, /•o is the offshore 
wavelength, tan [l is the beach slope, and C is an empirical 
constant. 

Since there is no equivalent offshore wave, the hypothesis 
of equivalency used in these linear models is inappropriate for 
conditions of significant infragravity (low frequency) energy, 
commonly a dominant component of field runup signals [Guza 
and Thornton, 1982]. Although other theoretical runup distri- 
bution models have been proposed [Ahrens, 1979, 1983; 
Nielsen and Hanslow, 1991; Sawaragi and lwata, 1984], they 
either depend upon equivalency or rely upon empirical 
"weighting" coefficients that obscure the physics of their 
development. In addition, the zero-crossing definition of 
runup maxima used in all of these models should most properly 
be restricted to describing very narrow-banded spectra. This 
definition is incapable of distinguishing the differences from 
broad-banded forms and is therefore inappropriate for use as a 
generic descriptor of process maxima. Finally, most of the 
previous models have been largely unconstrained by field data. 
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Fig. 1. Definition diagram of runup variables. 

Our principle objective is to characterize the wave runup 
maxima probability density function (pdf) for field data in 
terms of a model that does not assume equivalency, but still 
has a physical basis. In the following, we describe a proba- 
bilistic model for the local maxima of an arbitrary Gaussian 
process in which the form of the pdf is provided completely by 
its energy spectrum. The model is then tested with runup data 
from three separate field sites taken under a variety of envi- 
ronmental conditions. Finally, deviation from the predictions 
is shown to be a function of nonlinearity in the runup time 
series. 

STATISTICAL MODEL APPLICATION 

Following Rice [1944, 1945], Cartwright and 
Longuet-Higgins [1956] (hereinafter referred to as CLH56) 
present the theoretical, statistical distribution of maxima of an 
arbitrary stochastic function, f(t), formed as the sum of an 
infinite number of sine waves of random phase and zero mean: 

f(t)=ECnCOS((•nt+{n) (2) 
n 

where the frequencies, tJ n, are distributed densely in the inter- 
val (0,oo), the phases, q•n, are uniformly distributed between 0 
and 2•:, and the amplitudes, cn, are given by the energy spec- 
trum. Through application of the central limit theorem f(t) can 
be shown to be a Gaussian process with a pdf given by the 
Gaussian (or standard normal) distribution. Although not all 
Gaussian processes are necessarily linear, it is common to 
approximate random processes using linear superposition as 
given by equation (2). 

The pdf of the normalized maxima, •=•/ff• of f(t) is 
given by CLH56: 

P(•)= 2x/•-• (3) 

Thus the distribution of maxima will depend on only two 

parameters' a normalization factor, ff•, which is the root- 
mean-square of f(t), and the "spectral width" parameter, e, 
which represents the relative width of the energy density 
spectrum, E(o), off(t): 

œ2 = rno rn 4 - rn22 rn n = liE ( tj ) tj n dt J morn 4 
(4) 

Figure 2 shows the range of maxima distributions as a func- 
tion of the spectral width parameter e. We note that for an 

p(() e = 0 (Rayleigh) 
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Fig. 2. Statistical distribution of maxima of a random process as a func- 
tion of the spectral width parameter, e [after Cartwright and Longuet- 
Higgins, 1956]. As •; increases, the proportion of negative maxima 
increases, while the mean and the mode decrease. 

infinitely narrow spectrum (e--->0) (where the zero-crossing and 
local maximum definitions are equivalent) the distribution of 
normalized maxima, •, is given by the Rayleigh distribution: 

(5) 

As e approaches its maximum value of 1, the distribution of • 
tends to a GaUssian distribution with zero mean and standard 

deviation equal to 1 

1 
p(•) =--•e (6) 

Note that as the spectral width increases, changes in the 
following distribution statistics result: the proportion of 
negative maxima increases, while the mean, the mode, and the 
skewness of p(•) decrease. 

It may be somewhat surprising that we are attempting to 
describe swash motions using a linear model given the strong 
nonlinearities that are common in the nearshore zone. 
However, linear models have had considerable success in 
describing swash dynamics [Miche, 1951; Suhayda, 1974]. In 
fact, the nonlinear, finite amplitude development of Carrier 
and Greenspan [1958] shows that under certain conditions the 
amplitude of the swash motion does not differ from that given 
by linear theory. Additionally, wave kinematics [Guza and 
Thornton, 1980] and phase velocity [Thornton and Guza, 
1982] observations have been shown to be consistent with 
linear theory in a region well beyond its theoretically applica- 
ble range. Therefore extension of linear-based hypotheses to 
describe swash maxima deserves consideration. 

FIELD MEASUREMENTS 

The model was tested over a range of model parameters using 
results from three experiments: the Louisiana Barrier Island 
Erosion Study (LBIES) [Sallenger et al., 1987], the joint 
University SWASH (USWASH) experiment, and the Duck 
Experiment on Low-frequency and Incident-band Longshore 
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TABLE 1. Ranges of Environmental Conditions at the Different Experiment Locations 

Experiment Dates Location Method Number of Hs, m 
Runs 

T, s tan [• 

LBIES Feb. 14-25, 1989 Isles Dernieres, La Wire 67 0.58-0.87 
USWASH Jun. 26-29, 1989 La Jolla, Calif Video 2 0.54•2.35 
DELILAH Oct. 3-19, 1990 Duck, N.C. Video 16 0.94-2.71 

4.0-6.0 0.05 

5.8-13.6 0.03 
5.1-10.2 0.07 

and Across-shore Hydrodynamics (DELILAH) [Birkemeier et 
al., 1991] experiment. To our knowledge, this work incorpo- 
rates one of the largest and most accurate field runup data sets 
ever collected. 

As part of the LB IES, an experiment took place on the bar- 
rier island of Isles Dernieres, Louisiana, and was designed to 
track the propagation of runup and overwash bores over low- 
lying topography. During this experiment, a resistance wire 
runup sensor provided runup data between February 14 and 25, 
1989. The USWASH experiment was conducted over a 4-day 
period at Scripps Beach in La Jolla, California, during June 
1989. The objective of this experiment was to accurately 
sample swash processes using various methods. Both video- 
based and resistance wire runup sensors were deployed. 
However, only the video results will be presented in the model 
application. DELILAH was a multi-investigator study of 
nearshore dynamics on a barred beach, including the response 
of sand bars to waves. The experiment was located at the U.S. 
Army Corps of Engineers Field Research Facility in Duck, 
North Carolina. Over a 3-week period in October 1990, swash 
zone video recordings were made almost continuously during 
daylight hours. 

The environmental conditions and beach types varied 
substantially among the three experiment locations (Table 1). 
The data cover conditions ranging from incident (typical 
period O(10) seconds) to infragravity (period 20-300 s) 
energy dominated cond.itions, representing a variety of com- 
binations of sea and swell. Offshore significant wave heights 
varied from 0.54 to 2.71 m, with peak periods between 4 and 
13 s. Approximate foreshore profile slopes defined over the 
swash region ranged from 1:33 to 1:15. 

The video recordings from USWASH and DELILAH were ana- 
lyzed using a modified version of the "timestack" method 
described by Aagaard and Holm [1989]. For each specific 
camera view, the screen locations of a measured, shore-normal, 

beach profile (extending from the dry beach across the swash 
region) were computed using known geometric transforma-. 
tions [Lippmann and Holman, 1989]. An image-processing 
system was used to digitize picture element (pixel) intensities 
along the cross-shore transect and then rewrite the intensities 
horizontally across a separate (initially empty) frame buffer. 
Subsequent samplings (at a constant time interval) of transect 
pixels were "stacked" down the frame buffer such that cross- 
shore distance is represented along the horizontal axis, and 
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Fig. 3. "Timestack" from the DELILAH experiment showing the cross-shore location of the runup edge (dashed line) over 
time. The intensity patterns seaward of the runup edge reflect changes in the flow field at greater depths. The slope of the 
approximately linear features represents the speed of incoming runup bores. 
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time increases down the screen. In this manner, timestacks 

provide visual information of the cross-shore variability of 
pixel intensity over time. 

A typical timestack is shown in Figure 3. The position of 
the swash edge can be visually identified by the sharp change 
in intensity between the darker beach surface and the lighter 
"foamy" edge of the swash bore. Swash edge detection (shown 
by the dashed line) was accomplished using standard image- 
processing algorithms along with manual refinements. The 
appropriate inverse transformation to ground coordinates 
allowed computation of swash elevations. The vertical resolu- 
tion of this technique for these experiments ranged between 1 
and 4 cm. 

The runup sensor measurements made during the LBIES 
utilized a dual wire resistance gauge (described by Guza and 
Thornton [1982]) deployed horizontally across the beach at a 

height, /5, above the sand surface. Accuracies and resolutions 
of this method as compared with the video measurements have 
been discussed previously [Holman and Guza, 1984], and are 
not extended here. However, it is noted that comparisons 
between the two methods [Holland and Holman, 1991] suggest 
that as/5-->0, the wire measurements approach the video results 
(for the LBIES deployment, /5 = 4 cm). Any significant dis- 
crepancies between methods are expected to be apparent only 
with regard to mean and variance values and not with regard to 
the distribution shapes. 

Data were selected for analysis based on an assessment of 
the performance of the timestack and runup wire methods. 
Those video records having very low-intensity contrast be- 
tween beach and the swash (and therefore a larger probability 
of estimation error) were eliminated. Similarly, wire data runs 
were also excluded whenever the sensor was fouled by debris. 
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Fig. 4. Example maxima distributions and power spectra from the (top) LBIES, (middle) USWASH, and (bottom) DELILAH 
experiments. Theoretical distributions for the corresponding spectral width values are shown as the dotted lines. As the 
spectral width decreases, the proportion of negative maxima (left of the dashed line ( = 0) decreases in agreement with 
Figure 2. Energy density units are m 2 per Hz. 
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Fig. 5. Statistical measures of (top) r, the fraction of negative m•ima, 
and (bottom) •, the mean maximum, as a function of spectral width. 
Theoretical results formulated using equation (3) •e shown as the solid 
line, with expected r•ges found using simulations indicated. 

Data were also subjected to a run test [Bendat and Piersol, 
1986] to verify stationarity such that runs showing trends 
inconsistent with random fluctuations were removed from the 

analysis set. Visual examination of each the excluded records 
confirms that removal was justified on the basis of instrument 
malfunction or abrupt changes in environmental conditions. 

Ultimately, 85 time series were selected. In each case the 
data were sampled at 2 Hz, with a record length of approxi- 
mately 2 hours giving a total of 14,336 data points. As low- 
frequency trends in the time series would severely bias distribu- 
tion results, all data were quadratically detrended to remove any 
tidal fluctuations and the wave-induced setup, leaving only the 
swash signal. In addition, an low-pass filter was applied to 
eliminate signals having periods shorter than 3 s. The 3-s 
period was determined using the timestacks to be optimal for 
isolating maxima visible in the swash signal and restricting 
maxima due to "noise" in the digitization. Spectral parameters 
required in the model are determined from smoothed versions of 
the measured spectra calculated with 112 degrees of freedom. 
Maxima are defined as having a zero first derivative, and a 
second-derivative value less than zero. All distributions and 

distribution statistics pertain to maxima normalized by •J•. 
In order to isolate the effect of possible nonlinearities in the 

data, synthetic, linear time series were constructed by inverse 
Fourier transforming the observed spectrum, but with ran- 
domly selected Fourier phases, On. This operation produces a 
linear simulated time series (given by equation (2)) with iden- 
tical model input parameters to the original time series. A total 
of 1000 independent, realizations were produced for each 

observed swash time series, with appropriate statistics being 
computed in the same manner as the field data. 

RESULTS 

Distributions of Swash Maxima 

Example probability distributions of swash maxima, •, and 
associated spectra from the LBIES, USWASH, and DELILAH 
experiments are shown in Figure 4. The theoretical probability 
density functions estimated using (3) are also shown. For these 
examples, the agreement between the model and swash maxima 
observations appears qualitatively reasonable. Note the trend 
in the observations that as the spectral width increases, the 
proportion of negative maxima increases in agreement with 
the theory. The example spectra indicate significant energy is 
present throughout the incident and infragravity frequency 
bands. For the complete data set, spectral width values ranged 
between 0.76 and 0.98, signifying that the data are indeed 
broad-banded. Clearly, statistical inferences that depend upon 
a narrow-banded assumption are unjustified for these data. 

We quantitatively assessed the model predictions for the 
observed maxima distribution shapes by applying Monte 
Carlo type tests using the simulated data. With the simulations 
serving as the ensemble, parameters describing the fit of the 
maxima distribution to the CLH56 model (for a specific spec- 
tral width value) were computed for each of the 1000 simula- 
tions and compared with the actual deviation value obtained 
using the field data. Using this method, 75 of the 85 runs were 
observed to have significantly large (greater than 95% of the 
corresponding simulations) deviation statistics, indicating 
that the observed and predicted maxima distributions are statis- 
tically different. Statistical dissimilarity could not be proven 
for the remaining 10 runs. 

Although the observed and predicted distributions are not 
statistically equivalent, certain statistics describing the gen- 
eral form of the maxima distributions can be shown to depend 
upon the model parameter e. Figure 5 shows plots of e versus 
the proportion of negative maxima and the average value of 
the swash maxima, denoted by r and • respectively. 
Theoretical results are also shown. By examining Figure 5 we 
see that as spectral width increases, the proportion of negative 
maxima significantly increases, and the mean maximum 
significantly decreases, both consistent with model expecta- 
tions. The agreement between the model and observations for 
these two bulk statistics is considerable, especially at the 
lower spectral width values, although the model tends to 
underpredict r and overpredict [ for e > 0.9. 

In addition to the more integrated statistics describing the 
general form of the maxima distributions, probability of 
exceedance values describing the upper tail of the distribution 
were also calculated and are shown to be a function of e. Figure 
6 shows plots of e versus the elevations at which 33, 10, and 
2% of the normalized swash maxima were exceeded, denoted 

•33%, •10%, and •2%, respectively. As in Figure 5, the theoret- 
ical results and expected ranges from the simulations are 
shown. For each statistic, the CLH56 theory predicts that as 
the spectral width increases, the area under the more positive 
tail decreases, thereby resulting in lower statistic values. In 
general the magnitude of the results is appropriate, although 
the scatter of the •10% and •2% results makes identification of 
any specific trend difficult. Some of the increase in scatter with 
decreasing ct can be attributed to a smaller number of maxima 
being used in the calculations; however, there does seem to be 
a consistent bias in the distribution results for e > 0.9. 
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Fig. 7. Chi-square deviation of the swash time series distribution from 
the Gaussian pdf versus chi-square deviation of the distribution of swash 
maxima from the CLH56 model pdf. 

from the model expectations (Figure 7). Simply put, the more 
non-Gaussian the swash time series, the farther the model 

expectations deviate from the maxima observations. A similar 
relationship exists between the maxima/model chi-square 
deviation and the skewness of the time series (Figure 8). 
However, no particular correlation is apparent between the 
same deviation statistic and either the time series asymmetry, 
or kurtosis values. Similarly, we found no dependence on 
either the field site or the sampling method. These results 
suggest that time series skewness is a useful parameter in 
expressing deviations of observations from expectations. 

Given that nonlinear processes often have nonzero skew- 
ness, we can also use the skewness parameter as a reasonable 
proxy for the degree of time series nonlinearity, and thereby 
examine the dependence of model performance on the assump- 
tion of linear, Gaussian process. The ratio of observed to 
predicted exceedance values for the •33%, •10%, and (2% statis- 
tics is plotted against the value of time series skewness in 
Figure 9. We observe that for low skewness values (suggestive 
of linearity), observed and predicted values are approximately 
equal, indicating similarity between the model and the obser- 
vations. However, as skewness (assumed nonlinearity) 
increases, the data systematically deviates from model predic- 
tions. Predicted values of (2% will underestimate observations 
if the swash time series has a positive skewness value of 

Nonlinearity Results 

The most likely explanation of discrepancies between the 
model and the data is that the fundamental assumption of a 
linear, Gaussian process is not strictly justified for swash 
motions. If so, we expect the deviation of the predicted 
maxima distributions from observations to reflect departures 
of the swash time series (includes maxima, minima, and all 
points in between) from the assumed normal distribution as 
given by various statistical measures. 

However, not all of the statistics describing the similarity 
between the observations and predictions of maxima are 
affected equally as a function of the various time series 
"normality" parameters. An expected, straightforward rela- 
tionship exists between the chi-square deviation of the swash 
time series from the Gaussian distribution (the fundamental 
assumption) and the chi-square deviation of the maxima results 
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Fig. 8. Chi-square deviation of the distribution of swash maxima from 
the CLH56 model pdf as a function of time series skewhess. 
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Fig. 9. Ratios of observed to predicted exceedance levels as a function 
of skewness for probabilities (top) 33%, (middle) 10%, and (bottom) 
2%. The intersection of the dashed lines marks the location of expected 
agreement between the model and observations. The solid line denotes 
the best linear fit through the data (coefficients given in Table 2). 

greater than 0.5. Similar skewnesses will give rise to overes- 
timates of the •33% observations. However, (10% ratios have a 
much smaller dependence on skewness. These trends (which are 
consistent with the results in Figures 5 and 6) indicate that 
nonlinearity, as represented by skewness, in the swash time 
series is being expressed in the distributions of maxima as a 
shifting of maxima toward the positive extremes (above 
approximately the ninetieth percentile). Although this shift 
cannot be accounted for by the linear model, it can be described 

empirically. The linear trend regression slopes and intercepts 
of the plots in Figure 9 are given in Table 2. 

DISCUSSION 

Previously, the distribution of runup maxima has been 
described in terms of theory that depends upon physically 
unrealistic energy relationships or empirical weighting coeffi- 
cients and has often been either directly (for instance, Nielsen 
and Hanslow [1991]) or indirectly (the zero-crossing defini- 
tion) developed from the assumption of narrow-banded runup 
spectra. In the preceding sections, swash spectra were shown 
to be broad-banded rather than narrow-banded with statistics 

and distributions of maxima clearly dependent upon the rela- 
tive width of the swash spectral peak. Therefore runup maxima 
distribution models and statistical formulae dependent upon a 
peak offshore wave period are almost certainly ill posed. In 
contrast, functional dependencies between runup maxima and 
the spectral width parameter are not without precedence. Van 
Oorschot and d•4ngrernond [1968] suggest that proper applica- 
tion of Hunt's [1989] equation (1) to irregular waves requires a 
variable proportionality factor, C, that is a function of spec- 
tral width. Although it is difficult to relate their findings to our 
results, both sets of observations support the idea that spectral 
width has direct implications on the distribution of the runup 
maxima. 

The practical application of the model presented above to 
wave runup is limited by our present inability to predict the 
required model parameters and the time series skewness. There 
are several reasons to suspect the influence of nonlinearity in 
swash motions including composite sloped beach profiles, bed 
roughness, permeability, coherent bore-to-bore interactions, 
and transformation of energy during wave shoaling. The 
specific influence of any or all of these possible causes is 
difficult to derive. However, we have demonstrated that various 

distribution statistics show simple responses to nonlinearity 
which suggests that future research efforts directed toward 
improving the predictive capability of the model may prove 
fruitful. In addition, we hope that our empirical results con- 
cerning the trends of extreme runup elevations as a function of 
nonlinearity are useful for constraining mathematical, nonlin- 
ear runup models and for the purposes of nearshore engineering 
design. 

SUMMARY 

Runup data from an extensive range of conditions were ana- 
lyzed to determine if the probability density function of swash 
maxima could be described using a statistical model based upon 
the linear superposition of random, Gaussian waves. This 
model makes no assumptions about the data other than the 
supposition of a Gaussian process and requires only two input 
parameters: the spectral width and root-mean-square values of 
the process of interest. Field data taken under a variety of 
conditions indicate that although few examples of statistically 
significant correspondence between the observed maxima 
distribution and the model pdf were identified, various maxima 

TABLE 2. Linear Regression Results Describing Exceedance 
Ratios as a Function of Skewness 

Ratio Intercept Slope R value 
33 % 0.996 -0.255 0.749 
10% 1.009 0.003 0.158 
2% 0.995 0.364 0.868 
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statistics are well parameterized by œ, and that the qualitative 
trends of the distribution response to changes in œ are appro- 
priate. Quantitatively, discrepancies between observations and 
predictions varied systematically as a function of time series 
skewness. Modification of the theory to incorporate nonlinear 
time series will be necessary to allow more general applica- 
tion. 
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