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ABSTRACT

Sampling patterns and sampling errors from various scatterometer datasets are examined. Four single and two
tandem scatterometer mission scenarios are considered. The single scatterometer missions are ERS (with a single,
narrow swath), NSCAT and ASCAT (dual swaths), and QuikSCAT (a single, broad swath obtained from the
SeaWinds instrument). The two tandem scenarios are combinations of the broad-swath SeaWinds scatterometer
with ASCAT and QuikSCAT. The dense, nearly uniform distribution of measurements within swaths, combined
with the relatively sparse, nonuniform placement of the swaths themselves create complicated space–time sam-
pling patterns. The temporal sampling of all of the missions is characterized by bursts of closely spaced samples
separated by longer gaps and is highly variable in both latitude and longitude. Sampling errors are quantified
by the expected squared bias of particular linear estimates of component winds. Modifications to a previous
method that allow more efficient expected squared bias calculations are presented and applied. Sampling errors
depend strongly on both the details of the temporal sampling of each mission and the assumed temporal scales
of variability in the wind field but are relatively insensitive to different spatial scales of variability. With the
exception of ERS, all of the scatterometer scenarios can be used to make low-resolution (38 and 12 days) wind
component maps with errors at or below the 1 m s21 level. Only datasets from the broad-swath and tandem
mission scenarios can be used for higher-resolution maps with similar levels of error, emphasizing the importance
of the improved spatial and temporal coverage of those missions. A brief discussion of measurement errors
concludes that sampling error is generally the dominant term in the overall error budget for maps constructed
from scatterometer datasets.

1. Introduction

Scatterometers obtain measurements of wind velocity
from the normalized radar cross-section of the ocean
(Naderi et al. 1991) in swaths that parallel the ground
track of the spacecraft. Figure 1 shows typical data dis-
tributions over part of the North Pacific Ocean for a
single pass of each of four past, present, and proposed
scatterometers. The common characteristic of these in-
struments is the dense, almost uniform spacing of data
within each measurement swath. As discussed in detail
in section 2, the measurement swaths themselves form
a relatively sparse and complex space–time pattern. This
combination of dense, within-swath sampling, and the
irregular sampling of the swaths themselves complicates
analysis of the sampling characteristics of scatterometer
data. Within each swath, standard notions of sampling
theory (e.g., the concept of Nyquist sampling) can be
useful, but for the dataset as a whole, more general
methods are required.
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Scatterometer wind measurements are often used to
construct wind component maps on a uniform space–
time grid. For example, the mapped winds may be used
to calculate wind divergence or vorticity, or as an input
to a numerical meteorological or oceanographic model.
Interpolation or smoothing algorithms are necessary to
generate wind component maps on a regular grid from
the irregular measurements. A variety of these algo-
rithms are available and have been used for scatterom-
eter data, including various forms of objective analysis
(e.g., Kelly and Caruso 1990), the successive correction
method (Liu et al. 1998), and simple bin and weighted
averaging schemes (Legler and O’Brien 1985; Zeng and
Levy 1995). All of these methods act as low-pass filters
so that larger space scales and timescales are prefer-
entially retained in the estimates. When applied to un-
evenly distributed measurements, any interpolation al-
gorithm will also retain shorter scales of variability that
are not resolved by the data. This manifestation of al-
iasing in its most general form results in ‘‘sampling
errors’’ in the mapped fields that are distinct from the
consequences of measurement errors.

The presence of significant sampling errors in scat-
terometer datasets is well known. Legler and O’Brien
(1985) carried out a simulation similar to that described
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FIG. 1. Measurement locations for a single pass over the North
Pacific Ocean for each of the single-scatterometer missions. (a) ERS,
(b) NSCAT, (c) ASCAT, and (d) QuikSCAT.

below. They concluded that the primary limitation for
maps constructed from the NSCAT-like scatterometer
dataset that they considered was sampling, rather than
measurement error. Kelly and Caruso (1990) developed
an objective method for interpolating NSCAT
scatterometer data and performed simulations [using
European Center for Medium-Range Weather Forecasts
(ECMWF) analyses] and an extensive analysis of the
errors of the gridded fields they produced. Zeng and
Levy (1995) studied aliasing in monthly mean wind
fields from the European Remote Sensing Satellite
(ERS) scatterometer and devised an interpolation
scheme to mitigate the patterns resulting from sampling
errors that appear in monthly mean wind maps derived
from ERS data.

A simple simulation demonstrates the nature of the
scatterometer wind velocity sampling errors that can be
expected. Analyzed surface wind fields from the
ECMWF were obtained on a 18 3 18, 6-h grid and
subsampled using trilinear interpolation at the NSCAT
measurement locations. Both the gridded and subsam-
pled model winds were interpolated onto a 18 3 18,
daily space–time grid. The zonal and meridional com-
ponents were individually interpolated using a quadratic
loess smoother (Cleveland 1979, Cleveland and Devlin
1988; see also Schlax and Chelton 1992, and Greenslade
et al. 1997). Figures 2 and 3 compare the maps that
resulted from interpolating the full and subsampled
model fields at two specific times, for two different lev-

els of applied smoothing (the times are from an arbitrary
reference and do not represent actual dates).

Figure 2 shows maps made to retain scales larger than
approximately 200 km and 4 days. The top row shows
the maps at day 45 made by interpolating the full anal-
yses (left) and the NSCAT subsampled analyses (cen-
ter). The differences between these two maps (right)
result from the NSCAT subsampling and are thus sam-
pling errors. The bottom row contains similar maps for
day 55. The difference maps show mean sampling errors
of 2.1 m s21, with a maximum error of 10.4 m s21.
Note that the largest errors (around 288N, 1688W on
day 55) are not associated with the strongest winds
(which occur on day 45).

The maps in Fig. 3 retain scales larger than approx-
imately 600 km zonally, 200 km meridionally, and 10
days. The sampling errors for these larger scales have
changed, and now average 1.2 m s21 with a maximum
error of 4.2 m s21. The 3–4 m s21 errors on day 45 in
Fig. 2c at 328N, 1688W have expanded in Fig. 3c to
cover the range 308–408N. The errors forming the semi-
circular band in the center of Fig. 2c have been reduced
in magnitude as have the largest errors noted on day
55. The general reduction of the mean and variability
of the sampling errors in the smoother maps is an in-
dication that the NSCAT sampling is better able to re-
solve the larger space and longer timescales present in
the ECMWF field. The sampling errors alone from
NSCAT can amount to a significant percentage of the
true wind field and are spatially and temporally inho-
mogeneous. Moreover, the errors change when the
amount of smoothing applied to the data changes, and
do not necessarily decrease locally with increased
smoothing. Clearly a quantification of the magnitude
and spatial–temporal distribution of sampling error is
essential.

The effects of sampling errors on maps of component
wind fields are conveniently expressed in terms of the
expected squared bias (ESB). Suppose that representsh
the value that a given interpolation algorithm would
return when applied to a continuously sampled, error-
free dataset. Let ĥ be the estimate given by the inter-
polation algorithm when applied to an actual dataset,
assumed to be nonuniformly sampled and contaminated
by measurement error. Because of sampling and mea-
surement error, ĥ will differ from . The error of ĥ ash
an estimator of can be characterized by the mean-h
squared error mse 5 E[( 2 ĥ)2], where E denotes theh
expected value over realizations of the dataset. The mse
can also be written in the form

2 2mse 5 E[(h 2 E[ĥ]) ] 1 E[(ĥ 2 E[ĥ]) ], (1)

in which the usual decomposition of mse into the sum
of ESB (the first term) and variance (the second term)
is shown. This decomposition of the mse into a bias
term that is independent of measurement error and a
variance term that is independent of the quantity being
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FIG. 2. Maps of vector wind and magnitude of the vector wind made using loess smoothing to retain scales longer than 200 km and 4
days at reference day 45 from (a) ECMWF analyzed surface wind fields, (b) NSCAT-subsampled ECMWF model analyses, and (c) the
difference between them. Respectively (d), (e), and (f ) are the same, but at reference day 55. Component wind estimates are on a 18 3 18
grid; for clarity wind vectors are drawn at 28 intervals.

estimated makes it a useful tool for the study of sam-
pling errors, which are quantified by the ESB.

The sampling errors associated with four individual
scatterometers are investigated here: ERS-2, routinely ac-
quiring wind data since April 1996 and preceded by ERS-
1, which operated from August 1991 through April 1996
(collectively referred to as ERS); NSCAT, carried on the
ADEOS-1 spacecraft, operated from September 1996
through June 1997; ASCAT, to be carried on the European
METOP satellite scheduled to launch in August 2003; and
SeaWinds, currently operating on board the QuikSCAT
spacecraft, launched in June 1999 (referred to here as
QuikSCAT). A SeaWinds instrument is also scheduled to
be launched on ADEOS-2 in November 2000 (henceforth
referred to as SeaWinds) and forms the basis for the two
tandem-mission scenarios considered here: SeaWinds/AS-

CAT and QuikSCAT/SeaWinds. Attention is focused on
the geographical region shown in Fig. 1.

This paper is organized as follows. Section 2 describes
in detail the sampling patterns of the six scatterometer
scenarios. In section 3, the derivation of the methodology
underlying the use of the ESB is outlined, along with a
brief discussion of the effects of measurement errors. Sec-
tion 4 describes the sampling errors for the six cases.
Details of the ESB calculation, including refinements and
extensions of previous applications of the formalism are
in the appendix, along with a summary of the relative
importance of sampling and measurement errors.

2. Scatterometer sampling
Each of the scatterometers considered here is carried

on board a spacecraft placed in an exact repeat, sun-
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FIG. 3. The same as Fig. 2, except using loess smoothing to retain scales longer than 600 km zonally, 200 km meridionally and 10 days.

synchronous orbit. Measurements of wind speed and
direction are made in swaths that parallel the ground
track of the spacecraft. As shown in Fig. 1, the spatial
sampling density is nearly uniform within each mea-
surement swath. For this study, measurements were as-
sumed to be separated by 50 km in both the along-track
and across-track directions. The scatterometer instru-
ments on board the ERS satellites obtain wind mea-
surements in a single 500-km-wide swath beginning 225
km to the starboard side of the ground track (or nadir)
(Fig. 1a). NSCAT (Fig. 1b) acquired data in dual 600-
km-wide swaths separated by a 330-km nadir gap. AS-
CAT (Fig. 1c) will be another dual-swath instrument
with swath widths of 550 km separated by a 600-km
nadir gap. QuikSCAT (Fig. 1d) has a single 1600-km-
wide swath centered on the ground track.

In contrast to the nearly uniform within-swath sam-
pling, the swaths themselves form a relatively sparse
space–time pattern (Fig. 4) that depends on swath width

and mission orbital parameters. ERS has an exact repeat
period of 35 days and a ground track (or nodal) spacing
of about 1.58 of longitude at the equator. NSCAT re-
peated every 41 days and had a correspondingly smaller
nodal spacing of 0.628. ASCAT will have an exact repeat
of 5 days and a nodal spacing of 5.18, while the orbits
for QuikSCAT and SeaWinds have 4-day exact repeats
and nodal spacings of 6.38. The complicated juxtapo-
sition of densely sampled swaths makes describing and
understanding scatterometer sampling a difficult under-
taking.

It is informative to quantify sampling density varia-
tions with time and latitude for each of the scatterometer
mission scenarios. One measure of the space–time sam-
pling density is the percentage of 18 3 18 bins that are
sampled at least once during a fixed period. This per-
centage was determined for specified time intervals and
the longitude range 1508–1708W for each degree of lat-
itude between the equator and 608N. The fractional cov-
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FIG. 4. Measurement locations from a 48-h period over the North
Pacific Ocean for each of the single-scatterometer missions. (a) ERS,
(b) NSCAT, (c) ASCAT, and (d) QuikSCAT. The large dots in (a)
mark the locations where the empirical autocorrelation functions
shown in Fig. 11 were calculated.

FIG. 5. The percentage of the 18 3 18 bins along each latitude
within the longitude range 1508–1708W that contain at least one mea-
surement during the time interval indicated along the abscissa. For
each time interval, the percent cover was determined from the average
over all nonoverlapping time intervals contained in an 80-day period.

erages were averaged over the nonoverlapping time in-
tervals contained in an 80-day period. The percent cov-
erages for the six scenarios (Fig. 5) show the progressive
increase in sampling density from the narrow, single
swath of ERS, through the dual-swath instruments to
the single wide swath coverage of QuikScat. Tandem
missions increase spatial coverage dramatically and re-
duce the strong midlatitude variation in coverage as-
sociated with the single-instrument scenarios.

The complex spatial–temporal distributions of the
measurements for the six scenarios are illustrated in Fig.
6. Measurements at 108, 258, 408, and 508N are shown
in time–longitude sections covering a 20-day period for
the longitude range 1508–1708W (the continuous hori-
zontal lines in Fig. 6 result from essentially simulta-
neous measurements across a swath). As a measurement
swath traverses the study area (Figs. 1 and 4), the lon-
gitude of the swath steadily changes with latitude, jux-
taposing the measurements with those from both as-
cending and descending swaths that occur at other times.
This latitudinally varying combination of sampling
times results in the different temporal sampling intervals
apparent in Fig. 6. For example, consider the two ERS
measurement swaths closest to day 38 in the far left
panel of Fig. 6a. At 108N, these swaths are centered at
about 1678W (the later swath) and 1548W (the earlier
swath). At 258N, the later swath has shifted east to
1648N and the earlier swath west to 1578W. At 408N,

the two swaths have converged in longitude near 1608W;
at 508N, the continued eastward and westward shifts
have nearly eliminated longitudinal overlap. The overall
result of these shifts and overlaps is temporal sampling
that can change radically with both latitude and longi-
tude.

A common feature in the sampling of all of the in-
dividual instruments is ‘‘burst’’ sampling in time, where
several closely spaced data points occur, followed by a
longer data gap, another burst of samples, and so on.
For example, QuikSCAT sampling at 108N, 1608W (Fig.
6d, left panel) exhibits a pattern of two measurements
separated by 12 h followed by a 24-h gap, in turn fol-
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FIG. 6. Measurement locations at 108, 258, 408, and 508N, plotted
in a time–longitude section for the scatterometer scenarios (a) ERS,
(b) NSCAT, (c) ASCAT, (d) QuikSCAT, (e) SeaWinds/ASCAT, and
(f ) QuikSCAT/SeaWinds. The solid vertical lines show the longitude
of the error time series in Fig. 15. The measurements closest to day
38 in (a) are denoted by thick lines.

FIG. 6. (Continued )

FIG. 7. Mean revisit intervals for measurements in 18 3 18 bins
along each latitude within the longitude range 1508–1708W.

lowed by four measurements separated by 12 h and
another 24-h gap. At 258N, (second panel) the temporal
sampling has changed to bursts of 6 measurements,
again separated by 12 h, followed by gaps of 48- and
36-h duration, respectively. Similar patterns of burst
sampling by the single scatterometers are visible in all
of the panels of Fig. 6 except at 508N for QuikSCAT,
where the temporal sampling is nearly uniform.

Figures 6e and 6f show the sampling for the tandem
scenarios. The combination of SeaWinds and ASCAT
improves data coverage over QuikSCAT, but the swaths
from these two instruments are only slightly offset in
both time and space, limiting the improvement in cov-
erage. There are still relatively long gaps of a day or
more at 108, 258, and 408N. At 508N the temporal sam-
pling is nearly uniform, but more longitudinal variation
in the sampling is apparent than for QuikSCAT at the
same latitude. The effect of the different 4- and 5-day
exact repeats of SeaWinds and ASCAT is most apparent
in the sampling pattern for the combined SeaWinds/
ASCAT scenario at 258N.

The combination of QuikSCAT and SeaWinds shows
a marked increase in coverage over an individual
SeaWinds instrument. The swaths from the two instru-

ments with the same 4-day repeat provide complemen-
tary spatial and temporal coverage as each instrument
effectively fills in data gaps left by the other. There are
no data gaps longer than a day.

The temporal sampling characteristics of the six sce-
narios are summarized in Figs. 7 and 8. Figure 7 presents
the mean revisit interval (or time between successive
measurements) for 18 3 18 bins, calculated at each lat-
itude over the longitude range 1508–1708W. The mean
revisit interval is a convenient statistic for characterizing
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FIG. 8. Latitude–time histograms of revisit intervals for measurements in 18 3 18 bins along each latitude
within the longitude range 1508–1708W. For each histogram, the latitude bin size is 18 and the time bin size
is 6 h. Time–latitude bins with no observations are displayed as white. (a) ERS, (b) NSCAT, (c) ASCAT,
(d) QuickSCAT, (e) SeaWinds/ASCAT, and (f ) QuikSCAT/SeaWinds. The solid and dotted lines are, re-
spectively, the mean and standard deviation of the sampling errors calculated as described in section 4. The
scale for the time intervals is given by the bottom axis; the scale for the relative errors is given by the top
axis. Note the expanded horizontal scale in (a).

scatterometer sampling, but is incomplete because of
the burst sampling discussed above. The temporal sam-
pling at each longitude is characterized by a wide range
of revisit intervals. The means in Fig. 7 are only the

first moments of the revisit interval distributions. His-
tograms of revisit intervals provide a more comprehen-
sive description of temporal sampling (Fig. 8). For ex-
ample, the complicated QuikSCAT sampling at 108N
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(Fig. 6d) leads to three dominant sampling intervals
(;12, 24, and 36 h). At 258N there are still three distinct
revisit intervals, but they have shifted to the 12-, 36-,
and 48-h intervals noted previously in Fig. 6d.

Figure 8 reveals the complex latitudinal dependence
of the revisit interval histograms. With the exception of
ERS between about 128 and 268N, the temporal sam-
pling of all of the scenarios is dominated by #12 h
intervals at all latitudes, a reflection of the sun-syn-
chronous orbits. However, some latitude ranges are
characterized by much longer revisit intervals for some
missions. ERS has the most latitudinally variable dis-
tribution of revisit intervals, as well as the longest gaps.
NSCAT and ASCAT both have extensive sampling at
36- and 48-h intervals, with some data gaps as long as
3.5 days. QuikSCAT sampling rarely has gaps longer
than 36 h (the regions near 258N is unusual in this
respect), and none longer than the very few 2.5-day gaps
near 208N. The SeaWinds/ASCAT tandem exhibits 24-
and 36-h intervals, is concentrated about 12-h intervals
and adds limited sampling at 6-h intervals north of 308N.
QuikSCAT/SeaWinds never has gaps longer than 18 h
and, at all latitudes, at least 30% of the sampling is at
6-h intervals. North of 508N, the temporal sampling for
QuikSCAT/SeaWinds is essentially uniform with 6-h
intervals.

The results of this section show that, with the excep-
tion of ERS, the single scatterometers considered here
can provide almost complete spatial coverage over time
intervals of 2 days, and at least 50% coverage at 12-h
intervals. The tandem missions improve spatial cover-
age, with SeaWinds/ASCAT covering 80% of the study
region in about 12 h and generally more than 95% in
under 24 h. QuikSCAT/SeaWinds covers nearly 90% of
the region in about 12 h. It will become apparent in
later sections that major sampling differences between
the scatterometer mission scenarios lie in the details of
the temporal distribution of samples, which in turn de-
pend upon measurement swath geometry and orbit pa-
rameters.

3. Methodology

a. Expected squared bias

The ESB calculations described and implemented by
Schlax and Chelton (1992), Chelton and Schlax (1994),
and Greenslade et al. (1997) are extended here. Let x
5 (x, y, t) and s 5 (k, l, f ) be locations in space–time
and wavenumber–frequency, respectively, and h(x) a re-
alization of a stationary random function that describes
an oceanographic variable of interest (for present pur-
poses, the zonal or meridional component of wind).
Then h has variance , Fourier transform H(s), nor-2sh

malized power spectral density S(s), and correlation
function r (x).

Real instrumental measurements result in N obser-
vations of h at the sampling points xj,

g 5 h(x ) 1 e , j 5 1, 2, . . . , N,j j j (2)

where the ej are measurement errors, assumed to have
zero mean and variance–covariance matrix Vjk 5
E[e jek].

For the purposes of constructing maps of h from the
observations g, suppose that a linear, smoothed estimate
is calculated at each grid point:

N

ĥ 5 a g . (3)O j j
j51

(Without loss of generality, the location of each estimate
may be assumed to be at x 5 0, so no locational de-
pendence is inferred for the aj.) Presumably ĥ is a rea-
sonable estimate of an ideal smoothed or filtered version
of h,

`

h 5 P*(s)H(s) ds, (4)E
2`

where the smoother weights aj are defined by the in-
terpolation algorithm used, P(s) is the transfer function
of the smoother or filter yielding , and * denotes theh
complex conjugate. Further defining the equivalent
transfer function for ĥ as

N

2i2p (kx 1ly 1 f t )ˆ j j jP(s) 5 a e , (5)O j
j51

allows the ESB for ĥ as an estimate of to be expressedh
as

`

2 2 2ˆE[(h 2 E[ĥ]) ] 5 s \P(s) 2 P(s)\ S(s) ds, (6)h E
2`

where E is the expectation. Unless P and S have special
functional forms (see below), evaluation of the three-
dimensional integral in (6) is difficult and may be com-
puter intensive [see e.g., the discussion in chapter 4 of
Press et al. (1992)].

In their studies, Chelton and Schlax (1994) and
Greenslade et al. (1997) used the tricubic-weighted local
regression, or loess, smoother of Cleveland (1979) and
Cleveland and Devlin (1988) for (3) and compared the
estimates so obtained with an ideal low-pass filter

2 2 21, if \(k/k ) 1 (l/l ) 1 ( f / f ) \ # 1c c cP (k, l, f ) 5I 50, otherwise,

(7)

(where kc, lc, and f c are the wavenumber–frequency
cutoffs of the filter), resulting in

`

2 2ˆESB 5 s \P (s) 2 P(s)\ S(s) ds. (8)h E I

2`

Here, \PI(s) 2 P̂(s)\ is shown schematically as the shad-
ed region in Fig. 9a for a hypothetical one-dimensional
loess estimate using the Gaussian weighting described
below.
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FIG. 9. (a) Transfer function of an ideal low-pass filter PI(s) (heavy
solid line), the equivalent transfer function P̂(s) for a loess estimate
from an irregularly spaced dataset (thin solid line), and the difference
\PI(s) 2 P̂(s)\ (the shaded region). (b) Transfer functions of an ideal
Gaussian-weighted loess estimate PG(s) (heavy solid line), an ideal
tricubic-weighted loess estimate (dotted line), the equivalent transfer
function P̂(s) for a loess estimate from an irregularly spaced dataset
(thin solid line), and the difference \PG(s) 2 P̂(s)\ (the shaded re-
gion).

The ESB provides a measure of how the smoothed
estimate (3) has been degraded from the ideal (4), be-
cause of inadequate sampling of h by measurements at
the points xj. The difference between the ideal and
equivalent transfer functions represents the effects of
the sampling error. For the ESB calculation, the differ-
ence function is squared and weighted by the amount
of spectral energy present at each point in wavenumber–
frequency space.

Chelton and Schlax (1994) and Greenslade et al.
(1997) used a very restricted space–time grid to describe
the variation of ESB for satellite altimeter datasets. The
ESB (8) was calculated directly using a Monte Carlo
method (a time-consuming procedure) for each estimate.
The relatively few evaluations of (8), although burden-
some in terms of the required computational effort, were
not prohibitive for these studies of altimeter sampling
errors.

The scatterometer datasets of interest here do not lend
themselves to such a restricted analysis. As seen in sec-
tion 2, the complex scatterometer sampling requires a
more extensive set of ESB calculations to characterize
the variability of sampling errors. Direct numerical eval-
uation of the three-dimensional integral (8) is not fea-
sible. To accommodate the computational demands of
this more extensive set of calculations, both the loess
estimator and the ‘‘ideal’’ filter to which it is compared
were therefore modified.

The goal of the modifications was to choose P and
S to be separable functions so that (6) could be written
in terms of products of three one-dimensional integrals,
while retaining a meaningful definition of the ESB (P̂
is always separable). With these changes and a suitable
choice of r (and hence S), it was possible to obtain a
closed-form expression for the ESB and avoid numerical
integration entirely. This resulted in a substantial re-
duction of the computational requirements and allowed
the ESB to be calculated on extensive space–time grids.
The procedure is outlined in the remainder of this sec-
tion; details are in the appendix along with a description

of a new method for calculating the loess smoother
weights aj.

The ‘‘ideal’’ filter transfer function (7) was first re-
placed by the transfer function for a loess estimate made
for the continuous case [equivalent to assuming that h(x)
is known everywhere]. While it is possible to derive
this transfer function for any arbitrarily weighted local
regression smoother, the tricubic weighting function
commonly used by loess does not provide a separable
transfer function. However, as shown in the appendix,
if the loess smoother is modified to use a Gaussian
weighting function, the transfer function for the cor-
responding ideal, continuous case is simply

2 22 2 2p \s̃\ /sP (s) 5 (1 1 p \ s̃\ /s)e ,G (9)

where s̃ 5 (dxk, dyl, dt f ) and dx, dy, and dt are the
smoother half-spans (appendix). The degree of smooth-
ing is determined by the smoother half-spans; larger
half-spans produce smoother estimates. The free param-
eter s is chosen to make PG as close as possible in
mean-squared difference to the ideal smoother PI of Eq.
(7) with . Figure 9b shows21 21 21(d , d , d ) 5 (k , l , f )x y t c c c

the difference \PG 2 P̂\ for the same Gaussian-weighted
loess estimate shown in Fig. 9a. Since PG is defined as
a limiting case of the loess smoother being applied here,
P̂ for a given estimate will, in general, be a better ap-
proximation to PG than to the discontinuous function
PI. ESB calculated using PI as a reference reflects both
sampling error and the degree to which the loess esti-
mator fails to behave as an ideal low-pass filter. ESB
calculated with respect to PG should thus be smaller and
more sensitive to sampling errors than ESB based on
PI.

The transfer function for the ideal tricubic loess is
also shown as the dotted line in Fig. 9b for comparison
with PG. The ideal tricubic loess smoother rolls off more
rapidly than PG but has larger sidelobes. These tricubic-
and Gaussian-weighted transfer functions differ in mean
square by less than 3%. The increase in computational
efficiency allowed by the Gaussian-weighted smoother
more than compensates for this minor difference.

b. Signal autocorrelation function

The ESB calculation requires an assumed form for
the signal autocorrelation function, r. This function, and
its Fourier transform S, define the scales of variability
of the wind field and have a direct impact on the ESB
reported for a given estimate. Care must be taken in the
choice of r in order to realistically represent the second-
order statistics of the true wind field while also provid-
ing for tractable ESB computations.

For this study we require candidate functions for r
that are positive definite, physically realistic, separable
and preferably with a form leading to simple evaluation
of (6). Products of the exponentially damped cosine,
(e.g., for x, exp(2 | x/sx | ) cos[(px)/2Lx], where sx is the
decorrelation scale for x and Lx is the zero crossing)
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describe well the marginal characteristics of wind fields
(Freilich and Chelton 1986) and have been used to an-
alyze sampling errors from scatterometer wind data
(Kelly and Caruso 1990). One disadvantage of this rep-
resentation for r is that the surfaces of constant r are
planar, which is not a particularly realistic feature. Fur-
thermore, while separable, the exponentially damped
cosine still requires numerical integration for the eval-
uation of (6) when using PG.

The function

r(x, y, t; s , s , s , L , L , L )x y t x y t

2 2 2x y t22\ x̃\5 e 1 2 2 2 , (10)5 1 2 1 2 1 2 6L L Lx y t

where sx, sy, and st are the decorrelation scales, Lx, Ly,
and Lt are the zero crossings, and 5 21 21x̃ (s x, s y,x y

, is (as detailed in the appendix) conditionally pos-21s t)t

itive definite, has ellipsoidal level surfaces and allows
a closed form expression for (6). One problem with this
form for the autocorrelation function is that it describes
a wind field that contains preferentially more large-scale
variability than is likely to be true, particularly in time.
This difficulty may be overcome through the use of a
nested autocorrelation (Journel and Huijbregts 1978),
that is, by expressing r as a weighted sum of functions
with the form (10) and different decorrelation scales. In
the form applied here, (10) does not allow the incor-
poration of propagating signals.

To determine appropriate values for the parameters
of the spatial–temporal autocorrelation functions to be
used in this study, a set of empirical temporal autocor-
relation functions was calculated from 9.5 months of
NSCAT measurements at the locations shown in Fig.
4a [these data have been carefully examined and vali-
dated, e.g., Freilich and Dunbar (1999)]. At each lo-
cation, data from the nine adjacent 18 3 18 latitude–
longitude bins was selected and sorted into 0.5-day bins.
Using these binned data, the empirical temporal auto-
correlation functions for the zonal (u) and meridional
(y) wind components were calculated, and are shown
in Figs. 10a and b. These figures reveal that the auto-
correlation timescale is shorter for y than for u.

Spatial autocorrelation functions are more difficult to
estimate from the NSCAT data. Rather than attempting
to specify the spatial parameters directly, autocorrela-
tion functions with three sets of spatial parameters were
used to investigate the sensitivity of the ESB to the
spatial form of the autocorrelation.

A total of four subjectively chosen spatial–temporal
autocorrelation functions were considered in this study.
Define the short and long timescale autocorrelation
functions rts(x, y, t) and rtl(x, y, t), respectively, both
with isotropic spatial parameters sx 5 sy 5 700 km and
Lx 5 Ly 5 900 km, and no temporal zero-crossing (i.e.,
Lt 5 `). For rts the temporal decorrelation parameter
is st 5 0.95 days, while for rtl, st 5 5 days. The space–

time autocorrelation function used for the zonal wind
component was

r (x, y, t) 5 0.55r (x, y, t) 1 0.45r (x, y, t),u ts tl

while for the meridional component

r (x, y, t) 5 0.85r (x, y, t) 1 0.15r (x, y, t).y ts tl

Since these functions are spatially symmetric, they may
be expressed as functions of . Overlaid2 2r 5 Ïx 1 y
as the heavy lines in Figs. 10a and 10b are ru(r, t) and
ry (r, t), as functions of the temporal lag t, respectively,
for r 5 0. These analytical autocorrelation functions
provide a good visual fit to the empirical temporal au-
tocorrelation functions. The temporal decorrelation
scales of these functions are quite different. The e-fold-
ing timescales of ru and ry are 2.3 days and 1.1 days,
respectively. For most of the calculations made here,
we have used ry to provide a conservative assessment
of the impact of sampling errors.

For examining the sensitivity of the sampling errors
to the spatial decorrelation scale, autocorrelation func-
tions with short and long spatial ranges, ranges, rys and
ryl are defined to have the same temporal structure as
ry , but spatial parameters sx, sy, Lx, and Ly that are
respectively half and twice those of ry . Figure 10c dis-
plays rys(r, t), ry (r, t), and ryl(r, t) as functions of spatial
lag r for t 5 0.

c. Characterization of sampling errors

The studies of Chelton and Schlax (1994) and Green-
slade et al. (1997) used the relative expected squared
bias to quantify the effect of sampling2RESB 5 ESB/sh

errors on grids of smoothed estimates of sea surface
height data. One goal of these studies was to define the
‘‘resolution capability’’ of a given set of altimeter mea-
surements of sea surface height. The resolution capa-
bility was defined as the minimum degree of smoothing
required to produce grids with errors that were either
deemed sufficiently small in magnitude, or exhibited a
defined degree of homogeneity, as measured by the
mean and variability of the square root of the RESB.

This study pursues the less ambitious goal of simply
describing the mean and variability of the relative sam-
pling errors [defined as (RESB)1/2] associated with the
six scatterometer scenarios described in the preceding
sections. The mean and variability of the relative sam-
pling errors of mapped wind components were exam-
ined in space and time, and as a function of the applied
smoothing. The various spatial–temporal autocorrela-
tion functions defined above were used to demonstrate
the sensitivity of sampling errors to the assumed au-
tocorrelation function.

Practical application of the methodology presented
here requires the specification of sh to convert relative
sampling errors into absolute sampling errors. In ob-
jective analyses, it is common to remove the mean field
and interpolate the residuals. For such applications, it
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FIG. 10. (a) Empirical temporal autocorrelation functions for the zonal wind component from
the 13 locations marked in Fig. 4a (light lines). Overlaid as the heavy line is the analytical space–
time autocorrelation function ru(r, t) as a function of temporal lag t for spatial lag 2r 5 x 1

. (b) Same as in (a), except for the meridional wind component, and the space–time au-2y 5 0
tocorrelation function ry(r, t) as a function of temporal lag t for spatial lag r 5 0. (c) Plots of
the space–time autocorrelation functions rys(r, t) (dashed line) ry(r, t) (solid line) and ryl(r, t)
(dotted line) as functions of spatial lag r for temporal lag t 5 0, where the functions rys and ryl

have the same form as ry , but with spatial decorrelation scales and zero-crossings, respectively,
half and twice those of ry .
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FIG. 11. Standard deviation of (a) zonal wind component and (b) meridional wind component,
in m s21, calculated over 18 3 18 bins from 9.5 months of NSCAT data.

is appropriate to consider the standard deviation of the
wind components. Figure 11 shows maps of the standard
deviations of the zonal and meridional wind components
calculated in 18 3 18 bins using the 9.5 months of
NSCAT data. (The presence of ambiguity removal errors
will elevate estimates of standard deviation. Comparison
with the wind component standard deviations calculated
using ECMWF analyzed surface winds suggests that the
effect of the ambiguity removal errors is not large for
this calculation. See also Freilich and Dunbar 1999.)
The standard deviations of both components increase
from minimum values near 2 m s21 in the equatorial
regions to 6–7 m s21 at higher latitudes, and have global
mean values of 5 m s21 and 4.6 m s21 for the zonal and
meridional components, respectively. The geographic
variation of the wind component standard deviations
makes it clear that absolute sampling errors need to be

evaluated on a regional basis. For the purposes of com-
paring absolute sampling errors for the six mission sce-
narios (section 5) and for comparing measurement with
sampling errors (section 3d and the appendix), a 5 m
s21 standard deviation is assumed. This value is com-
parable to the range of wind component standard de-
viations used by Kelly and Caruso (1990).

d. Variance of the estimates

The second term of Eq. (1) is the variance of the
linear estimates,

N

2var(ĥ) 5 E[(ĥ 2 E[ĥ]) ] 5 a V a . (11)O j jk k
j,k51

An attempt to describe the nature of error correlations
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in scatterometer data is beyond the scope of this paper.
Assuming uncorrelated errors (i.e., that V is the identity)
provides only a lower bound for the variance; correlated
errors will lead to larger variances. To estimate the gen-
eral magnitude of the variance of the linear estimates
studied here, Gaussian space–time autocorrelation func-
tions for the errors were assumed. Three cases were
considered: uncorrelated errors, correlated errors with a
temporal decorrelation of 50 min (reflecting an as-
sumption that errors from different orbits are uncorre-
lated), and isotropic spatial decorrelation of 100 km,
and correlated errors with the same temporal decorre-
lation and 200-km spatial decorrelation. The error stan-
dard deviation se 5 (E[e2])1/2 was assumed to be 1 m
s21 (Freilich and Dunbar 1999). Equation (11) was eval-
uated for Gaussian-weighted loess smoothers with three
levels of smoothing: dx 5 dy 5 18, dt 5 2 days; dx 5
dy 5 28, dt 5 4 days; and dx 5 dy 5 38, dt 5 12 days.
Discussion of the results is deferred until the appendix
for comparison with a summary of the sampling errors.

4. Scatterometer sampling errors

Figures 12, 13, and 14 display relative sampling er-
rors calculated for the six scatterometer scenarios for
specific spatial and temporal smoothing and specific es-
timation times. These figures show maps of (RESB)1/2

using the meridional wind component space–time au-
tocorrelation function ry , and thus are representative of
the errors expected in maps of the meridional wind com-
ponent. Because of the shorter decorrelation scale of ry ,
these errors will be larger than those associated with ru

(see Fig. 15). All spatial smoothing was isotropic; the
spatial smoothing can thus be described by the single
parameter ds 5 dx 5 dy. For all of the calculations
presented in this section, a sufficient number of sam-
pling locations was used so that the error estimates were
not contaminated by boundary effects. The times re-
ferred to in these and the following figures are the same
as those used on the ordinates in Fig. 6.

Figure 12 shows the errors for each mission scenario
on day 40 for loess estimates with ds 5 28 and dt 5 4
days. The error patterns are complex and heterogeneous.
The diagonal patterns and diamond-shaped areas cor-
respond to swath boundaries (Fig. 4). Figure 13 shows
the errors 2 days later. The errors for all six scenarios
have magnitudes and patterns similar to those observed
in Fig. 12, but with longitudinal shifts of the various
error maxima and minima. Figures 12 and 13 illustrate
that sampling errors generally vary both spatially and
temporally for a given combination of smoothing pa-
rameters.

The latitudinal variations of sampling errors for es-
timates with ds 5 28 and dt 5 4 days are summarized
by the curves superimposed on the revisit interval his-
tograms in Fig. 8. Errors were calculated at 2.58 inter-
vals between 58 and 558N, at 18 intervals between 1508
and 1708W, and at 1-day intervals between days 30 and

50. The means and standard deviations of these errors
at each latitude reflect the overall level of relative sam-
pling error and its variation over time and longitude.
The variations of both the means and the standard de-
viations of the errors are strongly correlated with the
latitudinal variations of the revisit intervals. Increases
of the error means and standard deviations occur when
there is a shift in the sampling toward longer revisit
intervals (i.e., more or longer data gaps in time). The
superior performance of QuikSCAT/SeaWinds (Fig. 8f)
over the other scenarios results primarily from the uni-
form, frequent temporal sampling provided by the com-
bination of those two instruments.

Figure 14 shows the errors for the region on day 40,
but for significantly smoother maps, ds 5 38, dt 5 12
days. The errors for all six scenarios are smaller and
less heterogeneous than those shown in Figs. 12 and 13.
The diagonal patterns so clearly visible in Fig. 12 are
only subtly apparent in Fig. 14. More prominent are
isolated local error extrema (e.g., along 508N for
NSCAT, 458N for ASCAT, and 258N for QuikSCAT/
SeaWinds) and the latitudinal banding of the errors.

The relative importance of temporal versus spatial
sampling is evident from Fig. 15, in which the relative
sampling errors at 1608W for each of the six scenarios
are plotted as functions of time, for 258N (left panel)
and 408N (right panel), and smoothing parameters ds 5
28 and dt 5 4 days. (The heavy solid lines in the middle
panels of Fig. 6 show the longitudes where these esti-
mates are located.) The error was calculated using each
of the four space–time autocorrelation functions de-
scribed in section 3. Error values based on the auto-
correlation functions rys, ry , and ry l are all plotted as
solid lines in Fig. 14, while the errors calculated using
the longer autocorrelation timescales from ru are plotted
as dotted lines. With the exception of ERS at 258N and
day 36.5, the three solid lines in all of the panels of
Fig. 15 do not differ from one another by more than
0.1. The errors for this degree of smoothing are thus
insensitive to the large difference in the assumed wind
spatial variability represented by the three autocorre-
lation functions rys, ry , and ryl. The spatial coverage
of each of the six scenarios is apparently sufficient to
resolve even the shortest spatial scales represented by
rys when smoothed with dt 5 4 days. The errors are,
however, sensitive to a change in the temporal scales,
(apparent from the fact that the dotted lines are lower
than the solid lines in every panel of Fig. 15). This
decrease in error resulting from using ru rather than ry

is generally less than 0.1 for all six scenarios. The re-
duction of the error with the increase in temporal de-
correlation scales from 1.1 days to 2.3 days shows that
the scatterometer datasets are better able to resolve the
longer timescales represented by ru.

Figure 15 in conjunction with Figs. 6 and 8 also shows
how sampling errors respond to spatial and temporal
changes in sampling. Consider the case of ERS (Figs.
6a, 8a) at 258N with respect to sampling changes over
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FIG. 12. Relative errors on day 40 for loess estimates assuming the space–time autocorrelation
function ry and half-spans dx 5 28, dy 5 28, and dt 5 4 days for (a) ERS, (b) NSCAT, (c) ASCAT,
(d) QuikSCAT, (e) SeaWinds/ASCAT, and (f ) QuikSCAT/SeaWinds.
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FIG. 13. The same as Fig. 12 except for day 42.
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FIG. 14. The same as Fig. 12 except for loess estimates with half-spans dx 5 38, dy 5 38, and
dt 5 12 days.
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FIG. 15. Relative errors as a function of time at 1608W for 258N (left panels), and 408N (right panels) for loess estimates
with half-spans dx 5 28, dy 5 28, and dt 5 4 days assuming the space–time autocorrelation functions ry , rys, ryl (solid
lines), and ru (dotted line) for (a) ERS, (b) NSCAT, (c) ASCAT, (d) QuikSCAT, (e) SeaWinds/ASCAT, and (f ) QuikSCAT/
SeaWinds. Note the larger error scale in (a). The additional thin solid line in the left panel of (d) shows sampling errors
for dx 5 28, dy 5 28, and dt 5 1.5, assuming ry .
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time at 1608W. The basic sampling interval is 18 h, with
occasional longer gaps of 2.5, 3, and 5.5 days. The errors
(Fig. 15a, left panel) are small when measurement
swaths lie substantially within the span of the smoother,
and larger when the data density is low. The largest
difference between the errors found using ry , rys, and
ryl occurs at day 36.5, where the measurement swaths
lie farthest from the estimation location.

As noted in section 2, the nature of the ERS temporal
sampling at 408N is very different. The swaths are sep-
arated by alternating intervals of 12 h and 2.5 days, with
occasional longer intervals of 3, 3.5, and 6.5 days (Fig.
8a) and this is reflected by the errors. The errors oscillate
with a 3-day period with relative minima centered where
the swaths are separated by 12 h, and relative maxima
centered on the longer 2.5-day intervals that intervene.
The magnitudes of the maxima increase where there are
wider longitudinal gaps between the swaths (near days
30, 43, and 46). The mean error over time is greater at
408 than at 258N because the burst sampling at the higher
latitude is less able to resolve some of the timescales
represented by the autocorrelation functions used here.

Figures 6 and 15 reveal a close correspondence be-
tween the variation of errors and the temporal sampling
for the other five scenarios as well. The 5- and 4-day
exact repeat periods of ASCAT and QuikSCAT are re-
flected by the periodic variation of the errors in Figs.
15c and 15d. For the SeaWinds/ASCAT scenario at
258N (Figs. 6e and 15e), the relatively long-period var-
iation in sampling results in a similar temporal variation
in the errors. The QuikSCAT/SeaWinds scenario has
errors with 4-day periodicity, in accordance with the 4-
day exact repeats of the two individual scatterometers
comprising the scenario.

QuikSCAT at 258N (Figs. 6d and 15d) provides a
clear example of how the errors are small during times
of high data density that occur during a burst of sam-
pling, and larger during the longer gaps. The wind field
is sometimes very well sampled and resolved, but the
sampling errors have high temporal variability. The
burst sampling can lead to the apparently paradoxical
result that less smooth estimates can have lower mean
error than smoother estimates. For example, the errors
for estimates with for ds 5 28, dt 5 1.5 days (shown
as the thin solid line in the left-hand panel of Fig. 15d)
have a mean of 0.18, while the estimates for ds 5 2, dt

5 4 days have a mean of 0.27. The trade-off for this
locally high resolution is that the variability of the less
smooth estimates (0.17 standard deviation) is signifi-
cantly higher than that for the smoother estimates (0.1).

The preceding calculations provided an indication of
the spatial and temporal variability of scatterometer
sampling errors for a specific set of smoothing param-
eters (the half-spans dx, dy, and dt of the loess smoother
used here) and show how those errors depend on the
space–time autocorrelation of the wind field. Sampling
errors also depend on the degree of smoothing, that is,
upon the space–time smoothing parameters. To quantify

this dependence, relative sampling errors were calcu-
lated for estimates on a space–time grid, for spatial half-
spans from ds 5 18 to ds 5 48 and for temporal half-
spans ranging from dt 5 1 day to dt 5 15 days. The
space–time grid extended from day 30 to day 50 at daily
intervals and from 1508 and 1708W at 18 intervals along
108, 258, 408, and 508N. Based on the temporal and
spatial variation of the errors observed in Figs. 12–15,
we believe that this grid is sufficient to describe the
dependence of the space–time variation of sampling er-
rors on the degree of smoothing applied, for estimates
made over the study region. The space–time autocor-
relation function ry was used for this calculation. As
shown in Fig. 15, the errors associated with ry are al-
ways somewhat greater than those for the autocorrela-
tion function ru, and thus provide a conservative esti-
mate of the sampling errors for both wind components.
The results of this calculation are summarized in Fig.
16 where the means and standard deviations of the errors
are contoured as functions of ds and dt.

ERS has the largest and most variable errors. NSCAT
and ASCAT have similar mean errors, but ASCAT has
higher overall error variability than NSCAT. QuikSCAT
mean errors are less than those for both NSCAT and
ASCAT. For ds less than 38 and dt less than 4 or 5 days,
QuikSCAT errors are less variable than either NSCAT
or ASCAT, but outside of that range the standard de-
viation of the QuikSCAT errors is greater than those for
ASCAT and NSCAT. The mean errors for SeaWinds/
ASCAT are only marginally lower than those for
QuikSCAT, but the error standard deviation for the tan-
dem scenario is reduced by 0.02–0.03 overall. Quik-
SCAT/SeaWinds has the lowest error mean and standard
deviation, never exceeding 0.07 and 0.04, respectively.

For all six scenarios the mean and variability of the
relative sampling errors is more sensitive to the choice
of dt than to ds.

The local mean error minima and corresponding error
standard deviation maxima at the plot origins for
NSCAT, QuikSCAT, and SeaWinds/ASCAT are the re-
sult of the phenomenon described in Fig. 15d, for
QuikSCAT; locally dense sampling allows locally high
resolution of short timescales and correspondingly low
mean error, but high overall error variability.

5. Summary and conclusions

This work quantifies and compares sampling errors
in linear estimates of component wind fields derived
from various scatterometer datasets.

A simple simulation where NSCAT sampling was ap-
plied to ECMWF analyzed surface wind fields dem-
onstrated the magnitude and space–time heterogeneity
of the sampling errors that can be expected when con-
structing maps from a scatterometer dataset. Sampling
errors can be a significant fraction of the wind field
being mapped. The overall magnitude and variability of
the sampling errors change temporally and geographi-
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FIG. 16. Mean (left panels) and standard deviation (right panels)
of relative sampling errors calculated using ry at 18 intervals between
1508 and 1708W and at 1-day intervals over 20 days, at 108, 258, 408,
and 508N, plotted as functions of (isotropic) spatial and temporal
loess half-spans. (a) ERS, (b) NSCAT, (c) ASCAT, (d) QuikSCAT,
(e) SeaWinds/ASCAT, and (f ) QuikSCAT/SeaWinds. Additional
dashed-line contours are used when the contour interval is changed
for clarity.

cally. Increasing the amount of smoothing applied to
the simulated dataset generally reduces both the mean
and the variability of the sampling errors, in exchange
for the loss of locally high resolution.

With the exception of ERS, all single-scatterometer
scenarios examined provide nearly complete spatial
sampling within 48 h between the equator and 608N
(Fig. 5). The tandem pairs SeaWinds/ASCAT and
QuikSCAT/SeaWinds provide nearly complete spatial
data coverage on approximately daily and 12-h inter-
vals, respectively.

The temporal sampling characteristics of all six scat-
terometer scenarios considered here are complex and
geographically variable. The juxtaposition of the mea-
surement swaths results in distinctive burst sampling
patterns in time, characterized by sets of closely spaced
samples interspersed with longer data gaps (Fig. 6). The
duration of the bursts of closely spaced samples and the
duration of the gaps that separate them change with both

latitude and longitude, depending on the details of the
swath geometry and orbital characteristics of the space-
craft carrying the scatterometer. The mean revisit in-
terval (Fig. 7) provides an aggregate measure of the
temporal sampling provided by each scenario. Revisit
intervals vary with latitude and generally decrease with
increasing latitude. The mean revisit interval is an over-
ly simplistic characterization of scatterometer sampling
patterns. The distribution of revisit intervals may be
highly skewed and can change radically over scales as
short as 18 of latitude (Fig. 8).

Sampling errors are quantified in section 4 based on
the expected squared bias (ESB) of loess estimates. Be-
cause of the heterogeneous sampling patterns of the
scatterometers, ESB calculations on an extensive space–
time grid are required to describe the sampling errors.
To make this large set of calculations tractable, several
modifications to previous ESB calculations were de-
vised that allow more efficient evaluation of the basic
integral (6) defining the ESB. The usual implementation
of the loess smoother uses the tricubic weighting func-
tion. Simplification was achieved by using Gaussian
weights instead. The bias of the modified loess estimate
was calculated with respect to an ideal loess estimate,
rather than to the ideal low-pass filter used in earlier
studies. Finally, a functional form for the space–time
autocorrelation function was selected that both reduced
computational requirements and provided a reasonable
model for characterizing the second-order statistics of
component wind fields. The end result of these modi-
fications is a closed-form expression that allows exten-
sive application of the ESB as a measure of sampling
error.

The ESB calculated here is specific to the loess
smoother. Most interpolation algorithms act as low-pass
filters. To the extent that the transfer function of another
interpolation algorithm can be compared to that of the
loess smoother [e.g., by choosing the amount of smooth-
ing applied so that the half power point of the transfer
function matches that of (9)], these results are generally
applicable, given the autocorrelation functions assumed
here. The sampling errors calculated here do not apply
to interpolation methods that allow for propagating sig-
nals or various physically based assimilation schemes.

Maps of the relative sampling errors of loess estimates
at a given time show that the sampling errors vary tem-
porally and geographically in patterns that can be as-
sociated with the measurement swaths. Sampling errors
shift in time and depend on the amount of smoothing
applied. The existence of a general dependence of the
mean and variability of the sampling errors on latitude
is confirmed when the mean and variability of sampling
errors are calculated over time–longitude grids for a
range of latitudes. Comparing this result with the revisit
interval distributions (Fig. 8) shows that both the mean
and variation of the sampling errors are closely linked
to the temporal sampling.

The strong dependence of the sampling errors on the
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FIG. 17. Standard deviation versus mean of the sampling errors
calculated as in Fig. 16, assuming sh 5 5 m s21, for (a) high reso-
lution, ds 5 18, dt 5 2 days; (b) medium resolution, ds 5 28, dt 5 4
days; and (c) low resolution, ds 5 38, dt 5 12 days. E 5 ERS, N 5
NSCAT, A 5 ASCAT, Q 5 QuikSCAT, SA 5 SeaWinds/ASCAT, and
QS 5 QuikSCAT/SeaWinds.

details of the temporal sampling was further demon-
strated from Fig. 15. For ds 5 28 and dt 5 4 days, the
sampling error is not particularly sensitive to the spatial
scales imposed by the choice of autocorrelation func-
tion. There is, however, a small but noticeable reduction
of the sampling error when longer timescales are as-
sumed. The dependence of the sampling errors on the
degree of smoothing applied is summarized in Fig. 16,
which provides guidance for the degree of smoothing
to use when constructing large-area maps of component
winds.

A summary comparison of the various scatterometer
mission scenarios is provided by Fig. 17. For this dis-
cussion, we define ‘‘high resolution’’ as retaining space
and timescales shorter than 18 and 2 days (i.e., ds 5 18,
dt 5 2 days); ‘‘medium resolution’’ as retaining space
and timescales shorter than 28 and 4 days (ds 5 28, dt

5 4 days as in Figs. 12 and 13); and ‘‘low resolution’’
as retaining space scales and timescales shorter than 38
and 12 days (ds 5 38, dt 5 12 days as in Fig. 14). The
means and standard deviations of the relative sampling
errors for each scatterometer mission scenario were tak-
en from Fig. 16 (using ry ) and converted to absolute
errors by assuming (based on Fig. 11 and the discussion
in section 3c) sh 5 5 m s21. (As a test of the sensitivity
of these results to the assumed spatial decorrelation

scales, the error means and standard deviations for Fig.
17 were recalculated using rys and ry l. For all of the
points plotted, only small differences of less than a few
tenths of a meter per second occur, and hence the con-
clusions are unchanged.)

QuikSCAT, SeaWinds/ASCAT, and QuikSCAT/
SeaWinds all provide high-resolution maps with sam-
pling errors that are less than 1 m s21 in both mean and
standard deviation. Of the three, QuikSCAT/SeaWinds
is clearly superior. NSCAT has about the same overall
level of error variability as QuikSCAT, but 0.5 m s21

greater mean error. ERS and ASCAT are off the scale
of this plot (the mean and standard deviation for ASCAT
are 1.5 and 1.7 m s21, respectively, and those for ERS
are extremely large). At the medium resolution level,
maps derived from SeaWinds/ASCAT and QuikSCAT/
SeaWinds have errors similar in mean and standard de-
viation to the high-resolution case. Medium-resolution
sampling errors for ERS are quite high, nearly 3 m s21,
with a variability of 0.9 m s21.

With the exception of ERS, all of the scatterometer
scenarios can be used to make low-resolution maps with
mean errors below the 1 m s21 level with low (less than
0.5 m s21) error standard deviation. ERS can be used
to make low-resolution maps with fairly uniform errors
(error standard deviation of about 0.3 m s21) but higher
(1.7 m s21) mean error.

Figure 17 demonstrates the importance of the broad
spatial coverage and corresponding improved temporal
sampling provided by the single-swath SeaWinds in-
strument, as well as the improvement in temporal cov-
erage gained when two SeaWinds-type scatterometers
are combined in coordinated orbits. At the other ex-
treme, the poor performance of a single, narrow mea-
surement swath such as ERS is readily apparent.
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APPENDIX

ESB Calculations

a. Locally weighted regression smoothers

1) SMOOTHER WEIGHTS FOR THE DISCRETE CASE

Calculation of the ESB requires the smoother weights
aj from Eq. (3). Greenslade et al. (1997) described a
‘‘response method’’ for calculating the weights. Follow-
ing is a more straightforward analytical method.

Locally weighted regression provides an estimate
ĥ(x0) of h(x0) where ĥ(x) is a linear combination of M
basis functions qk(x),
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M

ĥ(x) 5 g q (x),O k k
k51

with coefficients gT 5 [g1, . . . , g M] selected to mini-
mize

M

2F(g) 5 w(\x̃ \){ĥ(x ) 2 g } ,O j j j
j51

where w is a nonnegative, monotonically decreasing
weighting function,

x 2 x y 2 y t 2 tj 0 j 0 j 0
x̃ 5 , , ,j 1 2d d dx y t

and dx, dy, and dt are the half-spans of the smoother.
Larger half-spans incorporate more data and result in a
smoother estimate.

Minimizing F with respect to g results in the linear
system Xg 5 h where

N

X 5 q (x )q (x )w(\x̃\), andOkl k j l j
j51

Th 5 w(\x̃ \)g q (x ), . . . , w(\x̃ \)g q (x ) .O Oj j 1 j j j M j[ ]
For locally weighted quadratic regression in three di-

mensions, M 5 10, and
2q 5 1, q 5 x, q 5 x , q 5 y,1 2 3 4

2 2q 5 y , q 5 xy, q 5 t, q 5 t ,5 6 7 8

q 5 xt, q 5 yt. (A1)9 10

Assuming without loss of generality that x0 5 0, it
follows that ĥ(0) 5 g1. Now,

M

21g 5 X h ,O1 1k k
k51

so, writing xk 5 wj 5 w(\x̃j\) and qjk 5 qk(xj),21X ,1k

N M

g 5 w x g g .O O1 j k jk j5 6j51 k51

This has the form of a linear estimator ĥ 5 S ajgj, with
smoother weights

M

a 5 w x q . (A2)Oj j k j
k51

2) CONTINUOUS CASE

We seek to compare the estimate given by (3) and
(A2) with the ‘‘ideal’’ case, h̄, defined to be the loess
estimate obtained from a continuous sampling of the
function h. Using the same M basis functions qk defined
in (A1), and again assuming that x0 5 0, and x̃ 5 (x/
dx, y/dy, t/dt), we seek the minimum of

`

2F(g) 5 w(\x̃\){ĥ(x) 2 h(x)} dx,E
2`

yielding a set of linear constraints Xg 5 h where

`

X 5 w(\x̃\)q (x)q (x) dx andkl E k l

2`

`

h 5 w(\x̃\)q (x)h(x) dx. (A3)k E k

2`

Defining xk as before,

` M

h 5 w(\x̃\) x q (x) h(x) dx.OE k k5 6k512`

Thus, h is a linear functional of h,

` `

h 5 a(x)h(x) dx 5 P*(s)H(s) ds,E E a

2` 2`

where

M

a(x) 5 w(\x̃\) x q (x), (A4)O k k
k51

is the continuous weighting function (analogous to the
smoother weights aj) and Pa is the Fourier transform
of a.

The coefficients xk depend on the matrix X defined
by (A3). Since w(\x̃\) is an even function of all three
variables, only those products of basis functions
qk(x)ql(x) that are even functions of x, y and t result in
nonzero integrals in (A3). For the basis under consid-
eration, there are 10,

2X 5 w(\x\) dx, X 5 x w(\x̃\) dx,20 E x E
2 2X 5 y w(\x\) dx, X 5 t w(\x̃\) dx,2 2y E t E
4 4X 5 x w(\x\) dx, X 5 y w(\x̃\) dx,4 4x E y E

4 2 2X 5 t w(\x\) dx, X 5 x y w(\x̃\) dx,4 2 2t E x y E
2 2 2 2X 5 x t w(\x\) dx, X 5 y t w(\x̃\) dx,2 2 2 2x t E t t E

comprising a sparse matrix that is easily inverted to yield
the xk.

3) THE GAUSSIAN WEIGHTING

In its usual form, the local weighted regression
smoother uses the tricubic weighting function:
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FIG. A1. Mean estimation measurement error versus mean sampling
error (a) high resolution, ds 5 18, dt 5 2 days; (b) medium resolution,
ds 5 28, dt 5 4 days; and (c) low resolution, ds 5 38, dt 5 12 days.
E 5 ERS, N 5 NSCAT, A 5 ASCAT, Q 5 QuikSCAT, SA 5
SeaWinds/ASCAT, and QS 5 QuikSCAT/SeaWinds. Measurement
errors calculated assuming independent errors are heavy type, those
based on the 100-km and 200-km decorrelation scales are shown as
medium and thin types, respectively. The dashed lines have slopes
of 1 and 1/2.

3 3(1 2 \x̃\ ) , if \x̃\ # 1
w (\x̃\) 5t 50, otherwise.

While this function has a number of properties that make
it an appropriate choice for a local regression smoother
(Cleveland 1979), it complicates both analytical and nu-
merical calculations. Another choice is the Gaussian
weighting function

22s\ x̃\w (\x̃\) 5 e ,G (A5)

where s is a parameter to be determined. With this
choice, much simplification is obtained. The continuous
weights in (A4) are defined by the separable function

22s \ x̃\e 5
1/3 2a (\x̃\) 5 p 2 s \x̃\ , (A6)G 1/35 6d d d s 2x y t

with a separable Fourier transform PG given by equation
(9) in section 3.

4) CALIBRATING THE GAUSSIAN SMOOTHER

The free parameter s in (A5) allows calibration of
the Gaussian-weighted smoother. Consider the ideal
low-pass filter PI [Eq. (7)] with unit wavenumber–fre-
quency cutoffs and the transfer function PG with unit
half-spans. Then the value of s that minimizes

`

2F(s) 5 \P (s) 2 P (s)\ ds, (A7)E I G

2`

provides a smoother that is closest in mean square to
an ideal low-pass filter with (dx, dy, dt) 5 (1/kc, 1/lc,
1/ f c). Direct minimization of (A6) yields s 5 4.70.

b. Efficient ESB calculations

Using the notation presented in section 3, and PG, the
transfer function for the ideal, Gaussian-weighted loess
smoother [Eq. (9)], Eq. (6) may be rewritten as

2 2E[(h 2 E[ĥ]) ]/sh

5 a a r(\x 2 x \)O j k j k
jk

`

i2p (kx 1ly 2 f t )j j j22 a e P*(s)S(s) dsO j E G
j 2`

` `

21 \P (s)\ S(s) ds. (A8)E E G

2` 2`

Here, S is the normalized power spectral density of h and
the Fourier transform of the autocorrelation function r,

2 21/3 2p \s̃\S(s) 5 p s s s ex y t

2 2 222 2s ls k s fyx t23 K 1 p 1 1 , (A9)5 1 2 1 2 1 2 6[ ]L L Lx y t

where s̃ 5 (sxk, syl, st f ), and

2 2 2s1 s syx tK 5 1 2 1 1 .1 2 1 2 1 2[ ]2 L L Lx y t

A necessary and sufficient condition for r to be positive
definite is that K be greater than 0, which obtains for
all of the examples used in this paper.

Both PG and S can be written as the sums of products
of even functions of k, l, and f , so that the integrals in
the second and third terms of (A8) are the sums of
products of one-dimensional integrals with the form

`
22n 2bxx e cos(ax) dxE

0

2Ïp a a
n5 (21) exp 2 H ,2n2n11 21 2 1 2(2b) 4b 2b
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where Hn(x) are the Hermite polynomials (Gradshteyn
and Ryzhik 1980). Given this analytical form of the
integrals in (A8), the largest computational burden lies
in the quadratic form constituting the first term of that
equation; the error estimates usually obtained from ob-
jective estimation schemes share this property.

c. Variance of the estimates

The calculations discussed in section 4 considered
only the effects of sampling errors. It is of interest to
assess the importance of measurement error contribu-
tions [Eq. (11)] to the total mean squared error [Eq. (1)].
Variances of the loess estimates studied here were cal-
culated as described in section 3d. For comparison with
the summary results for sampling errors shown in Fig.
17, Eq(11) was evaluated for loess estimates with
smoothing parameters ds and dt corresponding to the
high-, medium-, and low-resolution cases, on the same
space–time grid used to generate Fig. 17. The square
root of the variance was averaged over the grid to pro-
duce ‘‘mean estimation measurement errors.’’ Figure A1
shows a comparison of mean sampling errors with the
mean estimation measurement errors derived from the
three characterizations of the measurement errors, for
the three resolution levels.

Mean estimation measurement and sampling errors
become comparable in the high-resolution case, for
which the mean estimation measurement errors calcu-
lated assuming correlated errors are more than one-half
the magnitude of the mean sampling errors; for
QuikSCAT and the tandem missions, the mean esti-
mation measurement errors slightly exceed the mean
sampling errors (as in Fig. 17a, ERS and ASCAT are
not plotted in this figure). For the medium-resolution
case, the mean estimation measurement errors are great-
er than one-half of the mean sampling errors for cor-
related measurement errors for QuikSCAT, SeaWinds/
ASCAT, and QuikSCAT/SeaWinds. For the low-reso-
lution case, the mean estimation measurement errors are
all less than one-half of the mean sampling errors. Ex-
cept for the high-resolution case, it seems reasonable to
conclude that sampling error is generally the dominant

component of the total mean-squared error in maps of
scatterometer data.
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