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Abstract. The dynamics of the growth of linear disturbances proach to this problem involves the use of ensemble fore-
to a chaotic basic state is analyzed in an asymptotic model ofasting techniques, which attempt to improve a single at-
weakly nonlinear, baroclinic wave-mean interaction. In this mospheric forecast by combining multiple model predictions
model, an ordinary differential equation for the wave ampli- (Epstein, 1969; Leith, 1974).

tude is coupled to a partial differential equation for the zonal Recent operational implementations of ensemble fore-
flow correction. The leading Lyapunov vector is nearly par- casting in global numerical weather prediction models
allel to the leading Floguet vectgr of the lowest-order un-  rely on two different methods for ensemble generation:
stable periodic orbit over most of the attractor. Departures ofbred modes (Toth and Kalnay, 1997) and singular vectors
the Lyapunov vector from this orientation are primarily ro- (Buizza et al., 1993; Ehrendorfer and Tribbia, 1997). Bred
tations of the vector in an approximate tangent plane to themodes are obtained by iterating a “breeding” cycle, in which
large-scale attractor structure. Exponential growth and dethe differences between ensemble members and a control
cay rates of the Lyapunov vector during individual Poigcar forecast are rescaled and added to the analysis at each anal-
section returns are an order of magnitude larger than the Lyaysis cycle to initialize a new ensemble. Singular vectors are
punov exponent ~ 0.016. Relatively large deviations of the optimal disturbances (Lorenz, 1965; Farrell, 1989) that max-
Lyapunov vector from parallel tp; are generally associated imize specific measures of disturbance growth over specific
with relatively large transient decays. The transient growthforecast intervals.

and decay of the Lyapunov vector is well described by the The object of the present contribution is to compute and
transient growth and decay of the leading Floquet vectors obnalyze singular vectors and the simplest analogs of bred
the set of unstable periodic orbits associated with the attracmodes in a simple, physically consistent model of baro-
tor. Each of these vectors is also nearly parallepio The  clinic wave-mean interaction, in order to develop insight
dynamical splitting of the complete sets of Floquet vectorsinto the processes of disturbance growth in time-dependent
for the higher-order cycles follows the previous results onparoclinic flows and their relation to ensemble forecasting
the lowest-order cycle, with the vectors divided into wave- methods. The present study shares this general motivation
dynamical and decaying zonal flow modes. Singular vec-with the closely related study of Samelson (2001; hereafter
tors and singular values also generally follow this split. The S2001), which it extends and as a companion to which it
primary difference between the leading Lyapunov and singushould be read, and with many recent studies of systems
lar vectors is the contribution of decaying, inviscidly-damped ranging in complexity from the low-order Lorenz (1963)
wave-dynamical structures to the singular vectors. equations to operational numerical weather prediction mod-
els (e.g. Buizza and Palmer, 1995; Buizza, 1995; Trevisan
and Legnani, 1995; Legras and Vautard, 1996; Szunyogh et
al.,1997; Vannitsem and Nicolis, 1997).

The dynamics considered here and by S2001 are the
The predictability of geophysical fluid flows is an impor- asymptotic wave-mean interaction equations derived by Ped-
tant and interesting scientific issue, which combines praclosky (1971) and studied further by Pedlosky and Frenzen
tical and theoretical elements. Of particular practical inter-(1980) and Klein and Pedlosky (1986). These equations de-

est is the problem of numerical weather prediction. One ap_scrlbe the evolution of a_weakly nonlinear baroclinic wave
and a zonal flow correction for a zonal flow near marginal

Correspondence tdR. M. Samelson stability, and represent the simplest physical model of non-
(rsamelson@coas.oregonstate.edu) linear baroclinic dynamics that is currently available.

1 Introduction
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. . ; 2.2

The present study extends S2001, which focused on dis;, _ _ (2 — D7 )
turbances to stable and unstable time-periodic solutions”’ (2j —1)2n2+K?’

of the model equations, to consider dirsturbances to ir-c; =2—b;. (6)

regular, chaotic solutions. Since the pioneering work of 5 2 212
Lorenz (1963), deterministic chaos has served as an endur- Heré, K = (k + m“z*)%/* is the total wave number of
ing metaphor for the observed irregularity and unpredictabil-the baroclinic wave, ang = r/(20) is the Ekman damp-
ity of the atmosphere. One goal of this study is, in a limited "9 coefﬁuentar. scaled by twice the inverse time scale, the
way and for one particular physical model, to explore this STall €xponential growth rates of the linear wave. The
metaphor quantitatively and concretely, in the context of en-"élations betweent, B, V; and the upper and lower layer

semble forecasting. The approach is partially motivated byStream functions are discussed in S2001. Brieflyis the

recent work on cycle expansions for chaotic systems (e.gSc@€d amplitude of the wavé is a measure of the phase

Artuso et al., 1990a, 1990b; Christiansen et al., 1997; Cyi-Shift between the upper and lower layers, and eéchep-
tanovi et al., 2000), and is related to a recent study based of€SENts a scaled combination of zonal flgw4com.pogemd
the Lorenz system (Trevisan and Pancotti, 1998). the squared wave amplitude. Sineg~ j~" asj — oo,
The model is briefly reviewed in Sect. 2. Section 3 de- EdS- (1-3) may be well approximated numerically by trun-
scribes the chaotic basic state and its linear instability, an@ting the sumin Eq. (2) at a finite valugas is done here.

Sects. 4 and 5 discuss the Floquet and singular vector anal-

yses, respectively. Section 6 contains the discussion, ang Attractor structure and Lyapunov vectors
Sect. 7 summarizes the results.

3.1 They = 0.1315 attractor

2 Model A numerical exploration of Egs. (1-3) for a range of pa-

rameter values has been conducted by Pedlosky and Frenzen
(1980). Following S2001, the present study focuses on a set
gf solutions withn = 1 andk? = 272 (k = x), correspond-

Ing to a wave with equal zonal and meridional scales, and

The model studied here is a two-layef-plane, quasi-

geostrophic fluid in a periodic channel with a rigid lid at the

upper boundary, and Ekman dissipation at both the upper an

:mgggfgunng:;'g;:\ﬁjgg dni?]r:u?se;rozz%dlgg: d\llg)as\lie_(TS?;.] ith friction parametery = 0.1315. The results described
y Y ere were obtained with a truncation .At= 6 in Eq. (2).

and Pedlosky and Frenzen (1980), and is summarized in Pe "he differences between the present numerics and those of

I 1987). Th I i he rel - . :
osky (1987) gmode equgtlons apdt ere eyant paraflmePedIosky and Frenzen (1980) lead to small, but inessential
ters are summarized here, with notation primarily following

the previous references, to which the reader is referred foglfferences n th_e solutions gnd their dependence ofhe
additional details. numerical techniques used in the present study are the same

- . asthose described in S2001.
For a weakly supercritical mean flow, a weakly nonlin-

. - ; Fory = 0.1280 (and for a range of adjacen}, the nu-
ear disturbance consisting of a single zonal wave component ~ : . - .
. . merical solutions approach a limit cycle (S2001, Figs. 1-3).
generates a small correction to the mean zonal flow, which

in turn, affects the growth or decay of the wave. The asymp-NOte that since the Egs. (1-3) are unchanged by the trans-

totic analysis conducted by Pedlosky (1971) yields the couformation(4, B) — (~A, —B), an asymmetric solution is

pled system of equations describing this interaction. Thisaccompamed by a twin of opposite parity, corresponding to

system consists of a second-order ordinary differential equa‘:Jm arbitrary along-channel phase shift of a half-wavelength.

tion for the wave amplitudet(r), coupled to a partial differ- For simplicity, attention is restricted here to the solution with

ential equation for the mean flow correctidn(y, r). If ¥ pavity such that the maximum value fof| occurs forA > 0.

is expanded in terms of sinusoidal cross-channel modes, th-(la—he corresponding results for the twin solutions may be ob-

partial differential equation transforms into an infinite set of tained by changing the appropriate signs or phases.

) . . . . . In the wave-mean oscillation corresponding to this limit
coupled ordinary differential equations, which may be writ- . L T .
cycle, there is a periodic reduction in zonal shear driven by

tenas the growing wave, followed by a saturation of wave-growth
dA _ —yA+B, (1)  as the source of the instability is removed, with the subse-
dt quent decay of the wave amplitude and a resurgence of the

dB 1 1, < 2 zonal shear. The wave amplitudeoscillates between a pos-
dr _EVB +tA41+ PLa Z“i As+vpl, @ itive and a negative maximum, each time remaining small for
j=1 substantial times as it changes sign. The mean flow correc-

ﬁ — —y(b;V; —c;A?) 12 3) tion reduces the vertical shear everywhere, and is nearly in
dt VIOiti— A I =k phase with the squared wave amplitude, which is consistent
whereJ — oo for the complete expansion, and with a dominant balance between mean flow acceleration and
2. ) potential vorticity fluxes due to secular changes in the wave

a: = 32m°(2j = 1) 4 amplitude, as might be anticipated for small values of fric-

[(2]' —1)2— 4,,,12]2 [(2]' — 1272 4 KZ]’ ) tion y. Sincey is small, the weakly nonlinear phase shift
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43 ‘ ‘ ‘ ‘ ‘ ‘ of a set of points at which & =0.1315 numerical solu-
tion intersects this half-plane as shown in Fig. 1a. These
] points lie nearly along a single curve. The Poigcanap
constructed by plotting thd-values of successive intersec-
tions closely approximates a one-dimensional, single hump
i map that is asymmetric, but otherwise resembles the logistic
map (S2001, Fig. 4).
The following analysis focuses entirely on the structure of
the attractor as it is represented in this Poibcgaction. An
A — B phase plane projection of the continugus- 0.1315
] attractor time series is shown in Fig. 2b of S2001. The return
time between successive Poineaection points is approx-
imately equal to the period of the lowest-order unstable pe-
. ‘ ‘ ‘ ‘ ‘ riodic orbit (24.479), or physically to two weakly nonlinear
178 18 182 184 186 188 19  1.92 baroclinic wave life cycles, since each oscillation involves a
A growth and decay of waves with alternating signs or phases.

4.25F

420

3.95F

600 A histogram of thed-values of the points in Fig. 1a is shown
() in Fig. 1b, and indicates that, with notable exceptions near
5007 ] the maximum and minimum values df and several inter-
mediate points, the 25000 points of the numerical solution
4001 ] are approximately uniformly distributed i.
3001 | 3.2 Lyapunov exponent and vectors
The leading Lyapunov exponenitand Lyapunov vectop
200y i on the attractor were approximated numerically in the stan-
dard way (Shimada and Nagashima, 1979; Bennetin et al.,
1001 , 1980): the long-time evolution of an arbitrary, small dis-
turbance to the attractor solution was computed using the
‘ ‘ linearized equations. The amplification of the linear distur-

0 L L L L ., .
178 18 182 184 18 18 19 192 bance on each return to the Poircaection was computed
A (using the standard inner-product norm in thé, B, V;}

. phase space), and the disturbance was then renormalized
Fig. 1. (a) A — V; phase plane structure of the attractor on the

{B =0, A > 0} Poincaé section, from 25 000 points. The large dot ﬁaCh tlm? tto pr_ev?nt unbo_u?d(;:‘d %:O,Elr\:th' J(t) “mlj{ F?el.m-
shows the location of the lowest-order unstable periodic grpit .uence of transients associated wi e.af itrary initializa-
The diamonds show the orientation of the leading Floguet vector ofiON: only the last 25000 of 50000 Poingareturns are

p1. The 1993 intersection points of the first 157 unstable cycles ard/s€d in the analysis (corresponding to a time series Qf length
also shown, offset ifvy by —0.05. (b) Histogram of thed-values ~ ~ 25000x 24.479~ 6 x 10°, or 50 000 weakly nonlinear

of the 25 000 attractor points in (a). wave life cycles). Note that this time series is much longer
than the length of time over which the numerical solution can
track the actual unstable solution from a given initial point
with neglible numerical error; it is assumed in the usual way

B ~ dA/dt over most of the cycle, as is true for the linear (e.g. a shadowing property) that the numerical results are still

modes of instability of the steady zonal flow. meaningful, at least as local and statistical descriptions.

As y increases past.D280, the system undergoes a se- The Lyapunov exponerit was computed as the mean ex-
quence of period-doubling bifurcations. Chaos appears tgonential growth rate of the linearized disturbance. During
ensue fory greater than about 0.1309. Here, we focus on thethe last 15 000 returns, = 0.01608+0.00001, where the er-
chaotic numerical solution for = 0.1315. This is the same ror is the standard deviation. For the unstable time-dependent
value of the friction parameter for which S2001 studied numerical solution on the attractor, this mean exponential
the properties of the lowest-order unstable periodic orbit, thegrowth rate is analogous to the exponential growth rates of
continuation toy = 0.1315 of they = 0.1280 limit cycle. = normal-mode instabilities of steady flows, as it is the rate at
The solution on thez = 0.1315 attractor is generally similar - which the fastest growing disturbance will amplify asymp-
to they = 0.1280 limit cycle, but with irregular fluctuations totically in the long-time limit.
in the maximum and minimum amplitude of the oscillation.  The Lyapunov vectow is approximated asymptotically

The y =0.1315 attractor is conveniently analyzed by the successively renormalized linear disturbance at each
by considering the Poincar section on the half-plane point on the attractor visited by the numerical solution. For
{B=0, A>0}. A projection on theA — V; phase plane the solution on the attractor, this vector is analogous to the
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Fig. 2. (a) Relative angles of Lyapunov vectors and the leading Fig. 3. (a) Normalized histograms of Poin@return exponential
Floguet vectorq of the lowest-order unstable periodic orpit, vs. growth rates.y andi, 7 of Lyapunov (thick solid line) and leading

A. (b) Relative angles of Lyapunov vectors and the approximateFloguet (thin) vectors, respectively, and leading Floquet exponents
tangent plane to the attractor v&. Note the change in vertical 11 (dashed). (b) Poincaé return exponential growth rateg of
scale from (a) to (b). Lyapunov vectors vsA.

normal modes of linear instability of steady flows. At each gent¢, to p1 and a linear approximation to the attractor on
point, any disturbance to the time-dependent numerical sothe section, in which the coordinatg;} are parameterized
lution that is not orthogonal t@ will ultimately grow in- in terms ofA (for example,V; = —2.13794 + 8.0763; com-
definitely under the linearized dynamics, approaching thepare to Fig. 1a). The Lyapunov vecteris essentially tan-
structure ofv asymptotically. Over most of the attracter, gent to this plane over almost all of the section (Fig. 2b).
is nearly tangent to the large-scale structure of the attractoMost of the large angles betweenand ¢, arise when the
This is indicated in Fig. 2a, in whicharccogv - ¢1)| (with Lyapunov vector rotates away frogy but remains within
the standard inner-product, and unit vectmendgs) is plot- the large-scale tangent plane to the attractor. Thus, the Lya-
ted versusA for each Poincdr intersection point, wherg;, punov vector does provide, for this relatively simple attractor
is the leading Floguet vector of the lowest-order unstable pegeometry, a useful guide to the distribution of nearby states
riod orbit p; aty = 0.1315. The Floquet vectap; is, in on the attractor.
turn, approximately tangent to the large-scale structure of the Despite this near uniformity across the attractor of the
attractor, as indicated in Fig. 1a (see also S2001). Figure 2ayapunov vector orientation, the individual Poineaeturn
also indicates thap, provides a good approximation of  growth ratesiy, from which the mean growth rate was
over most of the attractor. The physical structurepefis computed, fluctuate over a range that is an order of mag-
shown in Fig. 9b of S2001. nitude larger thar., from growth rates as large as 0.14, to
A planar approximation to the large-scale attractor struc-decay rates as large a9.2 (Fig. 3). This result is consistent
ture at the Poincérsection can be constructed from the tan- with the well-known slow convergence of Lyapunov expo-
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nents computed in this manner. The are the mean ex- 0.15
ponential rates of growth of the Lyapunov vecto(in the
standard norm) during each return to the Poiacsection, 0.1
computed according toy = In(jv(z + T)|/|v(¢)])/ T, prior f
to renormalization ofu(r + T), whereT =~ 24 is the re-
turn time. Their are bimodally distributed, with a broad
peak neat and a distinct secondary peak near 0.05 (Fig. 3a).
Many of theAir are as small as-0.02 or as larger as 0.05; !
these variations arise over large parts of the attractor despiteg 0
the small departures affrom ¢, (Fig. 3b); for comparison, 3
¢1 has Floquet exponent (see belok) ~ 0.025, slightly %
larger tham. 2
Extreme values of.; occur wherev is the farthest from
the tangent tap1, or the attractor (Figs. 2, 3a, 4a, 4c). All
(relatively) large departures af from these tangencies are
associated with a decay of(Ay < 0); as tangency witlp,
is approachedjr approaches.; ~0.025 (Fig. 4b). The
smallesti7 are found near = 1.826 (Fig. 3b), consistent
with the peak and vanishing slope of the approximate one-
dimensional map at this point. Most of the positive val-
ues of Ay are found inA < 1.81, while mosti; are nega-
tive for A > 1.81. Thus, the disturbances described by the
Lyapunov vector tend to amplify only when the wave ampli-
tude A is small, and they decay whehis large or near the

@)

or amplification rate

1
©
[N

&
s

Lyapunov vector amplification rate

critical value of 1.826. This is consistent with the general -0.1f
character of the oscillation, in which nonlinear (largesta-
bilizing mechanisms arrest the growth of the linear (small -0.15¢
instability. s ‘ ‘
0 0.01 0.04 0.05

0.02 0.03
arccos(v.ph|1)

4 Periodic orbits and Floquet vectors
©

te

One approach to the study of the structure and dynamics of
chaotic systems involves the analysis of an associated set of
unstable periodic orbits (e.g. Cvitanéwt al., 2000). This '
analysis is simplified if a symbolic dynamics can be iden-
tified that relates the orbits to symbol sequences. As noted
above, in the present case, the evolutiomfoe 0.1315 may

be usefully represented by a one-dimensional map (S2001,
Fig. 4). From the spline representation of this map, unstable
period orbits were determined in the standard way by asso- . } ST E
ciating the symbols 0 and 1 with the intervals to the leftand  -0-15| P T - o -
right, respectively, of the point where the map achieves its
maximumA = 1.826, generating a set of binary symbol se- %% 0.01 0.02 0.03 0.04 0.05
quences, and finding the corresponding unique orbit points arceos(v-)

by inverse iteration. These points were then used as first

guesses for the periodic points of the differential equations Fig- 4. (&) Scatter plot of Poincarreturn exponential growth rates
which were improved using Newton’s method. The result of At Vs. relative angles of Lyapunov vectorg ar_1d the_ leading Floquet
this set of calculations is a set of unstable periodic orbits that®ctoré1 of the lowest-order unstable periodic orpi. (b) Same

lated i tial to the attractor d . s (a), but with expanded scale for small angle} Scatter plot of
are related in an essential way 1o the attractor dynamics ang ;. -oe return exponential growth rateég vs. relative angles of

“fill out” (more prec.isely, and under certain conditions that Lyapunov vectors and the approximate tangent plane to the attractor.
may or may not strictly hold here, are dense on) the attrac-

tor. For some examples of these orbits, see Figs. 5 and 9a of
S2001.

A list of all symbol sequences up to length 15 for which case, due to the geometry of the map, many possible symbol
unstable cycles were computed for= 0.1315 is given in  sequences do not have corresponding cycles. For example,
Table 1. There are a total of 157 such cycles. In the presenno cycle corresponds to the repeated sequence 0, nor to any

1on rat

Lyapunov vector amplificati
o
=




444 R. M. Samelson: Lyapunov, Floquet, and singular vectors for baroclinic waves

are shown in Fig. 1a, witly; values offset by-0.05. The
0.025¢ ' ] coverage of the attractor is not uniform, and there are several
Lt D large gaps, for example, near= 1.82 andA = 1.88.

The solutions of the linearized equations for small distur-
bances to these unstable cycles may be computed by standard
. . . . S techniques for linear differential systems with periodic coef-
R S T ficients (e.g. Coddington and Levinson, 1955), often known
as Floquet theory, as described in detail in S2001. The so-
lutions are obtained for the truncation= 6, so the result
of each of these calculations is a set of 8 time-dependent
normal-modes or “Floguet vector$d;, j = 1,...,8} and
0.005¢ 1 8 corresponding Floquet exponerits;, j = 1, ..., 8}; the
@ A are the mean exponential growth (or decay) rates of the
‘ corresponding disturbance over the cycle length. Note that

o©

o

=
:

Floguet exponent

0 ‘ ‘ ‘ ‘ ‘
trg 18 182 184 18 188 19 19 the exponents ; will, in general, differ from cycle to cycle,
0.15 but for simplicity, the dependence on cycle is dropped from
. the notation here. Except for the exponential growth factors,
0.1F 1 each of these Floquet vectors is also periodic, with the pe-

riod equal to the cycle period (or twice the cycle period). For
an example of the physical structure of one of these Floquet
vectors, see Fig. 9b of S2001.

The Floquet exponents for these 157 cycles are dis-
tributed essentially in same way as those shown in Fig. 8 of
S2001: for each cycle, there is one growing mode &

0), one neutral moderfp ~ 0), and six decaying modes
(xj < 0,j = 3,..,8). The neutral { = 2) and damped
zonal flow (j = 4,..,7) modes have.; nearly indepen-
dent of cycle, while the values of1, A3, and Ag fluctu-

®) ‘ ‘ ‘ ‘ ‘ ‘ ate. The distribution of; for the 157 cycles is shown in

1.8 182 184 18 18 19 192 Fig. 3a; the maximum and minimum valuesigfare 0.0253
‘ ‘ ‘ ‘ ‘ ‘ (for the p1 cycle) and 0.0153 (for a 12-cycle with sequence
L5 8 110111011010).

If the leading Floquet exponeht for each cycle is plotted
at the Poincdr section points of the corresponding cycle, the
resulting distribution is not smooth (Fig. 5a). The smallest
A1 tends to occur at the edges of the gaps in coverage noted
above, suggesting the presence of weakly unstable cycles of
longer cycle length. This hypothesis is consistent with the
relatively small value of the Lyapunov exponentomputed
above, compared to most of the first 157 leading Floquet ex-
ponentsi; according to the cycle expansion thecdrghould
be accurately approximated by a suitable average of.the
weighted inversely by stability.
_ The leading Floquet vectors of higher-order cycles are, in
D8 18 18y e 10 192 general, nearly parallel to the leading Floquet vegtoof the
A lowest-order cyclep; (Fig. 5¢). Individual Poincdr return
growth rates. ; of the Floquet vectors were computed in the
Fig. 5. (a) Floquet exponents for 157 unstable cycles, plotted vs.same manner as the Lyapunov vector growth ratesthey
A gt eaf:h of t.he 1993 ilnter'section points of the 157 cycles with thegre the mean exponential growth or decay rates of the corre-
Poincaé se_ctlon(b) Poincaé return exponential growth rates sponding Floguet vector during each return to the Po@ncar
of the Ie_adlng Floquet vector_vsA, for each of the 157 cycles. dsection. The amplification factofs 7 of the leading Floquet
(c) Relative angles of the leading Floquet vector for each cycle an . . g L
the leading Floquet vectar, of the lowest-order unstable periodic vectors show a pattern (Fig. 5b) that is stnkmgly similar to
orbit p1. that _of the Lyapunov vector growth rates (Fig. Sb)._ The
distribution of their;r from the first 157 cycles (Fig. 3a)
sequence containing 00, since all points in the left-hand interclosely resembles the distribution of the; note that it re-
val are mapped to points in the right-hand interval. The 1993produces the secondary peak near 0.05. Evidently, only the
points where these 157 cycles intersect the Pomsaction leading Floquet vectors of the higher-order cycles are re-
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Table 1. Symbol sequences for first 157 unstable cyclegfer 0.1315

1 11110111010 1111010111010 1101110111101Q 11111111110101
10 11110101110 1111110111010 11110101111110 11010111101101
1110 11111111010, 1111010111110 1111101011111Q 11010111011101
11010 11111101110 1111011111010 11110111111010 11010111111101
11110 11110111110} 1111110101110 11111110101110 11010111010111
111010 111111121110 1111111111010 11121111121101Q 11010111110111
111110, 111010101010f 1111011101110 1111101110111Q 11010111101111
1101010 111110101010, 1111111101110 11110111101110 11010111011111
1111010| 110101011010 1111011111110 1111111110111Q 11010111111111
1111110 111010101110 1111110111110 11110111111110 11111101011101
11101010 111111101010, 1111111111110 11111110111110 11110111011101
11111010 110101111010} 1110101010101Q9 1111111111111Q¢ 11110111010111
11111110 110111011010/ 1111101010101Q 11010101010101Q 11111111011101
110101010 110101111110 1101010101101Q 11110101010101Q 11110101111101
111101010f 111110111010 1101010101111Q 11010101010111Q 11110101110111
110101110f 111101111010 1110101010111Q 11111101010101Q 11110101111111
111111010f 111110101110 1111111010101Q 11010101011101Q 11111101111101
111101110f 111111111010, 1101010111101Q 11010101011111Q0 11111101011111
111111110{ 111111101110 1110101110101Q 11010111010101Q 11110111111101
1110101010 111101111110, 1111101110101Q 11110111010101Q 11111111010111
1111101010 1211111211110 1101011110101Q 11110101010111Q 11111111111101
1101011110| 1101010101010 1111011110101Q 11111111010101Q 11111101110111
1110101110| 1111010101010 1111101010111Q 11010101110101Q 11110111011111
1111111010 1101010101110 11111111101010 11010101111101Q 11110111110111
1111101110| 1111110101010 1101011101101Q 11010101110111Q 11111111110111
1111111110f 1101010111010 1101011111101Q 11110101110101Q 11110111111111
11010101010| 1101011101010 11010111101110 11111101110101Q 11111111011111
11110101010 1111011101010 1101011101111Q 11110101011101Q 11111101111111
11010101110 1111010101110 1101011111111Q 11110101011111Q 11111111111111
11111101010| 1111111101010 11111010111010 11010111110101
11010111010 1101011101110 1110101110111Q 11110111110101
11010111110 1101011111110 1111111011101Q 11111101010111

445

quired to describe most of the transient growth and decayances, referred to here as singular vectors (SVs), generally
exhibit transient growth, and do not have fixed modal struc-

of the Lyapunov vector.

The distribution of the Floquet vector amplificatians =

ture (e.g. Lorenz, 1965; Farrell, 1989). In this section, SVs

e*itT generally follows the pattern of the distributions of are computed on the 157 unstable cycles discussed in the pre-
Floquet exponents;, though with a greatly increased spread Vious section. As shown above, the leading Floquet vectors
(Fig. 6). Modes 2 and 47 have narrow amplification distri- from these 157 cycles are sufficient to represent much of the
butions, as do their exponents, while modes 1, 3 and 8 havéetailed time-evolution of the Lyapunov vector over most of
broad distributions. This is consistent with the observation inthe attractor. It is presumed here that SVs based on the com-
S2001 that the dynamical splitting between wave-dynamicaplete set of Floquet vectors from these 157 cycles are suf-
and damped zonal flow modes observed in the lowest-ordeficient to describe the general characteristics of SVs on the
cycles persists in the higher-order cycles, and further sugattractor in a similar way.

gests that it persists even during transient growth and decay

segments of the higher-order cycles. Consistent with the preceding analysis, SVs are computed

here for a single optimization interval (slightly different in
duration for each cycle), corresponding to the first Poi@car
return from each Poincarsection point on each cycle. This

is the same set of intervals that was used above to calculate
The Lyapunov vector, described above, describes the charathe Lyapunov and Floquet vector transient growth rates
teristic structure of disturbances that amplify indefinitely un- andx ;7. The standard inner-product norm in the, B, V;}

der the linear dynamics, in a way that is analogous to normalphase space is used to compute the SVs; this is similar to, but
mode instability for steady flows. However, it generally does slightly different from the “AE” norm used in S2001. Results
not describe the linear disturbances that are maximally amfor the SVs will depend on the norm used, but in S2001, the
plified after a fixed interval of time. Such optimal distur- qualitative results were relatively insensitive to this choice.

5 Singular vectors
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Fig. 6. Histogram of the base-10 logarithm of the Poirgcegturn Fig. 7. Histogram of the base-10 logarithm of the Poirgcegturn
amplificatione ; = e*i7T of Floquet vectorj, j = 1, ..., 8 for each singular valueu ; for singular vectoyj, j = 1, ..., 8 for each inter-
intersection point of each cycle. section point of each cycle.

The SVs are otherwise computed in each case in exactly thand growth rates of linear instabilities of steady basic states,
same manner as in S2001. and of the time-dependent Floquet normal modes and growth
The distributions of the singular valugs, j = 1, ..., 8 for rates of linear instabilities of time-periodic basic states. For

each of the 1993 sets of 8 SVs is shown in Fig. 7. Only thethe chaotic basic state, the Lyapunov vector is also the sim-
first SV is strongly amplifying. The second is approximately plest analog to the bred modes of numerical bred modes of
neutral in most cases, the third is mostly decaying, and thenumerical weather prediction. Over most of the attractor, the
fourth through eighth are always decaying. In general, theséyapunov vector closely resembles the unstable Floquet nor-
singular values are consistent with those computed for thenal modeg; of p1, the lowest-order unstable periodic orbit

lowest-order orbitp; in S2001. The first SV amplifies more analyzed in S2001. In turrp; closely resembles the neu-

rapidly than the first Floquet vector, and the eighth SV de-tral mode¢, that is tangent tg1, the basic-state oscillation

cays more rapidly than the eighth Floquet vector, while the(S2001). Thus, as in S2001, disturbance growth is dominated
intermediate SV decay rates follow the corresponding Flo-by the same baroclinic wave processes that control the evo-

quet decay rates closely. lution of the basic state. The Lyapunov exponent 0.016

The decompositions of the 1993 leading SVs in terms ofis of the same order but smaller than the leading Floquet ex-
the Floquet vectors for the corresponding cycle also show @onenti; =~ 0.025 of ps.

qualitatively similar pattern to that found in S2001 for the ~ Transient growth and decay of the Lyapunov vector occurs

lowest-order orbit (Fig. 8). The leading SVs are dominatedon the baroclinic wave time scale with exponential rates that

by the wave-dynamical modeg & 1, 2, 8), with some con-  are an order of magnitude larger tharThese events involve
tribution from the intermediatej(= 3) mode. The projec- only minor changes in the structure of the Lyapunov vector,
tions of the leading SVs on the decaying zonal mean mode&hich remains nearly parallel ip; over most of the attrac-

(j =4, ..., 7) are uniformly small. tor. They are accurately represented by the corresponding
transient growth and decay of the leading Floquet vectors of
the higher-order unstable cycles. Thus, even for these tran-

6 Discussion sient events, only the growing modes of the unstable cycles
are essentially sufficient to describe the structure and evolu-

The present analysis of disturbance growth for weakly non-tion of the Lyapunov vector.

linear baroclinic waves extends a recent study (S2001), The Floquet vectors of the higher-order unstable cycles

which considered only simple, stable and unstable time-split into wave-dynamical and decaying zonal flow modes.

periodic basic states, to the case of a chaotic basic state. D&ingular vectors, computed using the standard norm on the
spite the qualitative difference in the time-dependence of thébaroclinic wave time scale for the set of 157 unstable cycles,
underlying basic states, the present results are largely consiseflect this splitting: the leading singular vectors are domi-
tent with the results of S2001. nated by the wave-dynamical Floquet modes. Similar results
The Lyapunov vector and exponent are the natural concepwere reported in S2001 fgr;. The maximum singular value
tual extensions to the chaotic basic state of the normal modeamplifications are two orders of magnitude larger than the
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900 ble modes and the tangent to the flow may not persist. Thus,
aloal and in general, the degree to which the present results will
800 4 7 1 extend to more complex models is uncertain.
700 i The present results are generally consistent with the anal-
ysis by Trevisan and Pancotti (1998) of Lyapunov, Floquet,
600 ] and singular vectors for a low-order unstable periodic cycle

of the three-component Lorenz (1963) model. Those authors
also find that the unstable Floquet mode tends to resemble
400} 8 the tangent along the cycle. Presumably, this would also be
true for the higher order cycles of the Lorenz model, as it is

500 1

300¢ here. They also find, as here, that rapidly amplifying singu-
2000 | . s i lar vectors arise as a consequence of non-orthogonality of the
& & Floquet modes.
100 1
O 1

0 Magrﬁtude of Flc?dﬁet vector gbﬁmponent o?.gv 1 ! 7 Summary

This study has addressed the mechanisms of growth of lin-
ear disturbances to an irregular, chaotic basic state in a sim-
ple model of weakly nonlinear baroclinic wave-mean inter-
action. It extends the previous results of S2001, which con-
sidered disturbances to time-periodic basic states of the same
model. Many of the present conclusions are similar to those

. . . e of S2001. Disturbance growth in this simple model was
corresponding maximum transient amplifications of the FIo-founOI to be related to the wave arowth and decav mecha-
quet modes of the unstable cycles, but there is typically only 9 y

one amplifying singular vectar, corresponding to the sin Ienisms associated with the time-dependent basic state. Flo-
AMp g sing L ponding 9 quet vectors of the higher-order unstable cycles were found
amplifying Floquet mode. This is true despite that the opti-

mization interval was much shorter than the periods of manyt ° diviQQ into two dynamical classes, the first.associa'geq with
of the higher-order cycles baroclinic wave dynamics and the second with the frictional
' decay of high meridional modes of the zonal flow. The
These results demonstrate that singular vectors and the &¥ecompositions of the leading singular vector in terms of
tensions of normal-mode instabilities for this irregular, time- {he time-dependent Floguet vectors of the higher-order cy-
dependent flow are closely related, as they were found tQyes generally reflected this dynamical split, with the wave-
be in S2001 for the time-periodic basic states. The Lya‘dynamical components dominating.
punov vector, the simplest analog of bred modes, captures |, 4qgition, the Lyapunov vector, which for the chaotic
the same disturbance structures and transient growth and d@zic state in this model is the simplest analog of the bred
cay events that dominate the singular vectors, with one im-

- ) Het v modes used in numerical weather prediction, was shown to
portant exception: the decaying, inviscidly-damped, wave-cantre most of the transient variability of the growing wave-

dynamical Floguet vector is a central element of the grow-4y namical Floquet vectors. Since these, along with the tan-
ing singular vectors, but is essentially absent from the Lya-

- Y“"gent to the orbit itself, are two of the three dominant com-
punov vector. The structure of the decaying wave—dynampaﬁonems of the singular vectors, the present results suggest a
mode generally resembles that of the other wave-dynamical|ose relation between bred modes and singular vectors. The
modes, which results in a tendency toward non-orthogonality

h . 8 Frimary difference between the two sets of modes is the con-
that the singular vector exploits to produce a large transient..,, tion of the decaying wave-dynamical mode to the singu-

amplification. Evidently, the damped zonal flow modes are|o; yectors. This confirms one of the hypotheses of S2001
sufficiently different in structure from the wave-dynamical o, the nonperiodic state in this simple model. If this re-

modes that they have a negligible contribution to the grow-g 1t extends to more complex models, and the presence of

ing singular vectors. decaying wave-dynamical modes are found generally to dis-
Itis perhaps surprising that the leading Lyapunov and Flo-tinguish singular vectors from bred modes, then a practical

quet vectors, here and in S2001, have a structure similaguestion that arises in comparing ensemble generation meth-

to the tangent to the evolving basic-state flow. As notedods is, are the additional decaying wave-dynamical modes

above, this indicates that the processes that control distufyaluable to ensemble generation in operational forecasting

bance growth in this model are essentially the same as thosgnplementations?

that control the evolution of the basic state. In a more com-

plex model that admits a wider range of scales and physicahcknowledgementThis research was supported by the Office of

processes, or in a similar model but farther from marginalNaval Research, Grant N00014-98-1-0813. | am grateful to E.

stability of the basic cycle, the similarity between the unsta-Spiegel for helpful conversations on periodic orbit theory at the

Fig. 8. Histogram of the magnitudes of the Floquet vector compo-
nentSajl., j =1, ..., 8 of the leading Poincarreturn singular vector

al for each intersection point of each cycle.
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