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[1] Intensive sampling of the deep Mediterranean outflow
70 km W of the Strait of Gibraltar reveals a strong, tidally
modulated gravity current embedded with large-amplitude
oscillations and energetic turbulence. The flow appears to be
hydraulically controlled at a small topographic constric-
tion, with turbulence and internal waves varying together and
increasing dramatically downstream of the choke point. These
data suggest that a significant fraction of energy dissipation,
mixing, and entrainment stress in gravity currents may occur
in localized regions controlled by time-varying flow interac-
tions with fine-scale topography. These findings highlight the
important role of processes that are not resolved by global
climate models (GCMs), which do not contain tides or mixing
due to fine-scale topographic interactions. Citation: Nash, J. D.,
H. Peters, S. M. Kelly, J. L. Pelegri, M. Emelianov, and M. Gasser
(2012), Turbulence and high-frequency variability in a deep gravity
current outflow, Geophys. Res. Lett., 39, L18611, doi:10.1029/
2012GL052899.

1. Introduction

[2] Gravity current overflows represent a major pathway
for deep water replenishment, and thus play an important
role in ocean circulation and climate predictions [Legg et al.,
2009]. Since mixing controls the downstream evolution of
T and S, the equilibrated outflow’s ultimate composition is
controlled by upstream turbulence. Proper accounting of
processes controlling cumulative entrainment is a prerequi-
site for predicting terminal depth and volume flux, properties
that can dynamically alter global circulation patterns.

[3] The Mediterranean (Med) outflow represents the sin-
gle largest source of warm, saline water to the deep Atlantic
[Price et al., 1993], forming long-lived dynamical features
like Meddies [Armi and Zenk, 1984] and influencing the
Meridional Overturning Circulation [Reid, 1979; Bryden and
Kinder, 1991; Wu et al., 2007]. Within the Strait of Gibraltar,
the outflow is strongly tidal, varying from 0 to 2 Sv during a
typical semidiurnal period [Bryden et al., 1994]. As the flow
plunges into the Atlantic, shear instabilities form on the
interfacial layer between Med and Atlantic waters, producing
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>50-m vertical undulations and turbulent kinetic energy dis-
sipation rates € of 107*~1072 W/kg during peak outflows
[Wesson and Gregg, 1994]. This produces a dense, tempo-
rally modulated gravity current that flows into the Atlantic
over a series of constrictions and sills before reaching geo-
strophic equilibrium and ultimately settling at a terminal
depth around 1000 m.

[4] Coupled hydraulic processes, turbulence and internal
waves have been studied intensively in straits [e.g., Wesson
and Gregg, 1994; Klymak and Gregg, 2004]. While turbu-
lent mixing has been studied in outflows downstream from
their source, much of the fine-scale and submesoscale spec-
trum has been largely ignored; studies of overflows in the
Baltic Sea [Umlauf and Arneborg, 2009] and the Faroe Bank
Channel [Fer et al., 2010; Seim and Fer, 2011] are notable
exceptions.

[5] Turbulence in the Med outflow has been directly
quantified during the 1988 Gulf of Cadiz experiment [Price
et al., 1993]. That study revealed intense turbulence within
the 150-m thick gravity current [Johnson et al., 1994a;
Baringer and Price, 1997a] and permitted mixing and stress
to be computed using bulk budgets [Johnson et al., 1994b;
Baringer and Price, 1997b] (hereinafter JSB94 and BP97,
respectively).

[s] BP97 and JSB94 produced several significant find-
ings: (1) outflow transport more than doubled from 0.7 Sv
at the Strait to 1.9 Sv at terminal depth due to entrainment,
and (2) during the outflow’s initial descent (in the vicinity
of Spartel West Sill), bulk momentum budgets required 5 £
1 Pa of retarding stress, of which 1-2.5 Pa was supplied by
bottom stress 7. Estimates of the interfacial stress 7; based
on mean-flow gradients varied from 0.8 & 0.4 Pa (BP97) to
3—4 Pa (JSB94). Direct estimates of 7; using shear probes
were roughly 1/3 of 7, [Johnson et al., 1994a], and similar to
BP97’s estimates (<1 Pa). BP97 attributed the discrepancies
between total stress and 7; + 7, to undersampling in both
space and time. For example, of the 30 dissipation profiles in
total, fewer than 10 exhibited | 7; | > 0.25 Paor |7, |>1 Pa
[Johnson et al., 1994a], and tidal variability was not
resolved. To summarize the above findings, BP97 suggest
the total retarding stress to be well constrained (weakening
from 3 to 5 Pa near the Strait to <0.5 Pa further down-
stream), and that 7, appears to exceed 7;; however JSB94’s
finding that | 7;| = 4 £ 1Pa over a 20 km region near Spartel
Sill West hints toward a possibility that interfacial stresses
could be locally higher.

[7] In the following we investigate the roles of time-depen-
dent and/or interfacial processes associated with flow over
small-scale topography in generating the large 7, observed by
JSB94 and implied by the total stress required (JSB94, BP97).
Highly resolved transects and time series were obtained across
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Figure 1. (a) Observational setting and BP97 survey lines.
(b) Detailed bathymetry of the Spartel West Sill showing loca-
tions of repeat shipboard transects (black), time series stations
(UTS,DTS,FDTS), and moorings (UM,DM); white vectors
show tidally averaged velocity, 100 m above bottom (u1¢p).
(c) An example yo-yo transect (10-Jul-2009, 0150-0400
UTC) shows (top) along-axis velocity and (bottom) logig€;
density is contoured. Bathymetry represents a composite from
GEBCO (www.gebco.net) [Zitellini et al., 2009] and single-
ping echosounder data from this study, gridded at 100 m.

Spartel West Sill (section B in BP97’s Figure 6b and repro-
duced here in Figure 1a). At this location, BP97 observed the
Med Outflow’s largest decrease in momentum, which far
exceeded the measured bottom stress 7,. We hypothesize that
fine-scale processes are responsible for elevated interfacial
turbulence, and test this through analysis of tidal, hydraulic
and high-frequency dynamics at the Spartel West Sill.

2. Setting and Measurements

[8] The Spartel West Sill is a mild topographic constriction
at the west end of Tangier Basin, approximately 20 km west
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of the main Spartel Sill (Figure 1). This relatively gentle sill
at 420-m depth channels the outflow within a 6-km span
before it plunges into a rough 500-m deep depression in
O(1 km). The flow encounters significant bathymetric com-
plexity before it exits this topographic confinement and
begins its inertial turn North.

[9] In July 2009, 418 profiles of velocity and density were
obtained from LADCP/CTD (lowered acoustic Doppler
current profiler; dual 300 kHz RD-Instruments). Seventeen
along-stream and four cross-stream transects were acquired
while the R/V Garcia del Cid steamed at 1.2-1.8 knots.
Transects were repeated at 3-h intervals. The LADCP/CTD
profiled from surface to bottom, resolving tidal variability
with 500-1000 m horizontal resolution over a 6—8 km span
(Figure 1c; see also Gasser et al. [2011] for an overview).
LADCEP data were processed following the methods outlined
in Firing and Gordon [1990] and Peters et al. [2005]. Ship-
board 75 kHz ADCP captured the top of the outflow, pro-
viding a strong constraint on the LADCP solution.

[10] Also acquired were two 12-h fixed-station time series
upstream (UTS; 6°19.23'W, 35°47.04'N), two 12—24-h time
series downstream (DTS; 6°21.00'W, 35°46.51'N), and
one 12-h time series far downstream (FDTS; 6°22.79'W,
35°46.25'N). Some time series were acquired by alternating
short, deep yoyos (within 200-m of the bottom) with full-depth
casts, yielding 20-min spacing between casts. Moorings were
deployed near the sill crest (Upstream Mooring; UM) and
5 km downstream in the 500 m depression (Downstream
Mooring; DM; Figure 1). Unfortunately, DM broke free 30 h
into the deployment, so we focus on data from UM, where two
T-chains, two Sontek ADPs (250 kHz down-looking, 500 kHz
up-looking), 2 CTDs and a RCM-8 current meter span the
bottom 250 m; sensor locations are indicated in Figure 2b.

[11] In the following, we define “along-stream” as par-
allel to our main transect, which is oriented 20° N of E,
includes UTS and DTS, and has origin at DTS. Potential
density o is referenced to 300 m, N is the stably resorted
stratification, and S? represents the square of velocity shear,
computed over 8-m intervals. Turbulent dissipation rates
were inferred from Thorpe analysis of unstable-o overturns
ase= O.64L2TN 3 [Dillon, 1982], where Ly represents the RMS
Thorpe displacement within each patch, defined after
applying run-length and overturn size criteria [Finnigan
et al., 2002]. Turbulent diffusivities of mass and momen-
tum were computed assuming a constant mixing efficiency
I'as K, =02 ¢/N* and K,, = 1.2 €/S*; while I is likely to be
variable, Gregg et al. [2012] provide a discussion and justi-
fication for this choice of I' = 0.2.

3. Observations

[12] A typical yo-yo transect is shown in Figure lc. At this
time, a weak return flow above 250 m (u = pink, eastward)
opposes the >1 ms™' deep outflow in the bottom 150 m (1 =
blue, westward). Upstream (near UTS), isopycnals gradually
descend and the flow thins and accelerates toward DTS;
inferred turbulent dissipation is weak. Downstream (near DTS
and DM), deep isopycnals rebound abruptly, velocity shows
strong variability from cast to cast, and 30-50 m density
overturns were observed. Downstream of DTS, e > 10> W/kg
and K, =K,~1 m?/s, about 100 times larger than upstream. In
addition, up and down CTD casts (obtained within 10 min of
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Figure 2. Tidal variability of (a) transport (b) vertical structure of along-stream velocity from ADPs at UM, with the 13.5

and 14°C isotherms contoured (the latter approximately bounds

westward flow). (c, d) 15-h records of LADCP velocity (col-

ors) and isopycnals (contours) at UTS and DTS for the periods indicated in Figure 2b; panels have been aligned to represent
the same range of tidal phase (open triangles denote time of maximum transport). (¢) Tidal and (f) high-frequency & at UTS
and DTS. (g, h) € from unstable overturns. Note: hab denotes height above bottom. Also indicated to the right of Figure 2b
are the locations of T/C loggers (solid triangles) and 500 kHz upward and 250 kHz downward ADPs (open squares).

each other) often exhibited 30-50 m differences in isopycnal
displacement £ — similar to L7. Note that 27/N ~ 10 min.

[13] This instantaneous snapshot has qualitative similarities
to that of a hydraulically controlled flow, whereby a relatively
quiescent upstreamflow accelerates downhill, becomes highly
turbulent and abruptly transitions back to a subcritical state
further downstream in a hydraulic jump or breaking lee-wave
[e.g., Armi, 1986].

[14] Following Peters et al. [2005], we compute the Froude
number (Fr = U, /\/g'H,) as the ratio of the outflow velocity
U, to a wave speed computed from reduced gravity g’ and
plume thickness H,, relative to the overlying strata; here f,, is
defined based on a density criterion as detailed in Pefers et al.
[2005]. From this definition of Fr, the upstream flow is sub-
critical (mean Fr = 0.81) and exhibits little variability (90% of
Fr fall between 0.70 and 0.92). In contrast, downstream at
DTS, the mean Fr = 0.99, and 45% of profiles exhibit Fr> 1.
Variability is also increased downstream, with 90% of esti-
mates spanning the range 0.63 < Fr < 1.45 at DTS. This is
consistent with a transitional flow with a hydraulic control
point (i.e., Fr = 1) near or upstream of DTS, an accelerated

flow (Fr > 1) downstream of the control, and an ultimate
rebound to Fr < 1 farther downstream. Application of the
Taylor-Goldstein equation with shear indicates the flow is
unstable to shear instability, implicating Kelvin-Helmholtz
instability as another possible source of the observed undula-
tions and turbulence [Smyth et al., 2011].

3.1. Tidal Variability

[15] Temporal variability is dominated by the semidiurnal
tide (Figure 2b), which produces 40-60 m peak-to-peak
changes in outflow thickness H, and 0.5 m s~ ' changes in u
at UM. Because H,, and u co-vary, tides modulate Med
outflow transport by £35% (Figure 2a). Here, transport is
computed as the vertical integral of u from the bottom to the
height where u reverses, which approximately corresponds
to the height of the 14° isotherm.

[16] Downstream and upstream locations exhibit a similar
magnitude of tidal isopycnal displacements (compare DTS
and UTS in Figure 2e), although they extend farther from the
bottom at DTS. Tidal modulation also alters the location of
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Figure 3. Mean along-stream transects of (a) along-axis velocity, (b) super-tidal APE, and (c) inferred €; o is contoured.
Data were horizontally binned in 1-km, half-overlapping bins and vertically with respect to height above the bottom;
the number of profiles N,z in each independent horizontal bin is indicated above Figure 3a. Also shown are time-
averaged profiles of (d) u, and its tidal range +u,,, in shading, (¢) APE, and (f) € at stations UTS (blue) and DTS (red). (g)
A 2-dimensional histogram of the data from Figures 3b and 3c; redder points occur more frequently. Shading in Figures 3e

and 3f represent 95% bootstrap confidence limits.

high € regions - which track isopycnals (and shear) and shift
420 m vertically with the tides.

[17] The strong temporal modulation of u and H, has
consequences for estimates of stress based on steady-flow
assumptions (JSB94, BP97). Since terms in the momentum
budget scale with u”(as does the expected turbulent stress),
we anticipate that tidal aliasing introduces £35% uncertainty
into calculations based on a single realization. Moreover,
entrainment rates computed from bulk budgets depend on
differences in fluxes, so uncertainties due to unresolved tides
are further amplified in these higher-order calculations.

3.2. High-Frequency Waves and Dissipation

[18] In the following, the high-frequency variation in iso-
pycnal displacement &' (Figures 2c—2f) is used to estimate
internal-wave energy. First, o is Thorpe-resorted and £(o)
computed as the distance a water parcel of density o is ver-
tically displaced from its mean depth. Then, a tidal harmonic
analysis is performed at each depth to minimize the residual
&' in a least squares sense: £(f) = £, + Re{&,p exp(iwf)} + &'
(t). Here, w = 27/12.42 h is the semidiurnal tidal frequency,
& is the complex tidal amplitude, and &, is the mean iso-
pycnal displacement, which is # 0 for irregularly sampled
time series. The quantity being minimized represents the
available potential energy associated with supertidal dis-
placement variance: APE = (£)N*/2.

[19] Harmonic analyses were performed independently
within each time series period (at UTS, DTS and FDTS; 230
casts in total), which reduces variance aliased into £'. From
the example time series in Figures 2¢ and 2d, there are dra-
matic differences in £’ variance between UTS and DTS, with
RMS(¢") increasing from ~5 m upstream to >20 m down-
stream (Figure 2f). Commensurate with the increase in APE
is a 10 to 100-fold increase in e (Figures 2g and 2h).

[20] In addition, data from the 17 along-stream transects
were used to compute the spatial pattern of APE. Profiles
were grouped into half-overlapping 1 km wide bins and
harmonic analyses performed by treating each bin as a time
series consisting of 13—-103 profiles with < 3-h nominal
sampling (Figure 3). High-frequency fluctuations are thus
aliased into each record and the residual to each fit repre-
sents the signal of interest. Tests performed by subsampling
DTS time series indicate APE computed in this manner is
not substantially biased.

[21] Transect and station data are combined to produce a
composite of the mean along-axis structure of potential
density, along-stream velocity, high-frequency APE and ¢
(Figures 3a—3c). Evident from the velocity and density is a
strongly undulating deep current, characteristic of an accel-
erated downslope flow and hydraulic jump or arrested lee-
wave. Above this, isopycnals vary smoothly and a weak east-
ward return flow toward the Mediterranean exists. Between
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Figure 4. Turbulent mixing and stress at upstream (blue)
and downstream (red) time series stations. (a) Mean (lines)
and tidal (shaded envelope) velocity. (b) Eddy diffusivities
for momentum (K,,; solid) and mass (K,; dashed). (c) Turbu-
lent stress. Shading in Figures 4b and 4c represent 95%
bootstrap confidence limits on K,, and 7.

these two layers is a region of strong shear and stratification.
Note that bottom boundary layer turbulence is not estimated
because (1) measurements often did not include the bottom
30 m, and (2) Thorpe analyses are not effective in well-mixed
boundary layers.

[22] Perturbation APE and ¢ in the bottom 200 m increase
dramatically as the flow-passes over the sill crest (near UTS)
and plunges downslope past DTS. Both quantities have a
similar spatial structure and their logarithms are highly cor-
related (Figure 3g), suggesting that the turbulence is driven
by breaking internal waves [D Asaro and Lien, 2000]. The
timescale for turbulent decay (7= APE/e), is typically ~10’s
in regions of strong turbulence, which represents several
buoyancy periods (27/N ~ 500 s) and implies a spatial decay
of a few kilometers. Thus, distinct wave-like undulations
may exist, but these are difficult to identify because they have
similar timescale as our profile spacing. The undulating dis-
turbances reported here have decay scales similar to oscilla-
tions observed in the equatorial undercurrent [Moum et al.,
2011], which were interpreted as shear instabilities of the
mean flow by Smyth et al. [2011]. Similar stability analyses
performed on these data indicate the Med is also susceptible
to high-frequency wave growth (B. Smyth, personal com-
munication, 2012). It is thus possible the correlation between
€ and APFE indicates that the observed 4PFE is associated with
breaking shear instability waves that generate the turbulence.
However, we also note significant differences between the
Med outflow and the equatorial undercurrent, namely the
Med outflow has higher € and APE and appears to be topo-
graphically controlled, which can lead directly to breaking
lee waves [Farmer and Smith, 1980].

3.3. Mixing and Stress

[23] The intense wave activity that develops downstream
of Spartel West Sill increases APE and e by a factor of 10—
100. As a result, inferred turbulent diffusivities for mass and
momentum increase by a similar factor in the strongly
sheared interface region between outflow and Atlantic
waters, peaking at K, = K, = 1 m/s (Figure 4b). This results
in significant upward transport of westward momentum, as
quantified by 7 = K,,, 0u/0z. Upstream of the sill (at UTS),
7 = —0.1 + 0.1 Pa, while downstream (near DTS),
7~ —2 £ 1.0 Pa throughout the almost 100-m thick interface
(Figure 4c). Thorpe-based stress estimates cannot resolve 7
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in the well-mixed bottom boundary layer (e.g., within 50 m
of the bottom). However, based on the direct measurements
of Johnson et al. [1994a] and the sign of velocity shear, we
anticipate 7, to be positive and similar in magnitude to those
reported above.

4. Conclusions and Implications

[24] Detailed observations at the Spartel West Sill reveal a
gravity current that is both (i) highly unsteady over tidal
through internal wave timescales, and (ii) spatially variable,
with abrupt changes in stress by a factor of 10—-100 over 1-km
scales. Hydraulic control by small-scale topography appears
responsible for this inhomogeneity and the enhanced internal
stress. This picture compliments large-scale estimates of the
cumulative entrainment and retarding stress in historic stud-
ies [Price et al., 1993; JSB94; BP97] and regional modeling
efforts [Xu et al., 2007].

[25] Our observations provide further insight into the role
of interfacial stress in the initial descent of the outflow and
help somewhat to reconcile the contrasting findings of pre-
vious studies. For example, direct estimates of 7; near this sill
by Johnson et al. [1994a] exceeded a magnitude of 1 Pa
during only a single profile (7; = —3.25 Pa during XDP drop
804), and averaged —0.4 Pa in this area (across their lines B
and C and stations 4 and 8). While similar to BP97’s esti-
mates from bulk entrainment rates (7; ~ —1 Pa), the mea-
sured 7; contrasts the substantially greater bulk estimates of
JSB94 (-3 to —4 Pa).

[26] Here we find time-averaged 7;= —2 + 1 Pa within the
hydraulic jump region (at DTS) but only 7; = —0.1 & 0.1 Pa
upstream (at UTS), consistent with the wide distribution of
previous 7; estimates reported above. It is thus plausible that
the Med outflow’s initial descent may be strongly influenced
by high interfacial stresses that act on the large-scale
momentum (JSB94, BP97) but were not captured by Johnson
et al. [1994a] because of their localized nature. Multibeam
bathymetry [Zitellini et al., 2009] indicates the Gulf of Cadiz
is incised with a spectrum of roughness down to O(1km)
scales, so intensified dynamics may impact more than just
the major sills indicated in Figure la. Within the Strait of
Gibraltar, for example, hydraulic control and large-amplitude
shear instabilities produce € ~ 1072 W/kg at Camarinal Sill,
100x larger than those observed here [Wesson and Gregg,
1994].

[27] While our observations indicate that 7; is significant,
our data do not permit us to compare this directly to 7.
However, it is likely that the ratio of 7; to 7, is strongly vari-
able and controlled by topography. Whereas 7, may be quasi-
homogeneous (as it scales with #”), 7; depends on the internal
flow stability, and can change abruptly as a flow transitions
from marginally stable to marginally unstable (from UTS to
DTY). Like the equatorial undercurrent, the mean state of the
Med outflow has Richardson number close to 1/4, so that
small changes in background state can manifest into signifi-
cant changes in mixing [Moum et al., 2009].

[28] We suggest that the Med Outflow acts like a pool and
drop river, whereby the outflow transitions abruptly from a
marginally stable, relatively quiescent flow into intense
undulations and turbulence. Based on the complexity of the
topography [Zitellini et al., 2009], we contend that a large
fraction of the Med’s mixing may occur within accelerated
downslope flows that enhance ¢, K, and K, by a factor

50f6



L18611

of 100, and produce order-of-magnitude increases in 7. Far-
ther downstream (Figure 1a; BP97’s sections D and E), large-
scale budgets indicate a weakening of the total stress
to ~0.5 Pa (BP97), consistent with a reduction in ¢, K, and
K, as the Med approaches geostrophic equilibrium over
the broad continental slope. However, the total entrainment
remains substantial during much of the 140 km from Camar-
inal Sill [Baringer and Price, 1997a], indicating continued
mixing during the Med’s descent to terminal depth. Whether
fine-scale topographic effects control the cumulative entrain-
ment farther downstream remains an open question. In any
event, numerical prediction of the Med’s ultimate composition
will likely require resolving or parameterizing the effect of
turbulent dynamics over O(1 km) scale topographic features
[Ozgokmen and Fischer, 2008].

[20] There is increasing evidence that the composition of
Mediterranean Outflow waters have been changing on decadal
timescales [Millot et al., 2006]. It has been suggested that
anthropogenic changes may lead to a warmer and less dense
Med Outflow [Thorpe and Bigg, 2000]. Because mixing is
sensitive to subtle changes in flow stability, it is unlikely that
numerical models that use “tuned” mixing parameterizations
will adequately model bulk entrainment correctly under future
scenarios where the outflow interacts differently with topo-
graphic complexity. It is thus imperative that the effects of
fine-scale topographic roughness be captured or accurately
parameterized in GCMs [e.g., Ozgékmen et al., 2004] to avoid
significant errors in climate predictions [Legg et al., 2009].
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