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Abstract. The dynamics of the growth of linear disturbances
to a chaotic basic state is analyzed in an asymptotic model of
weakly nonlinear, baroclinic wave-mean interaction. In this
model, an ordinary differential equation for the wave ampli-
tude is coupled to a partial differential equation for the zonal
flow correction. The leading Lyapunov vector is nearly par-
allel to the leading Floquet vectorφ1 of the lowest-order un-
stable periodic orbit over most of the attractor. Departures of
the Lyapunov vector from this orientation are primarily ro-
tations of the vector in an approximate tangent plane to the
large-scale attractor structure. Exponential growth and de-
cay rates of the Lyapunov vector during individual Poincaré
section returns are an order of magnitude larger than the Lya-
punov exponentλ ≈ 0.016. Relatively large deviations of the
Lyapunov vector from parallel toφ1 are generally associated
with relatively large transient decays. The transient growth
and decay of the Lyapunov vector is well described by the
transient growth and decay of the leading Floquet vectors of
the set of unstable periodic orbits associated with the attrac-
tor. Each of these vectors is also nearly parallel toφ1. The
dynamical splitting of the complete sets of Floquet vectors
for the higher-order cycles follows the previous results on
the lowest-order cycle, with the vectors divided into wave-
dynamical and decaying zonal flow modes. Singular vec-
tors and singular values also generally follow this split. The
primary difference between the leading Lyapunov and singu-
lar vectors is the contribution of decaying, inviscidly-damped
wave-dynamical structures to the singular vectors.

1 Introduction

The predictability of geophysical fluid flows is an impor-
tant and interesting scientific issue, which combines prac-
tical and theoretical elements. Of particular practical inter-
est is the problem of numerical weather prediction. One ap-
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proach to this problem involves the use of ensemble fore-
casting techniques, which attempt to improve a single at-
mospheric forecast by combining multiple model predictions
(Epstein, 1969; Leith, 1974).

Recent operational implementations of ensemble fore-
casting in global numerical weather prediction models
rely on two different methods for ensemble generation:
bred modes (Toth and Kalnay, 1997) and singular vectors
(Buizza et al., 1993; Ehrendorfer and Tribbia, 1997). Bred
modes are obtained by iterating a “breeding” cycle, in which
the differences between ensemble members and a control
forecast are rescaled and added to the analysis at each anal-
ysis cycle to initialize a new ensemble. Singular vectors are
optimal disturbances (Lorenz, 1965; Farrell, 1989) that max-
imize specific measures of disturbance growth over specific
forecast intervals.

The object of the present contribution is to compute and
analyze singular vectors and the simplest analogs of bred
modes in a simple, physically consistent model of baro-
clinic wave-mean interaction, in order to develop insight
into the processes of disturbance growth in time-dependent
baroclinic flows and their relation to ensemble forecasting
methods. The present study shares this general motivation
with the closely related study of Samelson (2001; hereafter
S2001), which it extends and as a companion to which it
should be read, and with many recent studies of systems
ranging in complexity from the low-order Lorenz (1963)
equations to operational numerical weather prediction mod-
els (e.g. Buizza and Palmer, 1995; Buizza, 1995; Trevisan
and Legnani, 1995; Legras and Vautard, 1996; Szunyogh et
al.,1997; Vannitsem and Nicolis, 1997).

The dynamics considered here and by S2001 are the
asymptotic wave-mean interaction equations derived by Ped-
losky (1971) and studied further by Pedlosky and Frenzen
(1980) and Klein and Pedlosky (1986). These equations de-
scribe the evolution of a weakly nonlinear baroclinic wave
and a zonal flow correction for a zonal flow near marginal
stability, and represent the simplest physical model of non-
linear baroclinic dynamics that is currently available.
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The present study extends S2001, which focused on dis-
turbances to stable and unstable time-periodic solutions
of the model equations, to consider dirsturbances to ir-
regular, chaotic solutions. Since the pioneering work of
Lorenz (1963), deterministic chaos has served as an endur-
ing metaphor for the observed irregularity and unpredictabil-
ity of the atmosphere. One goal of this study is, in a limited
way and for one particular physical model, to explore this
metaphor quantitatively and concretely, in the context of en-
semble forecasting. The approach is partially motivated by
recent work on cycle expansions for chaotic systems (e.g.
Artuso et al., 1990a, 1990b; Christiansen et al., 1997; Cvi-
tanovíc et al., 2000), and is related to a recent study based on
the Lorenz system (Trevisan and Pancotti, 1998).

The model is briefly reviewed in Sect. 2. Section 3 de-
scribes the chaotic basic state and its linear instability, and
Sects. 4 and 5 discuss the Floquet and singular vector anal-
yses, respectively. Section 6 contains the discussion, and
Sect. 7 summarizes the results.

2 Model

The model studied here is a two-layer,f -plane, quasi-
geostrophic fluid in a periodic channel with a rigid lid at the
upper boundary, and Ekman dissipation at both the upper and
lower boundaries. Weakly nonlinear baroclinic wave-mean
interaction has been studied in this model by Pedlosky (1971)
and Pedlosky and Frenzen (1980), and is summarized in Ped-
losky (1987). The model equations and the relevant parame-
ters are summarized here, with notation primarily following
the previous references, to which the reader is referred for
additional details.

For a weakly supercritical mean flow, a weakly nonlin-
ear disturbance consisting of a single zonal wave component
generates a small correction to the mean zonal flow, which,
in turn, affects the growth or decay of the wave. The asymp-
totic analysis conducted by Pedlosky (1971) yields the cou-
pled system of equations describing this interaction. This
system consists of a second-order ordinary differential equa-
tion for the wave amplitudeA(t), coupled to a partial differ-
ential equation for the mean flow correction9(y, t). If 9

is expanded in terms of sinusoidal cross-channel modes, the
partial differential equation transforms into an infinite set of
coupled ordinary differential equations, which may be writ-
ten as

dA

dt
= −γA + B, (1)

dB

dt
= −

1

2
γB + A

[
1 +

1

2
γ 2

−

J∑
j=1

aj (A
2
+ Vj )

]
, (2)

dVj

dt
= −γ (bjVj − cjA

2), j = 1, 2, ..., (3)

whereJ → ∞ for the complete expansion, and

aj =
32m2(2j − 1)2[

(2j − 1)2 − 4m2
]2 [

(2j − 1)2π2 + K2
] , (4)

bj =
(2j − 1)2π2

(2j − 1)2 π2 + K2
, (5)

cj = 2 − bj . (6)

Here,K = (k2
+ m2π2)1/2 is the total wave number of

the baroclinic wave, andγ = r/(2σ) is the Ekman damp-
ing coefficientεr scaled by twice the inverse time scale, the
small exponential growth rateεσ of the linear wave. The
relations betweenA, B, Vj and the upper and lower layer
stream functions are discussed in S2001. Briefly,A is the
scaled amplitude of the wave,B is a measure of the phase
shift between the upper and lower layers, and eachVj rep-
resents a scaled combination of zonal flow componentj and
the squared wave amplitude. Sinceaj ∼ j−4 asj → ∞,
Eqs. (1–3) may be well approximated numerically by trun-
cating the sum in Eq. (2) at a finite valueJ , as is done here.

3 Attractor structure and Lyapunov vectors

3.1 Theγ = 0.1315 attractor

A numerical exploration of Eqs. (1–3) for a range of pa-
rameter values has been conducted by Pedlosky and Frenzen
(1980). Following S2001, the present study focuses on a set
of solutions withm = 1 andK2

= 2π2 (k = π), correspond-
ing to a wave with equal zonal and meridional scales, and
with friction parameterγ = 0.1315. The results described
here were obtained with a truncation atJ = 6 in Eq. (2).
The differences between the present numerics and those of
Pedlosky and Frenzen (1980) lead to small, but inessential
differences in the solutions and their dependence onγ . The
numerical techniques used in the present study are the same
as those described in S2001.

For γ = 0.1280 (and for a range of adjacentγ ), the nu-
merical solutions approach a limit cycle (S2001, Figs. 1–3).
Note that since the Eqs. (1–3) are unchanged by the trans-
formation(A,B) → (−A, −B), an asymmetric solution is
accompanied by a twin of opposite parity, corresponding to
an arbitrary along-channel phase shift of a half-wavelength.
For simplicity, attention is restricted here to the solution with
parity such that the maximum value of|A| occurs forA > 0.
The corresponding results for the twin solutions may be ob-
tained by changing the appropriate signs or phases.

In the wave-mean oscillation corresponding to this limit
cycle, there is a periodic reduction in zonal shear driven by
the growing wave, followed by a saturation of wave-growth
as the source of the instability is removed, with the subse-
quent decay of the wave amplitude and a resurgence of the
zonal shear. The wave amplitudeA oscillates between a pos-
itive and a negative maximum, each time remaining small for
substantial times as it changes sign. The mean flow correc-
tion reduces the vertical shear everywhere, and is nearly in
phase with the squared wave amplitude, which is consistent
with a dominant balance between mean flow acceleration and
potential vorticity fluxes due to secular changes in the wave
amplitude, as might be anticipated for small values of fric-
tion γ . Sinceγ is small, the weakly nonlinear phase shift
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Fig. 1. (a) A − V1 phase plane structure of the attractor on the
{B = 0, A > 0} Poincaŕe section, from 25 000 points. The large dot
shows the location of the lowest-order unstable periodic orbitp1.
The diamonds show the orientation of the leading Floquet vector of
p1. The 1993 intersection points of the first 157 unstable cycles are
also shown, offset inV1 by −0.05. (b) Histogram of theA-values
of the 25 000 attractor points in (a).

B ≈ dA/dt over most of the cycle, as is true for the linear
modes of instability of the steady zonal flow.

As γ increases past 0.1280, the system undergoes a se-
quence of period-doubling bifurcations. Chaos appears to
ensue forγ greater than about 0.1309. Here, we focus on the
chaotic numerical solution forγ = 0.1315. This is the same
value of the friction parameterγ for which S2001 studied
the properties of the lowest-order unstable periodic orbit, the
continuation toγ = 0.1315 of theγ = 0.1280 limit cycle.
The solution on theγ = 0.1315 attractor is generally similar
to theγ = 0.1280 limit cycle, but with irregular fluctuations
in the maximum and minimum amplitude of the oscillation.

The γ = 0.1315 attractor is conveniently analyzed
by considering the Poincaré section on the half-plane
{B = 0, A > 0}. A projection on theA − V1 phase plane

of a set of points at which aγ = 0.1315 numerical solu-
tion intersects this half-plane as shown in Fig. 1a. These
points lie nearly along a single curve. The Poincaré map
constructed by plotting theA-values of successive intersec-
tions closely approximates a one-dimensional, single hump
map that is asymmetric, but otherwise resembles the logistic
map (S2001, Fig. 4).

The following analysis focuses entirely on the structure of
the attractor as it is represented in this Poincaré section. An
A − B phase plane projection of the continuousγ = 0.1315
attractor time series is shown in Fig. 2b of S2001. The return
time between successive Poincaré section points is approx-
imately equal to the period of the lowest-order unstable pe-
riodic orbit (24.479), or physically to two weakly nonlinear
baroclinic wave life cycles, since each oscillation involves a
growth and decay of waves with alternating signs or phases.
A histogram of theA-values of the points in Fig. 1a is shown
in Fig. 1b, and indicates that, with notable exceptions near
the maximum and minimum values ofA and several inter-
mediate points, the 25 000 points of the numerical solution
are approximately uniformly distributed inA.

3.2 Lyapunov exponent and vectors

The leading Lyapunov exponentλ and Lyapunov vectorv
on the attractor were approximated numerically in the stan-
dard way (Shimada and Nagashima, 1979; Bennetin et al.,
1980): the long-time evolution of an arbitrary, small dis-
turbance to the attractor solution was computed using the
linearized equations. The amplification of the linear distur-
bance on each return to the Poincaré section was computed
(using the standard inner-product norm in the{A, B, Vj }

phase space), and the disturbance was then renormalized
each time to prevent unbounded growth. To limit the in-
fluence of transients associated with the arbitrary initializa-
tion, only the last 25 000 of 50 000 Poincaré returns are
used in the analysis (corresponding to a time series of length
≈ 25 000× 24.479 ≈ 6 × 105, or 50 000 weakly nonlinear
wave life cycles). Note that this time series is much longer
than the length of time over which the numerical solution can
track the actual unstable solution from a given initial point
with neglible numerical error; it is assumed in the usual way
(e.g. a shadowing property) that the numerical results are still
meaningful, at least as local and statistical descriptions.

The Lyapunov exponentλ was computed as the mean ex-
ponential growth rate of the linearized disturbance. During
the last 15 000 returns,λ = 0.01608±0.00001, where the er-
ror is the standard deviation. For the unstable time-dependent
numerical solution on the attractor, this mean exponential
growth rate is analogous to the exponential growth rates of
normal-mode instabilities of steady flows, as it is the rate at
which the fastest growing disturbance will amplify asymp-
totically in the long-time limit.

The Lyapunov vectorv is approximated asymptotically
by the successively renormalized linear disturbance at each
point on the attractor visited by the numerical solution. For
the solution on the attractor, this vector is analogous to the
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Fig. 2. (a) Relative angles of Lyapunov vectors and the leading
Floquet vectorφ1 of the lowest-order unstable periodic orbitp1, vs.
A. (b) Relative angles of Lyapunov vectors and the approximate
tangent plane to the attractor vs.A. Note the change in vertical
scale from (a) to (b).

normal modes of linear instability of steady flows. At each
point, any disturbance to the time-dependent numerical so-
lution that is not orthogonal tov will ultimately grow in-
definitely under the linearized dynamics, approaching the
structure ofv asymptotically. Over most of the attractor,v

is nearly tangent to the large-scale structure of the attractor.
This is indicated in Fig. 2a, in which| arccos(v · φ1)| (with
the standard inner-product, and unit vectorsv andφ1) is plot-
ted versusA for each Poincaré intersection point, whereφ1
is the leading Floquet vector of the lowest-order unstable pe-
riod orbit p1 at γ = 0.1315. The Floquet vectorφ1 is, in
turn, approximately tangent to the large-scale structure of the
attractor, as indicated in Fig. 1a (see also S2001). Figure 2a
also indicates thatφ1 provides a good approximation ofv
over most of the attractor. The physical structure ofφ1 is
shown in Fig. 9b of S2001.

A planar approximation to the large-scale attractor struc-
ture at the Poincaré section can be constructed from the tan-
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Fig. 3. (a) Normalized histograms of Poincaré return exponential
growth ratesλT andλ1T of Lyapunov (thick solid line) and leading
Floquet (thin) vectors, respectively, and leading Floquet exponents
λ1 (dashed). (b) Poincaŕe return exponential growth ratesλT of
Lyapunov vectors vs.A.

gentφ2 to p1 and a linear approximation to the attractor on
the section, in which the coordinates{Vj } are parameterized
in terms ofA (for example,V1 = −2.1379A+ 8.0763; com-
pare to Fig. 1a). The Lyapunov vectorv is essentially tan-
gent to this plane over almost all of the section (Fig. 2b).
Most of the large angles betweenv andφ1 arise when the
Lyapunov vector rotates away fromφ1 but remains within
the large-scale tangent plane to the attractor. Thus, the Lya-
punov vector does provide, for this relatively simple attractor
geometry, a useful guide to the distribution of nearby states
on the attractor.

Despite this near uniformity across the attractor of the
Lyapunov vector orientation, the individual Poincaré return
growth ratesλT , from which the mean growth rateλ was
computed, fluctuate over a range that is an order of mag-
nitude larger thanλ, from growth rates as large as 0.14, to
decay rates as large as−0.2 (Fig. 3). This result is consistent
with the well-known slow convergence of Lyapunov expo-
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nents computed in this manner. TheλT are the mean ex-
ponential rates of growth of the Lyapunov vectorv (in the
standard norm) during each return to the Poincaré section,
computed according toλT = ln(|v(t + T )|/|v(t)|)/T , prior
to renormalization ofv(t + T ), whereT ≈ 24 is the re-
turn time. TheλT are bimodally distributed, with a broad
peak nearλ and a distinct secondary peak near 0.05 (Fig. 3a).
Many of theλT are as small as−0.02 or as larger as 0.05;
these variations arise over large parts of the attractor despite
the small departures ofv from φ1 (Fig. 3b); for comparison,
φ1 has Floquet exponent (see below)λ1 ≈ 0.025, slightly
larger thanλ.

Extreme values ofλT occur wherev is the farthest from
the tangent toφ1, or the attractor (Figs. 2, 3a, 4a, 4c). All
(relatively) large departures ofv from these tangencies are
associated with a decay ofv (λT < 0); as tangency withφ1
is approached,λT approachesλ1 ≈ 0.025 (Fig. 4b). The
smallestλT are found nearA = 1.826 (Fig. 3b), consistent
with the peak and vanishing slope of the approximate one-
dimensional map at this point. Most of the positive val-
ues ofλT are found inA < 1.81, while mostλT are nega-
tive for A > 1.81. Thus, the disturbances described by the
Lyapunov vector tend to amplify only when the wave ampli-
tudeA is small, and they decay whenA is large or near the
critical value of 1.826. This is consistent with the general
character of the oscillation, in which nonlinear (largeA) sta-
bilizing mechanisms arrest the growth of the linear (smallA)
instability.

4 Periodic orbits and Floquet vectors

One approach to the study of the structure and dynamics of
chaotic systems involves the analysis of an associated set of
unstable periodic orbits (e.g. Cvitanović et al., 2000). This
analysis is simplified if a symbolic dynamics can be iden-
tified that relates the orbits to symbol sequences. As noted
above, in the present case, the evolution forγ = 0.1315 may
be usefully represented by a one-dimensional map (S2001,
Fig. 4). From the spline representation of this map, unstable
period orbits were determined in the standard way by asso-
ciating the symbols 0 and 1 with the intervals to the left and
right, respectively, of the point where the map achieves its
maximumA = 1.826, generating a set of binary symbol se-
quences, and finding the corresponding unique orbit points
by inverse iteration. These points were then used as first
guesses for the periodic points of the differential equations,
which were improved using Newton’s method. The result of
this set of calculations is a set of unstable periodic orbits that
are related in an essential way to the attractor dynamics and
“fill out” (more precisely, and under certain conditions that
may or may not strictly hold here, are dense on) the attrac-
tor. For some examples of these orbits, see Figs. 5 and 9a of
S2001.

A list of all symbol sequences up to length 15 for which
unstable cycles were computed forγ = 0.1315 is given in
Table 1. There are a total of 157 such cycles. In the present
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Fig. 4. (a)Scatter plot of Poincaré return exponential growth rates
λT vs. relative angles of Lyapunov vectors and the leading Floquet
vectorφ1 of the lowest-order unstable periodic orbitp1. (b) Same
as (a), but with expanded scale for small angles.(c) Scatter plot of
Poincaŕe return exponential growth ratesλT vs. relative angles of
Lyapunov vectors and the approximate tangent plane to the attractor.

case, due to the geometry of the map, many possible symbol
sequences do not have corresponding cycles. For example,
no cycle corresponds to the repeated sequence 0, nor to any



444 R. M. Samelson: Lyapunov, Floquet, and singular vectors for baroclinic waves

1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92
0

0.005

0.01

0.015

0.02

0.025

A

F
lo

qu
et

 e
xp

on
en

t

(a)

1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

A

F
lo

qu
et

 v
ec

to
r 

am
pl

if.
 r

at
e

(b)

1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92
0

0.5

1

1.5

A

ar
cc

os
(a

1 .p
hi

1)

(c)

Fig. 5. (a) Floquet exponents for 157 unstable cycles, plotted vs.
A at each of the 1993 intersection points of the 157 cycles with the
Poincaŕe section.(b) Poincaŕe return exponential growth ratesλ1T

of the leading Floquet vector vs.A, for each of the 157 cycles.
(c) Relative angles of the leading Floquet vector for each cycle and
the leading Floquet vectorφ1 of the lowest-order unstable periodic
orbit p1.

sequence containing 00, since all points in the left-hand inter-
val are mapped to points in the right-hand interval. The 1993
points where these 157 cycles intersect the Poincaré section

are shown in Fig. 1a, withV1 values offset by−0.05. The
coverage of the attractor is not uniform, and there are several
large gaps, for example, nearA = 1.82 andA = 1.88.

The solutions of the linearized equations for small distur-
bances to these unstable cycles may be computed by standard
techniques for linear differential systems with periodic coef-
ficients (e.g. Coddington and Levinson, 1955), often known
as Floquet theory, as described in detail in S2001. The so-
lutions are obtained for the truncationJ = 6, so the result
of each of these calculations is a set of 8 time-dependent
normal-modes or “Floquet vectors”{φj , j = 1, ..., 8} and
8 corresponding Floquet exponents{λj , j = 1, ..., 8}; the
λj are the mean exponential growth (or decay) rates of the
corresponding disturbance over the cycle length. Note that
the exponentsλj will, in general, differ from cycle to cycle,
but for simplicity, the dependence on cycle is dropped from
the notation here. Except for the exponential growth factors,
each of these Floquet vectors is also periodic, with the pe-
riod equal to the cycle period (or twice the cycle period). For
an example of the physical structure of one of these Floquet
vectors, see Fig. 9b of S2001.

The Floquet exponents for these 157 cycles are dis-
tributed essentially in same way as those shown in Fig. 8 of
S2001: for each cycle, there is one growing mode (λ1 >

0), one neutral mode (λ2 ≈ 0), and six decaying modes
(λj < 0, j = 3, ..., 8). The neutral (j = 2) and damped
zonal flow (j = 4, .., 7) modes haveλj nearly indepen-
dent of cycle, while the values ofλ1, λ3, and λ8 fluctu-
ate. The distribution ofλ1 for the 157 cycles is shown in
Fig. 3a; the maximum and minimum values ofλ1 are 0.0253
(for thep1 cycle) and 0.0153 (for a 12-cycle with sequence
110111011010).

If the leading Floquet exponentλ1 for each cycle is plotted
at the Poincaŕe section points of the corresponding cycle, the
resulting distribution is not smooth (Fig. 5a). The smallest
λ1 tends to occur at the edges of the gaps in coverage noted
above, suggesting the presence of weakly unstable cycles of
longer cycle length. This hypothesis is consistent with the
relatively small value of the Lyapunov exponentλ computed
above, compared to most of the first 157 leading Floquet ex-
ponentsλ1; according to the cycle expansion theory,λ should
be accurately approximated by a suitable average of theλ1,
weighted inversely by stability.

The leading Floquet vectors of higher-order cycles are, in
general, nearly parallel to the leading Floquet vectorφ1 of the
lowest-order cyclep1 (Fig. 5c). Individual Poincaré return
growth ratesλjT of the Floquet vectors were computed in the
same manner as the Lyapunov vector growth ratesλT ; they
are the mean exponential growth or decay rates of the corre-
sponding Floquet vector during each return to the Poincaré
section. The amplification factorsλ1T of the leading Floquet
vectors show a pattern (Fig. 5b) that is strikingly similar to
that of the Lyapunov vector growth ratesλT (Fig. 3b). The
distribution of theλ1T from the first 157 cycles (Fig. 3a)
closely resembles the distribution of theλT ; note that it re-
produces the secondary peak near 0.05. Evidently, only the
leading Floquet vectors of the higher-order cycles are re-
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Table 1. Symbol sequences for first 157 unstable cycles forγ = 0.1315

1 11110111010 1111010111010 11011101111010 111111111101010
10 11110101110 1111110111010 11110101111110 110101111011010

1110 11111111010 1111010111110 11111010111110 110101110111010
11010 11111101110 1111011111010 11110111111010 110101111111010
11110 11110111110 1111110101110 11111110101110 110101110101110

111010 11111111110 1111111111010 11111111111010 110101111101110
111110 111010101010 1111011101110 11111011101110 110101111011110

1101010 111110101010 1111111101110 11110111101110 110101110111110
1111010 110101011010 1111011111110 11111111101110 110101111111110
1111110 111010101110 1111110111110 11110111111110 111111010111010

11101010 111111101010 1111111111110 11111110111110 111101110111010
11111010 110101111010 11101010101010 11111111111110 111101110101110
11111110 110111011010 11111010101010 110101010101010 111111110111010

110101010 110101111110 11010101011010 111101010101010 111101011111010
111101010 111110111010 11010101011110 110101010101110 111101011101110
110101110 111101111010 11101010101110 111111010101010 111101011111110
111111010 111110101110 11111110101010 110101010111010 111111011111010
111101110 111111111010 11010101111010 110101010111110 111111010111110
111111110 111111101110 11101011101010 110101110101010 111101111111010

1110101010 111101111110 11111011101010 111101110101010 111111110101110
1111101010 111111111110 11010111101010 111101010101110 111111111111010
1101011110 1101010101010 11110111101010 111111110101010 111111011101110
1110101110 1111010101010 11111010101110 110101011101010 111101110111110
1111111010 1101010101110 11111111101010 110101011111010 111101111101110
1111101110 1111110101010 11010111011010 110101011101110 111111111101110
1111111110 1101010111010 11010111111010 111101011101010 111101111111110

11010101010 1101011101010 11010111101110 111111011101010 111111110111110
11110101010 1111011101010 11010111011110 111101010111010 111111011111110
11010101110 1111010101110 11010111111110 111101010111110 111111111111110
11111101010 1111111101010 11111010111010 110101111101010
11010111010 1101011101110 11101011101110 111101111101010
11010111110 1101011111110 11111110111010 111111010101110

quired to describe most of the transient growth and decay
of the Lyapunov vector.

The distribution of the Floquet vector amplificationsαj =

eλjT T generally follows the pattern of the distributions of
Floquet exponentsλj , though with a greatly increased spread
(Fig. 6). Modes 2 and 4–7 have narrow amplification distri-
butions, as do their exponents, while modes 1, 3 and 8 have
broad distributions. This is consistent with the observation in
S2001 that the dynamical splitting between wave-dynamical
and damped zonal flow modes observed in the lowest-order
cycles persists in the higher-order cycles, and further sug-
gests that it persists even during transient growth and decay
segments of the higher-order cycles.

5 Singular vectors

The Lyapunov vector, described above, describes the charac-
teristic structure of disturbances that amplify indefinitely un-
der the linear dynamics, in a way that is analogous to normal-
mode instability for steady flows. However, it generally does
not describe the linear disturbances that are maximally am-
plified after a fixed interval of time. Such optimal distur-

bances, referred to here as singular vectors (SVs), generally
exhibit transient growth, and do not have fixed modal struc-
ture (e.g. Lorenz, 1965; Farrell, 1989). In this section, SVs
are computed on the 157 unstable cycles discussed in the pre-
vious section. As shown above, the leading Floquet vectors
from these 157 cycles are sufficient to represent much of the
detailed time-evolution of the Lyapunov vector over most of
the attractor. It is presumed here that SVs based on the com-
plete set of Floquet vectors from these 157 cycles are suf-
ficient to describe the general characteristics of SVs on the
attractor in a similar way.

Consistent with the preceding analysis, SVs are computed
here for a single optimization interval (slightly different in
duration for each cycle), corresponding to the first Poincaré
return from each Poincaré section point on each cycle. This
is the same set of intervals that was used above to calculate
the Lyapunov and Floquet vector transient growth ratesλT

andλjT . The standard inner-product norm in the{A, B, Vj }

phase space is used to compute the SVs; this is similar to, but
slightly different from the “AE” norm used in S2001. Results
for the SVs will depend on the norm used, but in S2001, the
qualitative results were relatively insensitive to this choice.
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Fig. 6. Histogram of the base-10 logarithm of the Poincaré return
amplificationαj = eλjT T of Floquet vectorj, j = 1, ..., 8 for each
intersection point of each cycle.

The SVs are otherwise computed in each case in exactly the
same manner as in S2001.

The distributions of the singular valuesµj , j = 1, ..., 8 for
each of the 1993 sets of 8 SVs is shown in Fig. 7. Only the
first SV is strongly amplifying. The second is approximately
neutral in most cases, the third is mostly decaying, and the
fourth through eighth are always decaying. In general, these
singular values are consistent with those computed for the
lowest-order orbitp1 in S2001. The first SV amplifies more
rapidly than the first Floquet vector, and the eighth SV de-
cays more rapidly than the eighth Floquet vector, while the
intermediate SV decay rates follow the corresponding Flo-
quet decay rates closely.

The decompositions of the 1993 leading SVs in terms of
the Floquet vectors for the corresponding cycle also show a
qualitatively similar pattern to that found in S2001 for the
lowest-order orbit (Fig. 8). The leading SVs are dominated
by the wave-dynamical modes (j = 1, 2, 8), with some con-
tribution from the intermediate (j = 3) mode. The projec-
tions of the leading SVs on the decaying zonal mean modes
(j = 4, ..., 7) are uniformly small.

6 Discussion

The present analysis of disturbance growth for weakly non-
linear baroclinic waves extends a recent study (S2001),
which considered only simple, stable and unstable time-
periodic basic states, to the case of a chaotic basic state. De-
spite the qualitative difference in the time-dependence of the
underlying basic states, the present results are largely consis-
tent with the results of S2001.

The Lyapunov vector and exponent are the natural concep-
tual extensions to the chaotic basic state of the normal modes
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Fig. 7. Histogram of the base-10 logarithm of the Poincaré return
singular valueµj for singular vectorj, j = 1, ..., 8 for each inter-
section point of each cycle.

and growth rates of linear instabilities of steady basic states,
and of the time-dependent Floquet normal modes and growth
rates of linear instabilities of time-periodic basic states. For
the chaotic basic state, the Lyapunov vector is also the sim-
plest analog to the bred modes of numerical bred modes of
numerical weather prediction. Over most of the attractor, the
Lyapunov vector closely resembles the unstable Floquet nor-
mal modeφ1 of p1, the lowest-order unstable periodic orbit
analyzed in S2001. In turn,φ1 closely resembles the neu-
tral modeφ2 that is tangent top1, the basic-state oscillation
(S2001). Thus, as in S2001, disturbance growth is dominated
by the same baroclinic wave processes that control the evo-
lution of the basic state. The Lyapunov exponentλ ≈ 0.016
is of the same order but smaller than the leading Floquet ex-
ponentλ1 ≈ 0.025 ofp1.

Transient growth and decay of the Lyapunov vector occurs
on the baroclinic wave time scale with exponential rates that
are an order of magnitude larger thanλ. These events involve
only minor changes in the structure of the Lyapunov vector,
which remains nearly parallel toφ1 over most of the attrac-
tor. They are accurately represented by the corresponding
transient growth and decay of the leading Floquet vectors of
the higher-order unstable cycles. Thus, even for these tran-
sient events, only the growing modes of the unstable cycles
are essentially sufficient to describe the structure and evolu-
tion of the Lyapunov vector.

The Floquet vectors of the higher-order unstable cycles
split into wave-dynamical and decaying zonal flow modes.
Singular vectors, computed using the standard norm on the
baroclinic wave time scale for the set of 157 unstable cycles,
reflect this splitting: the leading singular vectors are domi-
nated by the wave-dynamical Floquet modes. Similar results
were reported in S2001 forp1. The maximum singular value
amplifications are two orders of magnitude larger than the
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corresponding maximum transient amplifications of the Flo-
quet modes of the unstable cycles, but there is typically only
one amplifying singular vector, corresponding to the single
amplifying Floquet mode. This is true despite that the opti-
mization interval was much shorter than the periods of many
of the higher-order cycles.

These results demonstrate that singular vectors and the ex-
tensions of normal-mode instabilities for this irregular, time-
dependent flow are closely related, as they were found to
be in S2001 for the time-periodic basic states. The Lya-
punov vector, the simplest analog of bred modes, captures
the same disturbance structures and transient growth and de-
cay events that dominate the singular vectors, with one im-
portant exception: the decaying, inviscidly-damped, wave-
dynamical Floquet vector is a central element of the grow-
ing singular vectors, but is essentially absent from the Lya-
punov vector. The structure of the decaying wave-dynamical
mode generally resembles that of the other wave-dynamical
modes, which results in a tendency toward non-orthogonality
that the singular vector exploits to produce a large transient
amplification. Evidently, the damped zonal flow modes are
sufficiently different in structure from the wave-dynamical
modes that they have a negligible contribution to the grow-
ing singular vectors.

It is perhaps surprising that the leading Lyapunov and Flo-
quet vectors, here and in S2001, have a structure similar
to the tangent to the evolving basic-state flow. As noted
above, this indicates that the processes that control distur-
bance growth in this model are essentially the same as those
that control the evolution of the basic state. In a more com-
plex model that admits a wider range of scales and physical
processes, or in a similar model but farther from marginal
stability of the basic cycle, the similarity between the unsta-

ble modes and the tangent to the flow may not persist. Thus,
and in general, the degree to which the present results will
extend to more complex models is uncertain.

The present results are generally consistent with the anal-
ysis by Trevisan and Pancotti (1998) of Lyapunov, Floquet,
and singular vectors for a low-order unstable periodic cycle
of the three-component Lorenz (1963) model. Those authors
also find that the unstable Floquet mode tends to resemble
the tangent along the cycle. Presumably, this would also be
true for the higher order cycles of the Lorenz model, as it is
here. They also find, as here, that rapidly amplifying singu-
lar vectors arise as a consequence of non-orthogonality of the
Floquet modes.

7 Summary

This study has addressed the mechanisms of growth of lin-
ear disturbances to an irregular, chaotic basic state in a sim-
ple model of weakly nonlinear baroclinic wave-mean inter-
action. It extends the previous results of S2001, which con-
sidered disturbances to time-periodic basic states of the same
model. Many of the present conclusions are similar to those
of S2001. Disturbance growth in this simple model was
found to be related to the wave growth and decay mecha-
nisms associated with the time-dependent basic state. Flo-
quet vectors of the higher-order unstable cycles were found
to divide into two dynamical classes, the first associated with
baroclinic wave dynamics and the second with the frictional
decay of high meridional modes of the zonal flow. The
decompositions of the leading singular vector in terms of
the time-dependent Floquet vectors of the higher-order cy-
cles generally reflected this dynamical split, with the wave-
dynamical components dominating.

In addition, the Lyapunov vector, which for the chaotic
basic state in this model is the simplest analog of the bred
modes used in numerical weather prediction, was shown to
capture most of the transient variability of the growing wave-
dynamical Floquet vectors. Since these, along with the tan-
gent to the orbit itself, are two of the three dominant com-
ponents of the singular vectors, the present results suggest a
close relation between bred modes and singular vectors. The
primary difference between the two sets of modes is the con-
tribution of the decaying wave-dynamical mode to the singu-
lar vectors. This confirms one of the hypotheses of S2001
for the nonperiodic state in this simple model. If this re-
sult extends to more complex models, and the presence of
decaying wave-dynamical modes are found generally to dis-
tinguish singular vectors from bred modes, then a practical
question that arises in comparing ensemble generation meth-
ods is, are the additional decaying wave-dynamical modes
valuable to ensemble generation in operational forecasting
implementations?
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