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Abstract 

 
Gene regulatory networks are commonly used for modeling biological processes 
and revealing underlying molecular mechanisms. The reconstruction of gene 
regulatory networks from observational data is a challenging task, especially 
considering the large number of players (e.g. genes) involved and the small 
number of biological replicates available for analysis. Herein, we propose a new 
statistical method for estimating the number of erroneous edges in reconstructed 
networks that strongly enhances commonly used inference approaches. This 
method is based on a special relationship between correlation and causality, and 
allows for the identification and to removal of approximately half of all erroneous 
edges. Using the mathematical model of Bayesian networks and positive 
correlation inequalities we establish a mathematical foundation for our method. 
Analyzing existing biological datasets, we find a strong correlation between the 
results of our method and the commonly used false discovery rate (FDR) 
technique. Furthermore, simulation analysis demonstrates that with large 
networks our new method provides a more accurate estimate of network error 
than FDR. 

  



Introduction 

It is quite common, especially in biology, that in order to understand how systems 
transition from one state to another (e.g. from health to disease) scientists compare how 
parameters such as gene expressions, protein levels, or metabolite abundances differ 
between these states. One result of such a comparison is a list of parameters up- or down-
regulated (due to the increase or decrease of some numerical value attributed to the 
parameter) from the first state to the second. In case of gene expression, these alterations 
represent a consequence of the two key factors: first, the original stimulus (e.g. mutation 
or environmental perturbation) that underlies the transition of a biological system from 
one state to another; and the second factor, a biological process that drives regulatory 
relations between individual genes independently on the presence of the stimulus. In 
other words, regulatory relations in biological systems (as well as many other systems) are 
not generally functions of the state but are rather pre-determined by the biological role of 
parameters. 
Most frequently, the parameters like genes are not regulated independently from each 
other; rather, they make up regulatory networks. A common approach to the 
reconstruction of regulatory network structure is the inference of a correlation network 
built from parameters differentially abundant between two states. In particular, 
correlation (or, for the purposes of this paper, co-variation) networks are widely used in 
gene expression analysis (see, for example, Butte et al., 2000, Opgen-Rhein and Strimmer, 
2007, and references within).  Co-variation network inference works under the 
assumption that any edge (link) in a network, corresponding to a correlation between two 
parameters/nodes, is the empirical result of either direct or indirect causal relationships, 
unless the edge is erroneously drawn (i.e. the observed correlation is an artifact of 
statistical error). Thus, we hypothesized that in a co-expression network there may be a 
relationship between the sign of correlation (i.e. positive or negative) of two regulated 
genes and the direction of their change between the two states (i.e. up or down-
regulation). In this paper, we demonstrated the presence of this inter-dependence in 
different types of data, found that a departure from this relation reflects a proportion of 
erroneous edges in the regulatory networks, and developed a mathematical theory of this 
phenomenon.  
 

The concept of unexpected correlations 

In order to verify whether there is a relationship between the direction of gene regulation 
and the sign of correlation we used a gene co-expression network from our recently 
published paper on network analysis in cervical cancer (Mine and Shulzhenko et al., 2013). 



We felt that this network should provide excellent real data for this analysis, as it was 
constructed from a robust meta-analysis of five cancer gene expression datasets and thus 
validated by large, independent sources. This network contained 738 nodes with 490 up 
and 248 down-regulated between cancer and normal tissues. These nodes were 
connected by 3161 edges with 2882 representing positive and 279 negative correlations. 
Relating these two types of information, we observed a very strong association between 
the direction of gene expression change and the sign of correlation (Figure 1a). Positively 
correlated genes in ~98% cases had concordant increases or decreases in gene expression 
(up-up or down-down), and negatively correlated ones in ~92% of cases were regulated in 
opposite directions (up-down). At first glance we found surprising such a strong 
association and sought to further evaluate this phenomenon. Thus we focused on a part 
of this big network, which is a bi-partite network consisting of 626 correlations between 
gene-regulators and gene-targets (Mine et al., 2013). In this smaller network in which 
correlation links could more obviously correspond to causal links (because gene-regulators 
have changed their expression as a result of chromosomal aberrations (Supp Fig. S1)), we 
found similar association between direction of correlation and gene regulation (Figure 1b).  
Thus we turned to basic principles connecting correlation with causality to explain this 
observation. 
Indeed, it is known that causal effects follow Reichenbach’s principles (Reichenbach, 1956; 
Pearl, 2009) which imply that if there is a correlation between expression of two genes g1 
and g2, provided that it is not a statistical artifact, at least one of three must hold: 1) g1 
regulates g2; 2) g2 regulates g1; or 3) there is common cause (perhaps another gene, g3) 
that regulates (directly or indirectly) both g1 and g2. Thus, in the particular situation under 
discussion, namely a system of two states (e.g. health and disease) with two types of 
regulation (stimulation and inhibition), we propose a scheme in which we associate the 
sign of correlation (+/-) of each network edge with the direction (up/down) of gene 
regulation between system states. Sign association follows a simple set of rules: 
• If there is a correlation between two “up” or “down” regulated genes (as in the top left 
panel in Figure 1c), the sign associated with the link is positive. 
• If there is a link between an “up” regulated gene and a “down” regulated gene (as in 
the bottom left panel in Figure 1c), the sign associated with the link is negative. 

The whole set of possible combinations of gene regulations and correlations are given in 
(Figure 1d). We hypothesize that correlations whose sign disagrees with the 
corresponding association are erroneous, i.e. they are the result of statistical error rather 
than causal relationships; or, they can be the results of an external/indirect influence, 
which is causally irrelevant for transitions between the biological system states. We will 
hereafter call such correlations unexpected (Figure 1d), and their proportion among all 



correlations in a network we abbreviate as PUC (the Proportion of Unexpected 
Correlations).  
According to the Reichenbach's causality principles (Reichenbach, 1956; Pearl, 2009), in 
the system described above, positively correlated genes should mutually increase or 
decrease in expression, and negatively correlated ones should change their levels in the 
opposite directions. A deviation from this behavior (assuming, again, that the mechanisms 
regulating these genes are not functions of state), suggests that a particular correlation 
between the expression levels of two genes is not due to a causal link. 

To confirm that association between the sign of correlation and the direction of change in 
gene expression (Figure 1a-b) observed in cervical cancer is related to causality, we 
employed a basic principle claiming that a result of experimental perturbation represents 
a bona fide causality relationship. In the same cervical cancer work, we had performed 
siRNA perturbation of gene LAMP3 (GSE29009), which was one of the key gene-drivers of 
the antiviral subnetwork. Our theoretical prediction would be that genes whose 
expression is affected by perturbation of the gene-driver (i.e. LAMP3) in vitro and 
correlated to the expression of the gene-driver in the original cancer data should present 
correlations of the expected sign. For example, if a gene was down-regulated by LAMP3 
siRNA, it is expected to be positively correlating to LAMP3 in the cancer gene expression 
data and vice versa (i.e. if gene is up after siRNA treatment correlation should be 
negative). Thus we analyzed if the direction of regulation of genes affected by LAMP3 
siRNA in the cell line was corresponding to the sign of correlation between each gene and 
LAMP3 in four cervical cancer datasets. In four independent cancer datasets, we observed 
that almost all correlations between LAMP3 and genes whose expression was affected by 
LAMP3 siRNA had correlation signs concordant to the directions of gene regulations due 
to siRNA treatment (Figure 1e). Thus, this data provides the additional experimental 
support that causality underlies interdependence between sign of correlation and 
direction of gene regulation. 

Mathematical formalism relating causation and the sign of correlation  

Encouraged by these results, to better understand the properties of this new metric (PUC) 
we went further to establish a mathematical framework for its application. Although 
concept of PUC can be formulated and tested empirically without mathematical theory, a 
rigorous formalization of PUC is necessary to provide a theoretical basis for its application 
and to establish potential limits for its generalization if there is any. Our hypothesis that 
unexpected correlations are erroneous can be rigorously proven for systems that 
transition between two stable states with two types of regulations between parameters: 
stimulation and inhibition. Herein, as an illustration we provide a proof of our hypothesis 



in the bounds of a simple mathematical model, namely that of Bayesian networks (Pearl, 
2009) with two equilibrium states and linear dependences between nodes (the proof for 
more general case is provided in Section II.2 of the Supporting Material). In order to 
formulate our results we need to introduce some mathematical notation. 

Consider a regulatory network directed without loops (i.e. a directed acyclic graph, DAG) 
represented by a graph  𝐺 = (𝑉,𝐸). Any edge 𝑒 ∈ 𝐸  is an ordered pair of vertices 
(nodes) 𝑒 = (𝑣,𝑤) ∈ 𝑉2. The order of an edge represents the direction of causality in a 
regulatory network (that is, an order (𝑣,𝑤) implies that 𝑣 regulates 𝑤). For any node 𝑣 we 
associate the set of its parents as 𝑝𝑎(𝑣) ≔ {𝑢 ∈ 𝑉: (𝑢, 𝑣) ∈ 𝐸}.  We define the set of 
grandfathers 𝑔𝑓(𝐺) for the graph 𝐺 as the set of all nodes without parents: 𝑔𝑓(𝐺) ≔
{𝑣 ∈ 𝑉:𝑝𝑎(𝑣) = ∅}. 

Let graph 𝐺 be weighted, meaning that every edge 𝑒 = (𝑣,𝑤) ∈ 𝐸 has an associated label 
(weight) 𝑐𝑣𝑤 ∈ ℝ. With every node 𝑣 ∈ 𝑉  we associate a random variable  𝑀𝑣 . The 
distribution of random variables is given by their respective structural linear equations: 

𝑀𝑣 = � 𝑐𝑤𝑣
𝑤∈𝑝𝑎(𝑣)

𝑀𝑤 + 𝜀𝑣 

Here 𝜀𝑣 are mutually independent and identically distributed with mean 0 and variance 
𝜎2. We suppose homoscedasticity (𝑉𝑎𝑟(𝜀𝑣) = 𝜎2, variance is same for all vertices 𝑣) for 
simplicity, to make the proof of Lemma 1 more clean and clear. The proof is also 
straightforward if we allow heteroscedasticity but with uniformly bound variances: 
∃ 𝜎2:𝑉𝑎𝑟(𝜀𝑣) ≤ 𝜎2 ∀𝑣 ∈ 𝑉. 

In the previously discussed biological framework, a graph 𝐺 represents the entire gene 
expression network. A node 𝑣 represents some gene, which has an expression level 𝑀𝑣. 
An edge 𝑒 = (𝑣,𝑤) represents a causal link between two genes 𝑣 and 𝑤 in which the 
expression of 𝑤 is regulated by 𝑣. The sign of 𝑐𝑣𝑤 reflects the direction of regulation: a 
negative (positive) sign corresponds to inhibition (stimulation).  The parents of 𝑣 are 
simply all genes which regulate 𝑣 and the grandfathers of 𝐺 are the primary regulators of 
the entire network, i.e. the genes at the top of the regulatory chain. 

For simplicity, we consider a regulatory network with only one grandfather (|𝑔𝑓(𝐺)| =
1), denoted by the vertex 𝑜. The case with more than one grandfather is covered by the 

general model considered in Supporting Material, see Section II.2. Let 𝑀𝑣
(𝑃) and 𝑀𝑣

(𝑄) 
denote the expressions of node 𝑣 in two distinct equilibrium states 𝑃 and 𝑄. We will use 

the notation  𝑋𝑣
(𝑆)  to denote a variable 𝑋  associated with node 𝑣 ∈ 𝑉  in the state 

𝑆 ∈ {𝑃,𝑄}. For any 𝑣 we denote the changes in expression between states as ∆𝑣=



𝔼𝑀𝑣
(𝑃) − 𝔼𝑀𝑣

(𝑄) , where 𝔼  denotes the expectation value (mean) of corresponding 
variable. 

The mathematical definition of expected and unexpected links, given heuristically in the 
introduction, is formally expressed in the following definition. 

Definition. An edge 𝑒 ∈ 𝐸 is called an expected link between nodes  𝑣,𝑤 ∈ 𝑉 if and only if 

∆𝑣∆𝑤𝑐𝑜𝑣�𝑀𝑣
(𝑃),𝑀𝑤

(𝑃)� > 0 and ∆𝑣∆𝑤𝑐𝑜𝑣 �𝑀𝑣
(𝑄),𝑀𝑤

(𝑄)� > 0. Any edge which is not an 

expected link constitutes an unexpected link. 

This definition effectively states that the directions of regulation of two genes between 
two states should agree with the sign of the correlation between them within each state. 

First we proved the lemma that states that unexpected signs of correlations are result of 
noise (the proof is given in Section II.1 of the Supporting Material). 

Lemma 1. For any finite DAG with linear structural equations there exists some 𝜎0 such 
that if 𝑉𝑎𝑟(𝜀𝑣) < 𝜎02 for all 𝑣 ∈ 𝑉 then there are no unexpected links. 

Another very important property of the concept of unexpected links is that PUC 
represents and identifies approximately half of all erroneous correlations: 

2𝔼(𝑃𝑈𝐶) ≈ 𝔼(𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑙𝑖𝑛𝑘𝑠). 

A formal proof of this statement is given in Section III.3 of the Supporting Material, as well 
as an explanation for why this makes intuitive sense. The basic idea lies in the observation 
that false edges are, in principle, equally likely to satisfy the conditions for expected 
correlation as they are to satisfy the conditions for unexpected correlations. 

Unexpected correlations reflect the noise in real and simulated networks. 

Our mathematical analysis proved that in regulatory networks unexpected correlations 
must have appeared as a result of noise within the network and that the proportion of 
unexpected correlation thus reflects the noise level in a network. 

Mathematical models are restricted by the domain of their assumptions, making them 
somewhat limited in applicability. Thus, although we have empirically observed a small 
PUC in a high confidence cervical cancer network (Figure 1a-b), we wanted to verify 
whether this correspondence would still hold in the gene regulation of an entirely 
different biological process.  For this we chose a more mundane physiological process 
than cancer: we analyzed the gene expression network perturbed as a result of 
colonization of intestinal tissue with normal microbiota (i.e. the mix of microorganisms 



that live in the gut). In these data, we again found that a low FDR threshold corresponds 
to a low PUC. Furthermore, PUC is highly correlated with FDR (Figure 2e), which provides 
additional support for our prediction that PUC, similarly to FDR, quantitatively reflects 
network error.  

An important question, however, is whether PUC brings any advantage over the standard 
approach to measuring the proportion of erroneous edges in a reconstructed regulation 
network (i.e. FDR). Real data makes such a comparison difficult, because though both 
methods of analysis will return values for network error, there is not necessarily any 
obvious way to determine which is more accurate; i.e. in real data, the “gold standard” 
network is not known. 

To investigate the behavior of PUC in a “controlled environment” we simulated Bayesian 
networks as a model of gene regulation. In order to compare the effectiveness of PUC and 
FDR, two regulatory networks are constructed and simulated independently, and both 
networks' node expression levels combined into one data set. In a correlation network 
constructed from the simulated data, any correlations (link) between nodes from 
independent networks are known to be erroneous (Figure 2a). This design allows for a 
true measure of network error against which to compare PUC and FDR analysis results.  

In order to determine which method (FDR or PUC) better quantifies error, we look at all 
three measures of error (FDR, PUC, and the true error) and compare the accuracies of FDR 
and PUC. Simulation results demonstrate that PUC is more accurate than FDR in 
estimating true error, although there is a strong correlation between the two metrics 
(Figure 3b).  

The FDR family of methods is the most popular procedure for large-scale p-value 
correction for multiple hypotheses (Benjamini & Hochberg, 1995, 2000; Genovese and 
Wasserman; see also Efron et. al. and Storey 2002, 2003). All these FDR methods, 
however, ignore the dependence structure between hypotheses, which leads to the fact 
that FDR is an overly conservative approach (i.e. it overestimates the number of false 
positives).  

In the case of regulatory networks, each edge constitutes a hypothesis; interdependency 
of regulatory network hypotheses manifests in indirect regulation between genes. Indeed, 
this is exactly the case with co-variation networks, in which it is possible to find numerous 
indirect pathways with only a few direct links.  

Using PUC as a measure of error, however, does not require any assumption of hypothesis 
independence. PUC may thus be more accurate than FDR for error estimation in co-
variation networks with a large number of interconnected nodes.  The “degree of 



dependency” between hypotheses also depends on the size and number of sub-networks 
that compose a network. A network made up of twenty sub-networks consisting of twenty 
nodes each should have a lower degree of hypothesis interdependency than a single 
network consisting of four hundred nodes lacking any well-defined sub-networks. 

In order to catch this effect we simulated various networks with 400 nodes in disjoint sub-
networks, each with an equal number of nodes (for example, 20 disjoint sub-networks 
with 20 nodes each). In agreement with our expectations, we found in simulation analyses 
that FDR initially provides an accurate estimate of real false positives for small networks 
(approximately 20-50 nodes, Figure 3c), but diverges from true error as the sizes of 
disjoint sub-networks grow. In contrast, the accuracy of PUC in reflecting network error 
seemed to be independent of network size.  We obtained similar results (Figure 3d) by 
using another version of FDR which was designed to correct for hypothesis 
interdependency – Benjamini-Yekutieli, FDR-BY (Benjamini and Yekutieli, 2001).  

PUC in a non-biological system 

The fact that we could mathematically prove the relationship between unexpected 
correlations and network error suggests that this principle could be widespread beyond 
gene interactions in various biological systems. As a proof-of-concept of PUC’s generality, 
we turned our attention to economics. The justification for the choice of subject relates to 
the presumption that economy, similarly to biology, is governed by cause-effect 
relationships and, by extension, can be described by regulatory networks.  We analyzed 
1503 parameters (retrieved from World Bank economic databases) for the year 2008 in 
193 countries in such areas as business, education, health, etc. Parameters with bimodal 
distributions (such as expenditure on primary education as a percent of GDP per capita) 
defined distinct states of economic networks for any given country. As expected, these 
networks also demonstrated a high concordance between the network errors given by 
PUC and FDR (Figure 2f, Figure S2).  This result supports the idea that the concept of 
unexpected correlations can be extended to a large variety of causal networks and that 
measurement of the proportion of unexpected correlations (PUC) can improve network 
analysis in many different fields of science. 

Estimating error using PUC 

The entire procedure of PUC for calculating network error is as such: first, all correlations 
in a differential expression list are ranked by p-value. A network is constructed with edges 
consisting of correlations within an arbitrary p-value threshold (e.g. 0.01). Unexpected 
links are identified, counted, and removed from the network. The final measure of error 𝛼 
in the remaining network is given by 𝛼 =  𝑢/(𝑡 − 𝑢), where 𝑡 and 𝑢 are respectively the 



numbers of total and unexpected links in the network prior to removal of unexpected 
links. The reason for this formula is explained in the last paragraph of mathematical 
formalism section, and has to do with the fact that the number of unexpected links in a 
network is approximately equal to half of the total number of false links. 

Discussion 

The growth of molecular biology has advanced such that we can measure the expression 
of thousands of genes simultaneously. Simply measuring the expression of multiple 
individual genes, however, is insufficient to describe a systems issue such as complex 
diseases. To relate gene expression to physiological states (e.g. disease) and other 
variables in an organism’s environment we utilize gene expression networks. These 
networks enable more intelligent identification of molecular subtypes of diseases and 
molecular targets for treatment. The reconstruction of gene expression networks, 
however, is not easily accomplished. Constructing reliable gene expression networks with 
current methods requires obtaining large data sets and/or discarding sizeable portions of 
data to reduce false positive deductions. 

Although the False Discovery Rate (FDR - Benjamini-Hochberg, see Benjamini and 
Hochberg, 1995) is the most popular multiple hypothesis correction method, its 
application for network inference is a conservative procedure and makes the often 
unfitting assumption of the independence between correlations in gene networks. There 
are less popular versions of FDR, for example Benjamini-Yekutieli (see Benjamini and 
Yekutieli, 2001), which take into account various dependence structures between the 
hypotheses under consideration, but the usage of this did not demonstrate any significant 
advantage over PUC (see Figure 2d).  Consequently, these corrections tend to have a high 
rate of false negative discovery (i.e. low power) and require vast sample sizes in order 
attain desirable degrees of certainty about reconstructed networks. There is thus a critical 
need for more powerful methods of estimation of false positive connections between 
genes in co-expression networks. 

In this study we have revealed and mathematically proved a new feature of co-expression 
networks. This feature is based on the notion that any correlation has causal and noise 
components. In the case that causal components prevail over noise, the sign of a 
correlation between two genes should be related to their up- or down- regulation of the 
genes between two states (Figure 1). We first observed this relation empirically in gene 
expression datasets (see for example Skinner et al. 2011; and Mine et al., 2013), and 
subsequently in macroeconomic data (see Figure 2f and Figure S2). The observation of this 
network feature (relation between sign of correlation and direction of change) in data of 



such a different nature (biology and economics) suggests that this relation is a universal 
property of regulatory networks. 

We proposed using this relation for identifying false connections in co-variation networks, 
increasing network accuracy, an estimating total network error. This approach 
demonstrates clear advantage over the classic method (FDR) not only by providing better 
estimates of error in large reconstructed networks, but also by allowing the removal of 
approximately half of all erroneous edges. The fact that PUC demonstrates similar 
behavior to standard methods of analysis (i.e. PUC has a strong correlation with FDR) in 
both real and simulated Bayesian networks further supports the use of this adopted 
modeling approach. Indeed, certain questions can only be answered using a modeled 
system. We had to use simulated networks where we know the exact number of false 
links to compare FDR and PUC. 

The identification of unexpected correlations has two primary impacts. Firstly, it provides 
a new method to estimate the proportion of erroneous links in a network. Secondly, it 
allows for the removal of approximately half of the erroneous edges in the network 
(namely, those that are unexpected), decreasing their proportion by a factor of two and 
thereby improving the overall accuracy of the reconstructed network. The final value of 
network error consists of an estimated proportion of remaining false positive correlations.  

The concept of expected and unexpected correlations that we introduced is closely 
related to the concept of monotone causal effects and the covariance between them 
(T.J.VanderWeele and J.M.Robins, 2010). The rules we proved for linear relations should 
therefore hold for any monotone relationships; this idea is expanded in Section II.2. of the 
Supporting Material, and the framework of PUC extended to a broader class of networks 
than those mentioned thus far. 

We must also address how non-monotonicity affects the notion and application of 
unexpected correlations. The concept of non-monotonicity can be exemplified for our 
problem as different types of relationships in two network states, such as a negative 
correlation between parameters in one biological state and a positive correlation in 
another. In such cases, despite violation of monotonicity, we expect unexpected 
correlations to arise primarily due to noise, rather than the change in relationships. 
Nonetheless, we demonstrated (see Section II.4. of the Supporting Material) that there is 
no evidence for non-monotonicity to suggest that these exceptionally rare non-erroneous 
correlations are in fact responsible for the observed changes in gene expression between 
states of a biological system. Therefore, because the ultimate goal of network inference is 
actually to model and understand the transition of biological system from one state to 
another, we can safely remove these unexpected correlations from the reconstructed 



network for independent reasons (i.e. that they do not have causal contribution to system 
state transition). 

We believe that this work, besides revealing a new feature of regulatory networks, 
introduces an entirely new way of dealing with error in their reconstruction. Indeed, 
statistical methods employed for such problems normally estimate an error, but cannot 
detect erroneous edges. We propose a method that besides (according to simulations, 
potentially superior) error estimation allows for identification and removal of 
approximately half of total network error. Thus, the identification and removal of 
unexpected correlations decreases the proportion of irrelevant and erroneous 
connections and strongly increases the power of network inferences.  
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Figure 1: Sign of correlation corresponds to the direction of change in regulatory networks. a) percentage of  positive and negative 
correlations for pairs of up-regulated (up) and down-regulated (down) genes observed in the network from Mine et al., 2013; b) 
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of expected and unexpected connections between LAMP3 and other differentially expressed genes in cervical cancer 
corresponding to genes regulated after knockdown of LAMP3 in four datasets: Biewenga (GSE7410), Pyeon (GSE6791), Zhai 
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Figure 2. Comparison of PUC and FDR.  a) two regulatory networks are simulated independently, then both networks' node 
expression levels combined into one data set. In a correlation network constructed from the simulated data, any correlations (link) 
between nodes from independent networks are known to be erroneous; b) Simulations suggest that PUC more accurately reflects 
network error than FDR (Benjamini-Hochberg, FDR-BH) as network size grows; c) PUC more accurately reflects network error than 
the FDR-BH (c) or its variation with multiple hypothesis correction called FDR Benjamini-Yekutieli (FDR-BY); d) when a network 
consists of disjoint sub-networks of equal size; e) PUC correlates with FDR in gene expression; and f) macroeconomic data. 
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Supporting Material: 

I. Experimental procedures 

I.1. Statistically significant correlations between differentially expressed genes (DEGs) 
show expected signs  

 In our recent study (Nature Commun. 2013;4:1806) we have shown that key drivers of 
cervical carcinogenesis are located in regions of frequent chromosomal aberrations and 
that these genes cause most of the alteration in gene expression in cervical cancer. 
Therefore, in order to evaluate whether statistically significant correlations between DEGs 
which result from known causal relations follow our prediction we performed the 
following analysis: 

First, we selected two groups of genes from DEGs discovered in our previous study: 1) 
genes in which it has been determined that chromosomal aberrations are responsible for 
the change in regulation; and 2) genes located in regions in which aberrations are rare, 
defined by FqG – FqL between -0.1 and 0.1  (Figure S1). Next, we analyzed gene co-
expression in tumors samples in order to find correlations between those two groups of 
DEGs. We found 626 correlated gene-gene pairs with FDR 5%. The results provided 
support to our hypothesis that significant correlations should have “expected” signs. 
Indeed, 95% (594 of 626 total pairs) of significant correlations had expected signs. 

(a)  

 

(b)  

 

Figure S1: Genes directly regulated by chromosomal aberrations can also in turn regulate genes located outside of the 
aberrations. (a) Genes regulated by chromosomal aberrations in the expected direction (located in the regions 
𝐹𝑞𝐺 − 𝐹𝑞𝐿 <  −0.2 or 𝐹𝑞𝐺 − 𝐹𝑞𝐿 > 0.3) were considered as potential regulators, and genes located within the regions 
of very rare aberrations (|𝐹𝑞𝐺 − 𝐹𝑞𝐿| ≤ 0.1) were considered to be potential targets. The green (red) line represents 
up-regulated (down-regulated) genes. (b) The reconstructed  regulatory  network  with  correlations  in agreement with  
gene  expression. The two green (red/purple) circles are made of up down-regulated (up-regulated) nodes, the middle 
(side) circles are made up of targets (regulators), and the black (cyan) lines represent positive (negative) correlations. 
 



 
II. Theoretical basis. 

Here we provide some formal definitions of concepts used in the paper and all necessary 
proofs.  This section consists of four parts: 1) we introduce the mathematical machinery 
for PUC using Bayesian networks; 2) we generalize the previous formalism to handle a 
broader set of cases; 3) we demonstrate that PUC reflects half of total network error; and 
4) we address concerns with network non-monotonicity. 

II.1. PUC on Bayesian networks. 

In order to apply the new concept of noise estimator we use Bayesian Networks as a 
convenient model for gene expression. Let 𝐺 = (𝑉,𝐸)  be some network, which is  
directed acyclic graph (DAG). Any edge 𝑒 ∈ 𝐸 is an ordered pair of vertices 𝑒 = (𝑣,𝑤): and 
direction of edge is from the first vertex 𝑣 to the second vertex 𝑤. We assume that the 
graph is weighted graph – any edge 𝑒 = (𝑣,𝑤) has its labels (weight), 𝑐𝑣𝑤 , which is some 
real number 𝑐𝑣𝑤 ∈ ℝ . For any node 𝑣 we associate the set of parents of the node 𝑣:  

𝑝𝑎(𝑣) ≔ {𝑤 ∈ 𝑉: (𝑤, 𝑣) ∈ 𝐸}       ( 1 ) 

We define the set of grandfathers for the graph 𝐺: 

𝑔𝑓(𝐺) ≔ {𝑣 ∈ 𝑉:𝑝𝑎(𝑣) = ∅}        ( 2 ) 

With any node (gene) 𝑣 ∈ 𝑉 we associate the random variable (gene expression) 𝑀𝑣. The 
random variables satisfy the following linear relations (structure equations): for any 
𝑣 ∉ 𝑔𝑓(𝐺) 

𝑀𝑣 = ∑ 𝑐𝑤𝑣𝑀𝑤𝑤∈𝑝𝑎(𝑣) + 𝜀𝑣,         ( 3 ) 

where 𝜀𝑣  are i.i.d. random variable (intrinsic noise) with mean 0 and variance 𝜎2 . 
Moreover, for simplicity we suppose that there exists only one grandfather |𝑔𝑓(𝐺)| = 1 
and let us denote it as a vertex 𝑜.  

A path 𝜋(𝑣,𝑤)  of length 𝑛  from a vertex 𝑣  to a vertex 𝑤  is a sequence of edges 
𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1), 𝑖 = 1, … , 𝑛 − 1 , with 𝑣1 = 𝑣  and 𝑣𝑛 = 𝑤 . The weight of the path 
𝑊(𝜋(𝑣,𝑤)) is the product of weights of edges from this path: 

𝑊�𝜋(𝑣,𝑤)� ≔ ∏ 𝑐𝑣𝑖,𝑣𝑖+1𝑖          ( 4 ) 

Let Π(𝑣,𝑤) be the set of all paths connecting nodes 𝑣 and 𝑤. And let 

𝑊(𝑣,𝑤) ≔ ∑ 𝑊�𝜋(𝑣,𝑤)�𝜋∈Π(𝑣,𝑤)         ( 5 ) 



The graph coupled with expressions we consider as a model of regulatory signaling paths 
system. The distribution of expressions within the system is determined by the topology 
of the graph, weights and the distribution of expressions of grandfathers.  

For example, let 𝑜 be the grandfather vertex and 𝑀𝑜
(𝑃) and 𝑀𝑜

(𝑄) its expressions in these 
two different states. Denote by 𝑑2,𝑑 the variance and standard deviation for grandfather 
expression in two states, and suppose that they do not depend on the state: 𝑑2 ≔

𝕍ar�𝑀𝑜
(𝑃)� = 𝕍ar �𝑀𝑜

(𝑄)�. Denote the mean changes in expression of grandfather´s gene 

as ∆𝑜= 𝔼𝑀𝑜
(𝑃) − 𝔼𝑀𝑜

(𝑄). Expression for any non-grandfather vertex 𝑣 can be expressed for 
any state 𝑆 ∈ {𝑃,𝑄} by the formula:  

𝑀𝑣
(𝑆) = 𝑀𝑜

(𝑆)𝑊(𝑜, 𝑣) + ∑ 𝜀𝑤
(𝑆)𝑊(𝑤, 𝑣)𝑤∈𝑉\𝑜       ( 6 ) 

The mean change in the expression of a gene 𝑣 ∈ 𝑉\𝑜 is given by: 

∆𝒗≔ 𝔼𝑀𝑣
(𝑃) − 𝔼𝑀𝑣

(𝑄) = ∆𝑜𝑊(𝑜, 𝑣).        ( 7 ) 

Moreover, for any 𝑆 ∈ {𝑃,𝑄}: 

𝑐𝑜𝑣�𝑀𝑣
(𝑆),𝑀𝑤

(𝑆)� = 𝑑2𝑊(𝑜, 𝑣)𝑊(𝑜,𝑤) + 𝜎2 ∑ 𝑊(𝑣′, 𝑣)𝑊(𝑣′,𝑤)𝑣′∈𝑉\𝑜   ( 8 ) 

Definition. We say that a pair of genes 𝑣,𝑤 ∈ 𝑉 satisfy expected correlation inequality if 
and only if 

∆𝑣 ∆𝑤 𝑐𝑜𝑣�𝑀𝑣
(𝑃),𝑀𝑤

(𝑃)� ≥  0, ∆𝑣 ∆𝑤 𝑐𝑜𝑣�𝑀𝑣
(𝑄),𝑀𝑤

(𝑄)� ≥  0   ( 9 ) 

If (9) holds then we say that the two gene expressions 𝑀𝑣
(𝑃),𝑀𝑤

(𝑃) or 𝑀𝑣
(𝑄),𝑀𝑤

(𝑄) have 
expected correlations. If one or both expected correlations inequalities are not satisfied, 

we say that 𝑀𝑣
(𝑃),𝑀𝑤

(𝑃) or 𝑀𝑣
(𝑄),𝑀𝑤

(𝑄) have unexpected correlations. 

Note that in the considered model, by (8) the co-variations in (9) do not depend on a 

state: 𝑐𝑜𝑣�𝑀𝑣
(𝑃),𝑀𝑤

(𝑃)� =  𝑐𝑜𝑣�𝑀𝑣
(𝑄),𝑀𝑤

(𝑄)�. This independence means that we can use 

co-variation only in one state in our definition. In this case the following statement takes 
place. 

Lemma 1. For any finite DAG network with linear relations between variables there exists 
some 𝜎02 such that for any 𝜎2 < 𝜎02 there are no unexpected correlations into the network. 

Proof. Direct from formulas (7), (8). By definition (9) and by representations (7), (8) we 
have: 



∆𝑣 ∆𝑤 𝑐𝑜𝑣�𝑀𝑣
(𝑃),𝑀𝑤

(𝑃)� =

∆𝑜2𝑊(𝑜, 𝑣)𝑊(𝑜,𝑤)(𝑑2𝑊(𝑜, 𝑣)𝑊(𝑜,𝑤) + 𝜎2 ∑ 𝑊(𝑣′, 𝑣)𝑊(𝑣′,𝑤)𝑣′≠𝜊 ) =
∆𝑜2𝑑2𝑊2(𝑜, 𝑣)𝑊2(𝑜,𝑤) + ∆𝑜2𝜎2𝑊(𝑜, 𝑣)𝑊(𝑜,𝑤)∑ 𝑊(𝑣′, 𝑣)𝑊(𝑣′,𝑤)𝑣′≠𝜊  ( 10 )  

Here the first term is necessarily positive and the second can be made arbitrarily small by 

choice of 𝜎2. Thus ∆𝑣 ∆𝑤 𝑐𝑜𝑣�𝑀𝑣
(𝑃),𝑀𝑤

(𝑃)� can always be made positive (implying that 

there are no unexpected correlations) by a choice of a sufficiently small variance 𝜎2. This 
statement is precisely Lemma 1. 

The formula (8) shows that any link/correlation between two nodes in a network can be 
represented as a sum of two parts: causal propagation from causal node and noise 
propagation part: 

𝐶𝑜𝑣�𝑀𝑣
(𝑆),𝑀𝑤

(𝑆)� = 𝑑2𝑊(𝑜, 𝑣)𝑊(𝑜,𝑤)�������������
𝑐𝑎𝑢𝑠𝑎𝑙 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛

+ 𝜎2 ∑ 𝑊(𝑣′, 𝑣)𝑊(𝑣′,𝑤)𝑣′≠𝑜�������������������
𝑛𝑜𝑖𝑠𝑒 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛

   ( 11 ) 

Here, it is easy to see that if the grandfather variance 𝑑2 increases, then the causal 
propagation will determine the sign of the covariance after some threshold. It means that 
it determines a link to be expected or unexpected.  

Moreover, Lemma 1 says that if we observe in such regulation networks (DAGs with linear 
relationships between variables) unexpected correlations, it means that they appeared as 
a result of noise propagation within the network. Thus, the proportion of unexpected 
correlation reflects the noise level in a network (to the extent to which this mathematical 
framework, or that generalized in Section II.2 below, accurately reflects the system being 
modeled). 

Note 1. The concept of expected correlations was also observed in VanderWeele and 
Robins, 2010, as a rule governing the relationship between monotonic links and the sign of 
covariance between variables.  

Note 2. The linear relations between variables can be generalized: the expression 
𝑋𝑣 = 𝑓𝑣�{𝑋𝑣′}𝑣′∈𝑝𝑎(𝑣);  𝜀𝑣�, where 𝑓𝑣 is a monotone function, and  𝜀𝑣 is internal network 
noise. If structural functions are monotonic function, then the lemma holds also. 

Estimation of noise. Error estimation is based on the following: if two genes belong to two 
independent subnetworks (see Figure 2a), then the correlation between their respective 
expression levels has to be equal to 0. Observable correlations, however, can be 
significantly different from 0 due to noise, in which case the observable correlation is 
positive (or negative) in roughly 50% of the cases (see formula (22)). On average, then, 
half of all random correlations between any pair of genes from unrelated subnetworks can 



be classified as unexpected, as in (9). Thus 2 ∙ 𝑃𝑈𝐶 can be used as an estimate of total 
error. 

Moreover, it is possible to prove for tree like graphs that within one network the noise 
propagation (see the formula (12)) has the same property as stated in formula (22). 

Indeed, the representation (6) means that any variable 𝑀𝑣
(𝑆) can be decomposed into the 

causal component 𝑋𝑜
(𝑆)𝑊(𝑜, 𝑣) and the noise component 𝜉𝑣

(𝑆): = ∑ 𝜀𝑤
(𝑆)𝑊(𝑤, 𝑣)𝑤∈𝑉\𝑜 . 

Then the covariance between 𝜉𝑣
(𝑆)  and 𝜉𝑤

(𝑆)  can be calculated exactly (compare with 
formula (10)) 

𝑐𝑜𝑣�𝜉𝑣
(𝑆), 𝜉𝑤

(𝑆)� = 𝜎2 ∑ 𝑊(𝑢, 𝑣)𝑊(𝑢,𝑤)𝑢∈𝑉 .      ( 12 ) 

If 𝑐𝑣𝑤 are mutually independent, identically distributed, with positive probabilities for 
being positive or negative, then the covariance (12) for any 𝑆 ∈ {𝑃,𝑄} will be negative 
approximately in half of all cases. 

  

II.2. Definitions and generalization.  

Here we study the concept of unexpected links in a more general framework. The positive 
and negative correlation inequalities are an active research direction in the field of 
probability and statistical mechanics. We believe these inequalities will allow us to 
generalize the concept of unexpected correlations in the PUC method. The following 
framework connects FKG (Fortuin–Kasteleyn–Ginibre) inequality in Statistical Mechanics 
to the concept of expected and unexpected links. 

Let Ω be the underlying sample space of a biological system. As an example of a biological 
system we consider a gene regulatory network, where Ω represents the set of all possible 
gene expression configurations. We can suppose that the state space Ω has an ordering 

(or partial ordering) “≺” assigned to pairs of its elements.  

Definition. A random variable 𝑋 = 𝑋(𝜔)  is said to be increasing if 𝜔 ≺ 𝜔′  implies 
𝑋(𝜔) < 𝑋(𝜔′). Similarly, a random variable is decreasing if 𝜔 ≺ 𝜔′  implies 𝑋(𝜔) >
𝑋(𝜔′). Both types of random variables, increasing and decreasing, are said to be 
monotone random variables.  

In the field of statistical mechanics and probabilistic combinatory, the FKG inequality 
(Fortuin–Kasteleyn–Ginibre inequality) explains most of the results involving monotone 
random variables and monotone (increasing or decreasing) events. It states that for two 
increasing random variables 𝑋 and 𝑌, 



𝔼(𝑋𝑌) ≥ 𝔼(𝑋)𝔼(𝑌)         ( 13 ) 

In some applications, such as percolation models, partial ordering of 𝛺 is sufficient for the 
FKG to hold (Grimmett, 1999). Many important results in applied mathematics and 
physics, such as the exact value of critical probability in two-dimensional percolation 
models, would have been impossible without the FKG inequality. 

Let 𝐺 =  (𝑉,𝐸) be a graph (network) with vertices (nodes) 𝑉 and edges 𝐸. Nodes 𝑣 ∈  𝑉 
represent the genes. Let 𝑋𝑣(𝜔) be monotone functions (random variables) assigned to 
each node 𝑣 ∈  𝑉. Here 𝑋𝑣 represents the noiseless gene expressions. In this framework it 
is convenient represent the state system as a probability measure. Consider two 
probability measures 𝑃 and 𝑄 over 𝛺 such that for all 𝜔 ∈  𝛺: 

𝑃(𝜎 ∈ 𝛺: 𝜎 ≺ 𝜔) ≥ 𝑄(𝜎 ∈ 𝛺: 𝜎 ≺ 𝜔)      ( 14 ) 

Here 𝑃 and 𝑄 correspond to the two states of a biological system. Let us denote, as 
before, ∆𝑣≔ 𝔼𝑃[𝑋𝑣] − 𝔼𝑄[𝑋𝑣]. We repeat the definition of expected and unexpected 
links. 

Definition. We say that random variables 𝑋𝑣 and 𝑋𝑢 modeling gene expressions in a pair of 
genes satisfy expected correlation inequality if and only if 

∆𝑣 ∆𝑢 𝑐𝑜𝑣𝑃(𝑋𝑣,𝑋𝑢) ≥  0, ∆𝑣 ∆𝑢 𝑐𝑜𝑣𝑄(𝑋𝑣,𝑋𝑢) ≥  0,          ( 15 ) 

in which case we say that the two gene expressions 𝑋𝑣 and 𝑋𝑢 have expected correlations. 
If one or both expected correlations inequalities are not satisfied, we say that 𝑋𝑣 and 𝑋𝑢 
have unexpected correlations.      

 

Lemma 2. If 𝑋𝑣 and 𝑋𝑢 are monotone functions, and probability measures 𝑃 and 𝑄 satisfy 
the condition (13), then 𝑋𝑣 and 𝑋𝑢 satisfy expected correlation inequality (or 𝑋𝑣 and 𝑋𝑢 
have expected correlations). 

Proof. Indeed, if 𝑋𝑣 is an increasing (decreasing) variable, then ∆𝑣≤ 0 (∆𝑣≥ 0). Now, if 
both 𝑋𝑢 and 𝑋𝑣 are either increasing or decreasing the FKG inequality (13) implies non-
negative correlations, so that for any state 𝑆 ∈ {𝑃,𝑄} 

𝑐𝑜𝑣𝑆(𝑋𝑢,𝑋𝑣): = 𝔼𝑆[𝑋𝑢𝑋𝑣]− 𝔼𝑆[𝑋𝑢]𝔼𝑆[𝑋𝑣] ≥ 0, ∀ 𝑢, 𝑣 ∈ 𝑉,   ( 16 ) 

which implies expected correlation inequalities (15). 



Similarly, if one of the two variables (i.e. 𝑋𝑢 or 𝑋𝑣) is increasing while the other is 
decreasing, the FKG inequality (13) implies non-positive correlations, such that for any 
state 𝑆 ∈ {𝑃,𝑄}, 

𝑐𝑜𝑣𝑆(𝑋𝑢,𝑋𝑣): = 𝔼𝑆[𝑋𝑢𝑋𝑣]− 𝔼𝑆[𝑋𝑢]𝔼𝑆[𝑋𝑣] ≤ 0, ∀ 𝑢, 𝑣 ∈ 𝑉   ( 17 ) 

implying (15) hold once again. It proves the Lemma 2. ☐ 

 

Next, let 𝜉𝑣 denote the errors for each node 𝑣 ∈ 𝑉. We assume that the random variables 
𝜉𝑣, 𝑣 ∈ 𝑉 are functions over a probability space Ξ, independent from any probability 
measure over 𝛺 , such as 𝑃  and 𝑄 . Let 𝜇  be the joint distribution of 𝜉𝑣, 𝑣 ∈ 𝑉  and 
𝔼𝜇[𝜉𝑣] = 0 for any 𝑣 ∈ 𝑉. The measured gene expression we quantify as a random 
variable 

𝑀𝑣 = 𝑋𝑣 + 𝜉𝑣,    𝑣 ∈ 𝑉,          ( 18 ) 

over the product space 𝛺 ×  Ξ, and the two different states of a biological system 
correspond to two different probability product measures, 𝑃 ×  𝜇 and 𝑄 ×  𝜇. Note that 
for any gene 𝑣: 

𝔼𝑃×𝜇[𝑀𝑣] −  𝔼𝑄×𝜇[𝑀𝑣] =  𝔼𝑃[𝑋𝑣] −  𝔼𝑄[𝑋𝑣] =:∆𝑣     ( 19 ) 

The following Lemma is an analogous of the Lemma 1 for the general framework. 

Lemma 3. If the variances of errors 𝜎𝑣2 =  𝑉𝑎𝑟(𝜉𝑣) are small enough for all 𝑣 ∈  𝑉, then 
the pairs of measured gene expression 𝑀𝑣 will also satisfy the inequalities (15). Thus in the 
noiseless networks we foresee no unexpected correlations. 

Proof. The proof is a direct consequence of the covariance calculation.  

𝑐𝑜𝑣𝑆×𝜇(𝑀𝑢,𝑀𝑣) = 𝑐𝑜𝑣𝑆×𝜇(𝑋𝑢 + 𝜉𝑢,𝑋𝑣 + 𝜉𝑣) = 𝑐𝑜𝑣𝑆(𝑋𝑢,𝑋𝑣) + 𝑐𝑜𝑣𝜇(𝜉𝑢, 𝜉𝑣) ( 20 ) 

By Cauchy-Schwarz inequality  

|𝑐𝑜𝑣𝑆(𝜉𝑢, 𝜉𝑣)| ≤ 𝜎𝑢𝜎𝑣         ( 21 ) 

the second covariance in (19) can be made so small that the sign of 𝑐𝑜𝑣𝑆(𝑀𝑢,𝑀𝑣) and the 
sign of 𝑐𝑜𝑣𝑆(𝑋𝑢,𝑋𝑣) will coincide. This proves Lemma. ☐ 

However in the noisy networks, the expected correlations rule (14) can be violated. Here 
the fraction of edges (𝑢, 𝑣) violating (15) that we call the Proportion of the Unexpected 
Correlations (PUC) becomes an estimator of the frequency of false edges. 



II.3. PUC represents 50% of erroneous. 

For any 𝑢, 𝑣 ∈ 𝑉; 𝑆 ∈ {𝑃,𝑄}; and 𝜇 ∈ Ξ , let us assume that the variables 𝜉𝑣 are random 

such that, asymptotically, 𝑐𝑜𝑣𝜇(𝜉𝑢, 𝜉𝑣) is positive for half of the �|𝑉|
2
� edges (𝑢, 𝑣), and 

negative for the rest of the pairs: 

lim|𝑉|→∞
#�(𝑢,𝑣): 𝑐𝑜𝑣𝜇(𝜉𝑢,𝜉𝑣)>0�

�|𝑉|
2 �

= lim|𝑉|→∞
#�(𝑢,𝑣): 𝑐𝑜𝑣𝜇(𝜉𝑢,𝜉𝑣)<0�

�|𝑉|
2 �

= 1
2
 .   ( 22 ) 

If the covariance 𝑐𝑜𝑣𝑆×𝜇(𝑀𝑢,𝑀𝑣)  is of a different sign than  𝑐𝑜𝑣𝑆(𝑋𝑢,𝑋𝑣)  (i.e. if a 
particular correlation (𝑢, 𝑣) is unexpected), it must hold that (see (20)): 

𝑐𝑜𝑣𝑆×𝜇(𝑀𝑢,𝑀𝑣) 𝑐𝑜𝑣𝑆(𝑋𝑢,𝑋𝑣)

�𝑐𝑜𝑣𝜇(𝜉𝑢,𝜉𝑣)�
2 = �𝑐𝑜𝑣𝑆(𝑋𝑢,𝑋𝑣)

𝑐𝑜𝑣𝜇(𝜉𝑢,𝜉𝑣)�
2

+ 𝑐𝑜𝑣𝑆(𝑋𝑢,𝑋𝑣)
𝑐𝑜𝑣𝜇(𝜉𝑢,𝜉𝑣) < 0.    ( 23 ) 

This condition is of the form 𝑅2 + 𝑅 < 0, where  𝑅 = 𝑐𝑜𝑣𝑆(𝑋𝑢,𝑋𝑣)
𝑐𝑜𝑣𝜇(𝜉𝑢,𝜉𝑣) , which trivially has the 

solution: 

 1
𝑅

= 𝑐𝑜𝑣𝜇(𝜉𝑢,𝜉𝑣)
𝑐𝑜𝑣𝑆(𝑋𝑢,𝑋𝑣) <  −1.        ( 24 ) 

The resulting inequality is satisfied under two conditions, which are thus requisite for a 
correlation to be unexpected, namely: 

|𝑐𝑜𝑣𝜇(𝜉𝑢, 𝜉𝑣)|> |𝑐𝑜𝑣𝑆(𝑋𝑢,𝑋𝑣)|       ( 25 ) 

𝑐𝑜𝑣𝜇(𝜉𝑢, 𝜉𝑣)𝑐𝑜𝑣𝑆(𝑋𝑢,𝑋𝑣) < 0       ( 26 ) 

The first condition (25) is interpreted as a drowning out of the causal link between two 
nodes by error; that is, the magnitude of error in the correlation between two nodes’ 
expressions is greater than the magnitude of real correlation between them. The second 
condition (26) is interpreted as a counteracting of error to causal connections: the 
contribution to the empirical correlation between two nodes due to error must counteract 
the contribution due to causal mechanisms. 

Condition (26) implies that, given the condition (22) for error distribution, PUC will 
statistically detect 50% of total false correlations for which the causal contribution is 
negligibly small, as the signs of the error and causal contribution are equally likely to be 
the same as they are to be opposite. 

 

II.4. Unexpected correlations under non-monotonicity.  



Here we prove the proposition in the conclusion about non-monotonic links. The 
statement says that a non-monotonic link between two nodes with an unexpected 
correlation cannot cause a transition between two distinct states of a network. We 
provide an extreme example of non-monotonicity, in which the dependence between two 
nodes changes in sign in the two states of a network (e.g. stimulation in one state of a 
biological system and inhibition in the other).  

Assume we are given 𝑛 + 2  gene expressions in two biological state 𝑃  and 𝑄 : 
𝑋𝑃,𝑌𝑃,𝑋1,𝑃, … ,𝑋𝑛,𝑃  and 𝑋𝑄 ,𝑌𝑄 ,𝑋1,𝑄, … ,𝑋𝑛,𝑄 . We assume linear (or almost linear) 
dependence of 𝑌 on 𝑋 within any one given biological state, stated as follows: 𝑌𝑃 =
𝛼𝑃𝑋𝑃 + 𝜉𝑃  and 𝑌𝑄 = 𝛼𝑄𝑋𝑄 + 𝜉𝑄 , where 𝜉𝑃  is a function of 𝑋1,𝑃 , … ,𝑋𝑛,𝑃 , and 𝜉𝑄  is a 
function of 𝑋1,𝑄 , … ,𝑋𝑛,𝑄 , and 𝛼𝑃𝛼𝑄 ≠ 0 . We suppose that 𝑋𝑃  (𝑋𝑄)  and 𝜉𝑃  (𝜉𝑄 ) are 
independent. Recall that all gene expression values are positive and remember that 
Δ𝑋 ≔ 𝔼𝑃[𝑋] − 𝔼𝑄[𝑋] = 𝔼[𝑋𝑃]− 𝔼[𝑋𝑄]. 

Lemma 4. Suppose 𝛼𝑃𝛼𝑄 < 0  (implying that the relation between X and Y is non-
monotonic), then: 

(a) 𝑋 and 𝑌 have unexpected correlations. 
(b) The sign of Δ𝑌 may not depend on the sign of Δ𝑋, but instead mostly depends on 

the sign of Δ𝜉. 

Proof. Observe that, due to independence of 𝑋𝑃 (𝑋𝑄) and 𝜉𝑃 (𝜉𝑄): 

𝑐𝑜𝑣𝑃(𝑋,𝑌) = 𝑐𝑜𝑣(𝑋𝑃,𝑌𝑃) = 𝛼𝑃𝑉𝑎𝑟[𝑋𝑃],       ( 27 ) 

𝑐𝑜𝑣𝑄(𝑋,𝑌) = 𝑐𝑜𝑣�𝑋𝑄,𝑌𝑄� = 𝛼𝑄𝑉𝑎𝑟[𝑋𝑄].        ( 28 ) 

Therefore, 𝑐𝑜𝑣𝑃(𝑋,𝑌)𝑐𝑜𝑣𝑄(𝑋,𝑌) < 0 (so that the expected correlation inequalities do 
not hold simultaneously) if and only if 𝛼𝑃𝛼𝑄 < 0. This proves the item (a) of the lemma. 

Let us prove (b). Without loss of generality, 𝑐𝑜𝑣𝑃(𝑋,𝑌) < 0, implying 𝛼𝑃 < 0 and 𝛼𝑄 > 0. 
Hence: 

Δ𝑌 = 𝔼�𝑌𝑃 − 𝑌𝑄� = 𝔼�𝛼𝑃𝑋𝑃 − 𝛼𝑄𝑋𝑄� + 𝔼(𝜉𝑃 − 𝜉𝑄)     ( 29 ) 

Note that 𝔼�𝛼𝑃𝑋𝑃 − 𝛼𝑄𝑋𝑄� < 0 regardless of the values of 𝑋𝑃 and 𝑋𝑄 (both of which are 
strictly positive). Thus in the case Δ𝜉 > 0 the change Δ𝑌  will still be negative. The sign of 
Δ𝑌 will be positive only if Δ𝜉 ≫ 0. ☐  

  



 

 

Figure S2: PUC and FDR correlate strongly when reconstructing macroeconomic networks using various bimodal 
parameters to define system states. Parameters shown are:  ADA - Duration of compulsory education; AIA - Cause of 
death, by communicable diseases and maternal, prenatal and nutrition conditions (% of total); AVS - Manufactures 
exports (% of merchandise exports); BEG - Educational expenditure in pre-primary as % of total educational expenditure; 
QZ - Private credit bureau coverage (% of adults); RW - Strength of legal rights index;  UU Passenger cars (per 1,000 
people)  
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